### (0) Obligation:

JBC Problem based on JBC Program:
`No human-readable program information known.`

Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: Loop1

### (1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

### (2) Obligation:

FIGraph based on JBC Program:
Graph of 36 nodes with 1 SCC.

### (3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph to ITRS rules

### (4) Obligation:

ITRS problem:

The following function symbols are pre-defined:
 != ~ Neq: (Integer, Integer) -> Boolean * ~ Mul: (Integer, Integer) -> Integer >= ~ Ge: (Integer, Integer) -> Boolean -1 ~ UnaryMinus: (Integer) -> Integer | ~ Bwor: (Integer, Integer) -> Integer / ~ Div: (Integer, Integer) -> Integer = ~ Eq: (Integer, Integer) -> Boolean ~ Bwxor: (Integer, Integer) -> Integer || ~ Lor: (Boolean, Boolean) -> Boolean ! ~ Lnot: (Boolean) -> Boolean < ~ Lt: (Integer, Integer) -> Boolean - ~ Sub: (Integer, Integer) -> Integer <= ~ Le: (Integer, Integer) -> Boolean > ~ Gt: (Integer, Integer) -> Boolean ~ ~ Bwnot: (Integer) -> Integer % ~ Mod: (Integer, Integer) -> Integer & ~ Bwand: (Integer, Integer) -> Integer + ~ Add: (Integer, Integer) -> Integer && ~ Land: (Boolean, Boolean) -> Boolean

The TRS R consists of the following rules:
Load113(java.lang.Object(ARRAY(i4, a6data)), i5) → Cond_Load113(i5 >= 0 && i5 < i4 && i5 + 1 > 0, java.lang.Object(ARRAY(i4, a6data)), i5)
The set Q consists of the following terms:

### (6) Obligation:

IDP problem:
The following function symbols are pre-defined:
 != ~ Neq: (Integer, Integer) -> Boolean * ~ Mul: (Integer, Integer) -> Integer >= ~ Ge: (Integer, Integer) -> Boolean -1 ~ UnaryMinus: (Integer) -> Integer | ~ Bwor: (Integer, Integer) -> Integer / ~ Div: (Integer, Integer) -> Integer = ~ Eq: (Integer, Integer) -> Boolean ~ Bwxor: (Integer, Integer) -> Integer || ~ Lor: (Boolean, Boolean) -> Boolean ! ~ Lnot: (Boolean) -> Boolean < ~ Lt: (Integer, Integer) -> Boolean - ~ Sub: (Integer, Integer) -> Integer <= ~ Le: (Integer, Integer) -> Boolean > ~ Gt: (Integer, Integer) -> Boolean ~ ~ Bwnot: (Integer) -> Integer % ~ Mod: (Integer, Integer) -> Integer & ~ Bwand: (Integer, Integer) -> Integer + ~ Add: (Integer, Integer) -> Integer && ~ Land: (Boolean, Boolean) -> Boolean

The following domains are used:

Boolean, Integer

The ITRS R consists of the following rules:
Load113(java.lang.Object(ARRAY(i4, a6data)), i5) → Cond_Load113(i5 >= 0 && i5 < i4 && i5 + 1 > 0, java.lang.Object(ARRAY(i4, a6data)), i5)

The integer pair graph contains the following rules and edges:
(0): LOAD113(java.lang.Object(ARRAY(i4[0], a6data[0])), i5[0]) → COND_LOAD113(i5[0] >= 0 && i5[0] < i4[0] && i5[0] + 1 > 0, java.lang.Object(ARRAY(i4[0], a6data[0])), i5[0])

(0) -> (1), if ((i5[0]* i5[1])∧(i5[0] >= 0 && i5[0] < i4[0] && i5[0] + 1 > 0* TRUE)∧(java.lang.Object(ARRAY(i4[0], a6data[0])) →* java.lang.Object(ARRAY(i4[1], a6data[1]))))

(1) -> (0), if ((java.lang.Object(ARRAY(i4[1], a6data[1])) →* java.lang.Object(ARRAY(i4[0], a6data[0])))∧(i5[1] + 1* i5[0]))

The set Q consists of the following terms:

### (7) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

### (8) Obligation:

IDP problem:
The following function symbols are pre-defined:
 != ~ Neq: (Integer, Integer) -> Boolean * ~ Mul: (Integer, Integer) -> Integer >= ~ Ge: (Integer, Integer) -> Boolean -1 ~ UnaryMinus: (Integer) -> Integer | ~ Bwor: (Integer, Integer) -> Integer / ~ Div: (Integer, Integer) -> Integer = ~ Eq: (Integer, Integer) -> Boolean ~ Bwxor: (Integer, Integer) -> Integer || ~ Lor: (Boolean, Boolean) -> Boolean ! ~ Lnot: (Boolean) -> Boolean < ~ Lt: (Integer, Integer) -> Boolean - ~ Sub: (Integer, Integer) -> Integer <= ~ Le: (Integer, Integer) -> Boolean > ~ Gt: (Integer, Integer) -> Boolean ~ ~ Bwnot: (Integer) -> Integer % ~ Mod: (Integer, Integer) -> Integer & ~ Bwand: (Integer, Integer) -> Integer + ~ Add: (Integer, Integer) -> Integer && ~ Land: (Boolean, Boolean) -> Boolean

The following domains are used:

Boolean, Integer

R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD113(java.lang.Object(ARRAY(i4[0], a6data[0])), i5[0]) → COND_LOAD113(i5[0] >= 0 && i5[0] < i4[0] && i5[0] + 1 > 0, java.lang.Object(ARRAY(i4[0], a6data[0])), i5[0])

(0) -> (1), if ((i5[0]* i5[1])∧(i5[0] >= 0 && i5[0] < i4[0] && i5[0] + 1 > 0* TRUE)∧(java.lang.Object(ARRAY(i4[0], a6data[0])) →* java.lang.Object(ARRAY(i4[1], a6data[1]))))

(1) -> (0), if ((java.lang.Object(ARRAY(i4[1], a6data[1])) →* java.lang.Object(ARRAY(i4[0], a6data[0])))∧(i5[1] + 1* i5[0]))

The set Q consists of the following terms:

### (9) ItpfGraphProof (EQUIVALENT transformation)

Applied rule ItpfICap [ICap]

### (10) Obligation:

IDP problem:
The following function symbols are pre-defined:
 != ~ Neq: (Integer, Integer) -> Boolean * ~ Mul: (Integer, Integer) -> Integer >= ~ Ge: (Integer, Integer) -> Boolean -1 ~ UnaryMinus: (Integer) -> Integer | ~ Bwor: (Integer, Integer) -> Integer / ~ Div: (Integer, Integer) -> Integer = ~ Eq: (Integer, Integer) -> Boolean ~ Bwxor: (Integer, Integer) -> Integer || ~ Lor: (Boolean, Boolean) -> Boolean ! ~ Lnot: (Boolean) -> Boolean < ~ Lt: (Integer, Integer) -> Boolean - ~ Sub: (Integer, Integer) -> Integer <= ~ Le: (Integer, Integer) -> Boolean > ~ Gt: (Integer, Integer) -> Boolean ~ ~ Bwnot: (Integer) -> Integer % ~ Mod: (Integer, Integer) -> Integer & ~ Bwand: (Integer, Integer) -> Integer + ~ Add: (Integer, Integer) -> Integer && ~ Land: (Boolean, Boolean) -> Boolean

The following domains are used:

Boolean, Integer

R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD113(java.lang.Object(ARRAY(i4[0], a6data[0])), i5[0]) → COND_LOAD113(i5[0] >= 0 && i5[0] < i4[0] && i5[0] + 1 > 0, java.lang.Object(ARRAY(i4[0], a6data[0])), i5[0])

(0) -> (1), if ((i5[0]* i5[1])∧(i5[0] >= 0 && i5[0] < i4[0] && i5[0] + 1 > 0* TRUE)∧((i4[0]* i4[1])∧(a6data[0]* a6data[1])))

(1) -> (0), if (((i4[1]* i4[0])∧(a6data[1]* a6data[0]))∧(i5[1] + 1* i5[0]))

The set Q consists of the following terms:

### (11) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.

For Pair LOAD113(java.lang.Object(ARRAY(i4, a6data)), i5) → COND_LOAD113(&&(&&(>=(i5, 0), <(i5, i4)), >(+(i5, 1), 0)), java.lang.Object(ARRAY(i4, a6data)), i5) the following chains were created:
• We consider the chain LOAD113(java.lang.Object(ARRAY(i4[0], a6data[0])), i5[0]) → COND_LOAD113(&&(&&(>=(i5[0], 0), <(i5[0], i4[0])), >(+(i5[0], 1), 0)), java.lang.Object(ARRAY(i4[0], a6data[0])), i5[0]), COND_LOAD113(TRUE, java.lang.Object(ARRAY(i4[1], a6data[1])), i5[1]) → LOAD113(java.lang.Object(ARRAY(i4[1], a6data[1])), +(i5[1], 1)) which results in the following constraint:

(1)    (i5[0]=i5[1]&&(&&(>=(i5[0], 0), <(i5[0], i4[0])), >(+(i5[0], 1), 0))=TRUEi4[0]=i4[1]a6data[0]=a6data[1]LOAD113(java.lang.Object(ARRAY(i4[0], a6data[0])), i5[0])≥NonInfC∧LOAD113(java.lang.Object(ARRAY(i4[0], a6data[0])), i5[0])≥COND_LOAD113(&&(&&(>=(i5[0], 0), <(i5[0], i4[0])), >(+(i5[0], 1), 0)), java.lang.Object(ARRAY(i4[0], a6data[0])), i5[0])∧(UIncreasing(COND_LOAD113(&&(&&(>=(i5[0], 0), <(i5[0], i4[0])), >(+(i5[0], 1), 0)), java.lang.Object(ARRAY(i4[0], a6data[0])), i5[0])), ≥))

We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

(2)    (>(+(i5[0], 1), 0)=TRUE>=(i5[0], 0)=TRUE<(i5[0], i4[0])=TRUELOAD113(java.lang.Object(ARRAY(i4[0], a6data[0])), i5[0])≥NonInfC∧LOAD113(java.lang.Object(ARRAY(i4[0], a6data[0])), i5[0])≥COND_LOAD113(&&(&&(>=(i5[0], 0), <(i5[0], i4[0])), >(+(i5[0], 1), 0)), java.lang.Object(ARRAY(i4[0], a6data[0])), i5[0])∧(UIncreasing(COND_LOAD113(&&(&&(>=(i5[0], 0), <(i5[0], i4[0])), >(+(i5[0], 1), 0)), java.lang.Object(ARRAY(i4[0], a6data[0])), i5[0])), ≥))

We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

(3)    (i5[0] ≥ 0∧i5[0] ≥ 0∧i4[0] + [-1] + [-1]i5[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD113(&&(&&(>=(i5[0], 0), <(i5[0], i4[0])), >(+(i5[0], 1), 0)), java.lang.Object(ARRAY(i4[0], a6data[0])), i5[0])), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [(-1)bni_14]i5[0] + [bni_14]i4[0] ≥ 0∧[(-1)bso_15] ≥ 0)

We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

(4)    (i5[0] ≥ 0∧i5[0] ≥ 0∧i4[0] + [-1] + [-1]i5[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD113(&&(&&(>=(i5[0], 0), <(i5[0], i4[0])), >(+(i5[0], 1), 0)), java.lang.Object(ARRAY(i4[0], a6data[0])), i5[0])), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [(-1)bni_14]i5[0] + [bni_14]i4[0] ≥ 0∧[(-1)bso_15] ≥ 0)

We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

(5)    (i5[0] ≥ 0∧i5[0] ≥ 0∧i4[0] + [-1] + [-1]i5[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD113(&&(&&(>=(i5[0], 0), <(i5[0], i4[0])), >(+(i5[0], 1), 0)), java.lang.Object(ARRAY(i4[0], a6data[0])), i5[0])), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [(-1)bni_14]i5[0] + [bni_14]i4[0] ≥ 0∧[(-1)bso_15] ≥ 0)

We simplified constraint (5) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

(6)    (i5[0] ≥ 0∧i5[0] ≥ 0∧i4[0] + [-1] + [-1]i5[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD113(&&(&&(>=(i5[0], 0), <(i5[0], i4[0])), >(+(i5[0], 1), 0)), java.lang.Object(ARRAY(i4[0], a6data[0])), i5[0])), ≥)∧0 = 0∧[(-1)bni_14 + (-1)Bound*bni_14] + [(-1)bni_14]i5[0] + [bni_14]i4[0] ≥ 0∧0 = 0∧[(-1)bso_15] ≥ 0)

We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

(7)    (i5[0] ≥ 0∧i5[0] ≥ 0∧i4[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD113(&&(&&(>=(i5[0], 0), <(i5[0], i4[0])), >(+(i5[0], 1), 0)), java.lang.Object(ARRAY(i4[0], a6data[0])), i5[0])), ≥)∧0 = 0∧[(-1)Bound*bni_14] + [bni_14]i4[0] ≥ 0∧0 = 0∧[(-1)bso_15] ≥ 0)

For Pair COND_LOAD113(TRUE, java.lang.Object(ARRAY(i4, a6data)), i5) → LOAD113(java.lang.Object(ARRAY(i4, a6data)), +(i5, 1)) the following chains were created:
• We consider the chain COND_LOAD113(TRUE, java.lang.Object(ARRAY(i4[1], a6data[1])), i5[1]) → LOAD113(java.lang.Object(ARRAY(i4[1], a6data[1])), +(i5[1], 1)) which results in the following constraint:

We simplified constraint (8) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

(9)    ((UIncreasing(LOAD113(java.lang.Object(ARRAY(i4[1], a6data[1])), +(i5[1], 1))), ≥)∧[1 + (-1)bso_17] ≥ 0)

We simplified constraint (9) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

(10)    ((UIncreasing(LOAD113(java.lang.Object(ARRAY(i4[1], a6data[1])), +(i5[1], 1))), ≥)∧[1 + (-1)bso_17] ≥ 0)

We simplified constraint (10) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

(11)    ((UIncreasing(LOAD113(java.lang.Object(ARRAY(i4[1], a6data[1])), +(i5[1], 1))), ≥)∧[1 + (-1)bso_17] ≥ 0)

We simplified constraint (11) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

(12)    ((UIncreasing(LOAD113(java.lang.Object(ARRAY(i4[1], a6data[1])), +(i5[1], 1))), ≥)∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_17] ≥ 0)

To summarize, we get the following constraints P for the following pairs.
• LOAD113(java.lang.Object(ARRAY(i4, a6data)), i5) → COND_LOAD113(&&(&&(>=(i5, 0), <(i5, i4)), >(+(i5, 1), 0)), java.lang.Object(ARRAY(i4, a6data)), i5)
• (i5[0] ≥ 0∧i5[0] ≥ 0∧i4[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD113(&&(&&(>=(i5[0], 0), <(i5[0], i4[0])), >(+(i5[0], 1), 0)), java.lang.Object(ARRAY(i4[0], a6data[0])), i5[0])), ≥)∧0 = 0∧[(-1)Bound*bni_14] + [bni_14]i4[0] ≥ 0∧0 = 0∧[(-1)bso_15] ≥ 0)

• ((UIncreasing(LOAD113(java.lang.Object(ARRAY(i4[1], a6data[1])), +(i5[1], 1))), ≥)∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_17] ≥ 0)

The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD113(x1, x2)) = [-1] + [-1]x2 + [-1]x1
POL(java.lang.Object(x1)) = x1
POL(ARRAY(x1, x2)) = [-1]x1
POL(COND_LOAD113(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x2
POL(&&(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(0) = 0
POL(<(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]

The following pairs are in P>:

The following pairs are in Pbound:

LOAD113(java.lang.Object(ARRAY(i4[0], a6data[0])), i5[0]) → COND_LOAD113(&&(&&(>=(i5[0], 0), <(i5[0], i4[0])), >(+(i5[0], 1), 0)), java.lang.Object(ARRAY(i4[0], a6data[0])), i5[0])

The following pairs are in P:

LOAD113(java.lang.Object(ARRAY(i4[0], a6data[0])), i5[0]) → COND_LOAD113(&&(&&(>=(i5[0], 0), <(i5[0], i4[0])), >(+(i5[0], 1), 0)), java.lang.Object(ARRAY(i4[0], a6data[0])), i5[0])

There are no usable rules.

### (13) Obligation:

IDP problem:
The following function symbols are pre-defined:
 != ~ Neq: (Integer, Integer) -> Boolean * ~ Mul: (Integer, Integer) -> Integer >= ~ Ge: (Integer, Integer) -> Boolean -1 ~ UnaryMinus: (Integer) -> Integer | ~ Bwor: (Integer, Integer) -> Integer / ~ Div: (Integer, Integer) -> Integer = ~ Eq: (Integer, Integer) -> Boolean ~ Bwxor: (Integer, Integer) -> Integer || ~ Lor: (Boolean, Boolean) -> Boolean ! ~ Lnot: (Boolean) -> Boolean < ~ Lt: (Integer, Integer) -> Boolean - ~ Sub: (Integer, Integer) -> Integer <= ~ Le: (Integer, Integer) -> Boolean > ~ Gt: (Integer, Integer) -> Boolean ~ ~ Bwnot: (Integer) -> Integer % ~ Mod: (Integer, Integer) -> Integer & ~ Bwand: (Integer, Integer) -> Integer + ~ Add: (Integer, Integer) -> Integer && ~ Land: (Boolean, Boolean) -> Boolean

The following domains are used:

Boolean, Integer

R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD113(java.lang.Object(ARRAY(i4[0], a6data[0])), i5[0]) → COND_LOAD113(i5[0] >= 0 && i5[0] < i4[0] && i5[0] + 1 > 0, java.lang.Object(ARRAY(i4[0], a6data[0])), i5[0])

The set Q consists of the following terms:

### (14) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

### (16) Obligation:

IDP problem:
The following function symbols are pre-defined:
 != ~ Neq: (Integer, Integer) -> Boolean * ~ Mul: (Integer, Integer) -> Integer >= ~ Ge: (Integer, Integer) -> Boolean -1 ~ UnaryMinus: (Integer) -> Integer | ~ Bwor: (Integer, Integer) -> Integer / ~ Div: (Integer, Integer) -> Integer = ~ Eq: (Integer, Integer) -> Boolean ~ Bwxor: (Integer, Integer) -> Integer || ~ Lor: (Boolean, Boolean) -> Boolean ! ~ Lnot: (Boolean) -> Boolean < ~ Lt: (Integer, Integer) -> Boolean - ~ Sub: (Integer, Integer) -> Integer <= ~ Le: (Integer, Integer) -> Boolean > ~ Gt: (Integer, Integer) -> Boolean ~ ~ Bwnot: (Integer) -> Integer % ~ Mod: (Integer, Integer) -> Integer & ~ Bwand: (Integer, Integer) -> Integer + ~ Add: (Integer, Integer) -> Integer && ~ Land: (Boolean, Boolean) -> Boolean

The following domains are used:

Integer

R is empty.

The integer pair graph contains the following rules and edges: