0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 AND
↳7 IDP
↳8 IDependencyGraphProof (⇔)
↳9 TRUE
↳10 IDP
↳11 IDependencyGraphProof (⇔)
↳12 TRUE
/**
* A recursive loop.
*
* All calls terminate.
*
* Julia + BinTerm prove that all calls terminate.
*
* @author <A HREF="mailto:fausto.spoto@univr.it">Fausto Spoto</A>
*/
public class Double2 {
private static void test(int n) {
for (int i = n - 1; i >= 0; i--)
test(i);
}
public static void main(String[] args) {
test(10);
}
}
Generated 16 rules for P and 2 rules for R.
Combined rules. Obtained 2 rules for P and 0 rules for R.
Filtered ground terms:
120_0_test_ConstantStackPush(x1, x2) → 120_0_test_ConstantStackPush(x2)
Cond_143_1_test_InvokeMethod(x1, x2, x3, x4) → Cond_143_1_test_InvokeMethod(x1, x3, x4)
132_0_test_Return(x1) → 132_0_test_Return
Cond_120_0_test_ConstantStackPush(x1, x2, x3) → Cond_120_0_test_ConstantStackPush(x1, x3)
Filtered duplicate args:
143_1_test_InvokeMethod(x1, x2, x3) → 143_1_test_InvokeMethod(x1, x3)
Cond_143_1_test_InvokeMethod(x1, x2, x3) → Cond_143_1_test_InvokeMethod(x1, x3)
Combined rules. Obtained 2 rules for P and 0 rules for R.
Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(0) -> (1), if ((0 <= x0[0] - 1 →* TRUE)∧(x0[0] →* x0[1]))
(0) -> (2), if ((0 <= x0[0] - 1 →* TRUE)∧(x0[0] →* x0[2]))
(1) -> (3), if ((120_0_test_ConstantStackPush(x0[1] - 1) →* 132_0_test_Return)∧(x0[1] - 1 →* x0[3]))
(2) -> (0), if ((x0[2] - 1 →* x0[0]))
(3) -> (4), if ((x0[3] >= 0 && 0 <= x0[3] + -1 →* TRUE)∧(x0[3] →* x0[4]))
(3) -> (5), if ((x0[3] >= 0 && 0 <= x0[3] + -1 →* TRUE)∧(x0[3] →* x0[5]))
(4) -> (3), if ((120_0_test_ConstantStackPush(x0[4] + -1) →* 132_0_test_Return)∧(x0[4] + -1 →* x0[3]))
(5) -> (0), if ((x0[5] + -1 →* x0[0]))
(1) (<=(0, -(x0[0], 1))=TRUE∧x0[0]=x0[1] ⇒ 120_0_TEST_CONSTANTSTACKPUSH(x0[0])≥NonInfC∧120_0_TEST_CONSTANTSTACKPUSH(x0[0])≥COND_120_0_TEST_CONSTANTSTACKPUSH(<=(0, -(x0[0], 1)), x0[0])∧(UIncreasing(COND_120_0_TEST_CONSTANTSTACKPUSH(<=(0, -(x0[0], 1)), x0[0])), ≥))
(2) (<=(0, -(x0[0], 1))=TRUE ⇒ 120_0_TEST_CONSTANTSTACKPUSH(x0[0])≥NonInfC∧120_0_TEST_CONSTANTSTACKPUSH(x0[0])≥COND_120_0_TEST_CONSTANTSTACKPUSH(<=(0, -(x0[0], 1)), x0[0])∧(UIncreasing(COND_120_0_TEST_CONSTANTSTACKPUSH(<=(0, -(x0[0], 1)), x0[0])), ≥))
(3) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_120_0_TEST_CONSTANTSTACKPUSH(<=(0, -(x0[0], 1)), x0[0])), ≥)∧[bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(4) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_120_0_TEST_CONSTANTSTACKPUSH(<=(0, -(x0[0], 1)), x0[0])), ≥)∧[bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(5) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_120_0_TEST_CONSTANTSTACKPUSH(<=(0, -(x0[0], 1)), x0[0])), ≥)∧[bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(6) (x0[0] ≥ 0 ⇒ (UIncreasing(COND_120_0_TEST_CONSTANTSTACKPUSH(<=(0, -(x0[0], 1)), x0[0])), ≥)∧[(2)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(7) (<=(0, -(x0[0], 1))=TRUE∧x0[0]=x0[2] ⇒ 120_0_TEST_CONSTANTSTACKPUSH(x0[0])≥NonInfC∧120_0_TEST_CONSTANTSTACKPUSH(x0[0])≥COND_120_0_TEST_CONSTANTSTACKPUSH(<=(0, -(x0[0], 1)), x0[0])∧(UIncreasing(COND_120_0_TEST_CONSTANTSTACKPUSH(<=(0, -(x0[0], 1)), x0[0])), ≥))
(8) (<=(0, -(x0[0], 1))=TRUE ⇒ 120_0_TEST_CONSTANTSTACKPUSH(x0[0])≥NonInfC∧120_0_TEST_CONSTANTSTACKPUSH(x0[0])≥COND_120_0_TEST_CONSTANTSTACKPUSH(<=(0, -(x0[0], 1)), x0[0])∧(UIncreasing(COND_120_0_TEST_CONSTANTSTACKPUSH(<=(0, -(x0[0], 1)), x0[0])), ≥))
(9) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_120_0_TEST_CONSTANTSTACKPUSH(<=(0, -(x0[0], 1)), x0[0])), ≥)∧[bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(10) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_120_0_TEST_CONSTANTSTACKPUSH(<=(0, -(x0[0], 1)), x0[0])), ≥)∧[bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(11) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_120_0_TEST_CONSTANTSTACKPUSH(<=(0, -(x0[0], 1)), x0[0])), ≥)∧[bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(12) (x0[0] ≥ 0 ⇒ (UIncreasing(COND_120_0_TEST_CONSTANTSTACKPUSH(<=(0, -(x0[0], 1)), x0[0])), ≥)∧[(2)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(13) (COND_120_0_TEST_CONSTANTSTACKPUSH(TRUE, x0[1])≥NonInfC∧COND_120_0_TEST_CONSTANTSTACKPUSH(TRUE, x0[1])≥143_1_TEST_INVOKEMETHOD(120_0_test_ConstantStackPush(-(x0[1], 1)), -(x0[1], 1))∧(UIncreasing(143_1_TEST_INVOKEMETHOD(120_0_test_ConstantStackPush(-(x0[1], 1)), -(x0[1], 1))), ≥))
(14) ((UIncreasing(143_1_TEST_INVOKEMETHOD(120_0_test_ConstantStackPush(-(x0[1], 1)), -(x0[1], 1))), ≥)∧[1 + (-1)bso_19] ≥ 0)
(15) ((UIncreasing(143_1_TEST_INVOKEMETHOD(120_0_test_ConstantStackPush(-(x0[1], 1)), -(x0[1], 1))), ≥)∧[1 + (-1)bso_19] ≥ 0)
(16) ((UIncreasing(143_1_TEST_INVOKEMETHOD(120_0_test_ConstantStackPush(-(x0[1], 1)), -(x0[1], 1))), ≥)∧[1 + (-1)bso_19] ≥ 0)
(17) ((UIncreasing(143_1_TEST_INVOKEMETHOD(120_0_test_ConstantStackPush(-(x0[1], 1)), -(x0[1], 1))), ≥)∧0 = 0∧[1 + (-1)bso_19] ≥ 0)
(18) (COND_120_0_TEST_CONSTANTSTACKPUSH(TRUE, x0[2])≥NonInfC∧COND_120_0_TEST_CONSTANTSTACKPUSH(TRUE, x0[2])≥120_0_TEST_CONSTANTSTACKPUSH(-(x0[2], 1))∧(UIncreasing(120_0_TEST_CONSTANTSTACKPUSH(-(x0[2], 1))), ≥))
(19) ((UIncreasing(120_0_TEST_CONSTANTSTACKPUSH(-(x0[2], 1))), ≥)∧[1 + (-1)bso_21] ≥ 0)
(20) ((UIncreasing(120_0_TEST_CONSTANTSTACKPUSH(-(x0[2], 1))), ≥)∧[1 + (-1)bso_21] ≥ 0)
(21) ((UIncreasing(120_0_TEST_CONSTANTSTACKPUSH(-(x0[2], 1))), ≥)∧[1 + (-1)bso_21] ≥ 0)
(22) ((UIncreasing(120_0_TEST_CONSTANTSTACKPUSH(-(x0[2], 1))), ≥)∧0 = 0∧[1 + (-1)bso_21] ≥ 0)
(23) (&&(>=(x0[3], 0), <=(0, +(x0[3], -1)))=TRUE∧x0[3]=x0[4] ⇒ 143_1_TEST_INVOKEMETHOD(132_0_test_Return, x0[3])≥NonInfC∧143_1_TEST_INVOKEMETHOD(132_0_test_Return, x0[3])≥COND_143_1_TEST_INVOKEMETHOD(&&(>=(x0[3], 0), <=(0, +(x0[3], -1))), 132_0_test_Return, x0[3])∧(UIncreasing(COND_143_1_TEST_INVOKEMETHOD(&&(>=(x0[3], 0), <=(0, +(x0[3], -1))), 132_0_test_Return, x0[3])), ≥))
(24) (>=(x0[3], 0)=TRUE∧<=(0, +(x0[3], -1))=TRUE ⇒ 143_1_TEST_INVOKEMETHOD(132_0_test_Return, x0[3])≥NonInfC∧143_1_TEST_INVOKEMETHOD(132_0_test_Return, x0[3])≥COND_143_1_TEST_INVOKEMETHOD(&&(>=(x0[3], 0), <=(0, +(x0[3], -1))), 132_0_test_Return, x0[3])∧(UIncreasing(COND_143_1_TEST_INVOKEMETHOD(&&(>=(x0[3], 0), <=(0, +(x0[3], -1))), 132_0_test_Return, x0[3])), ≥))
(25) (x0[3] ≥ 0∧x0[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_143_1_TEST_INVOKEMETHOD(&&(>=(x0[3], 0), <=(0, +(x0[3], -1))), 132_0_test_Return, x0[3])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x0[3] ≥ 0∧[(-1)bso_23] ≥ 0)
(26) (x0[3] ≥ 0∧x0[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_143_1_TEST_INVOKEMETHOD(&&(>=(x0[3], 0), <=(0, +(x0[3], -1))), 132_0_test_Return, x0[3])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x0[3] ≥ 0∧[(-1)bso_23] ≥ 0)
(27) (x0[3] ≥ 0∧x0[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_143_1_TEST_INVOKEMETHOD(&&(>=(x0[3], 0), <=(0, +(x0[3], -1))), 132_0_test_Return, x0[3])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x0[3] ≥ 0∧[(-1)bso_23] ≥ 0)
(28) ([1] + x0[3] ≥ 0∧x0[3] ≥ 0 ⇒ (UIncreasing(COND_143_1_TEST_INVOKEMETHOD(&&(>=(x0[3], 0), <=(0, +(x0[3], -1))), 132_0_test_Return, x0[3])), ≥)∧[(2)bni_22 + (-1)Bound*bni_22] + [bni_22]x0[3] ≥ 0∧[(-1)bso_23] ≥ 0)
(29) (&&(>=(x0[3], 0), <=(0, +(x0[3], -1)))=TRUE∧x0[3]=x0[5] ⇒ 143_1_TEST_INVOKEMETHOD(132_0_test_Return, x0[3])≥NonInfC∧143_1_TEST_INVOKEMETHOD(132_0_test_Return, x0[3])≥COND_143_1_TEST_INVOKEMETHOD(&&(>=(x0[3], 0), <=(0, +(x0[3], -1))), 132_0_test_Return, x0[3])∧(UIncreasing(COND_143_1_TEST_INVOKEMETHOD(&&(>=(x0[3], 0), <=(0, +(x0[3], -1))), 132_0_test_Return, x0[3])), ≥))
(30) (>=(x0[3], 0)=TRUE∧<=(0, +(x0[3], -1))=TRUE ⇒ 143_1_TEST_INVOKEMETHOD(132_0_test_Return, x0[3])≥NonInfC∧143_1_TEST_INVOKEMETHOD(132_0_test_Return, x0[3])≥COND_143_1_TEST_INVOKEMETHOD(&&(>=(x0[3], 0), <=(0, +(x0[3], -1))), 132_0_test_Return, x0[3])∧(UIncreasing(COND_143_1_TEST_INVOKEMETHOD(&&(>=(x0[3], 0), <=(0, +(x0[3], -1))), 132_0_test_Return, x0[3])), ≥))
(31) (x0[3] ≥ 0∧x0[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_143_1_TEST_INVOKEMETHOD(&&(>=(x0[3], 0), <=(0, +(x0[3], -1))), 132_0_test_Return, x0[3])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x0[3] ≥ 0∧[(-1)bso_23] ≥ 0)
(32) (x0[3] ≥ 0∧x0[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_143_1_TEST_INVOKEMETHOD(&&(>=(x0[3], 0), <=(0, +(x0[3], -1))), 132_0_test_Return, x0[3])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x0[3] ≥ 0∧[(-1)bso_23] ≥ 0)
(33) (x0[3] ≥ 0∧x0[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_143_1_TEST_INVOKEMETHOD(&&(>=(x0[3], 0), <=(0, +(x0[3], -1))), 132_0_test_Return, x0[3])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x0[3] ≥ 0∧[(-1)bso_23] ≥ 0)
(34) ([1] + x0[3] ≥ 0∧x0[3] ≥ 0 ⇒ (UIncreasing(COND_143_1_TEST_INVOKEMETHOD(&&(>=(x0[3], 0), <=(0, +(x0[3], -1))), 132_0_test_Return, x0[3])), ≥)∧[(2)bni_22 + (-1)Bound*bni_22] + [bni_22]x0[3] ≥ 0∧[(-1)bso_23] ≥ 0)
(35) (COND_143_1_TEST_INVOKEMETHOD(TRUE, 132_0_test_Return, x0[4])≥NonInfC∧COND_143_1_TEST_INVOKEMETHOD(TRUE, 132_0_test_Return, x0[4])≥143_1_TEST_INVOKEMETHOD(120_0_test_ConstantStackPush(+(x0[4], -1)), +(x0[4], -1))∧(UIncreasing(143_1_TEST_INVOKEMETHOD(120_0_test_ConstantStackPush(+(x0[4], -1)), +(x0[4], -1))), ≥))
(36) ((UIncreasing(143_1_TEST_INVOKEMETHOD(120_0_test_ConstantStackPush(+(x0[4], -1)), +(x0[4], -1))), ≥)∧[1 + (-1)bso_25] ≥ 0)
(37) ((UIncreasing(143_1_TEST_INVOKEMETHOD(120_0_test_ConstantStackPush(+(x0[4], -1)), +(x0[4], -1))), ≥)∧[1 + (-1)bso_25] ≥ 0)
(38) ((UIncreasing(143_1_TEST_INVOKEMETHOD(120_0_test_ConstantStackPush(+(x0[4], -1)), +(x0[4], -1))), ≥)∧[1 + (-1)bso_25] ≥ 0)
(39) ((UIncreasing(143_1_TEST_INVOKEMETHOD(120_0_test_ConstantStackPush(+(x0[4], -1)), +(x0[4], -1))), ≥)∧0 = 0∧[1 + (-1)bso_25] ≥ 0)
(40) (COND_143_1_TEST_INVOKEMETHOD(TRUE, 132_0_test_Return, x0[5])≥NonInfC∧COND_143_1_TEST_INVOKEMETHOD(TRUE, 132_0_test_Return, x0[5])≥120_0_TEST_CONSTANTSTACKPUSH(+(x0[5], -1))∧(UIncreasing(120_0_TEST_CONSTANTSTACKPUSH(+(x0[5], -1))), ≥))
(41) ((UIncreasing(120_0_TEST_CONSTANTSTACKPUSH(+(x0[5], -1))), ≥)∧[1 + (-1)bso_27] ≥ 0)
(42) ((UIncreasing(120_0_TEST_CONSTANTSTACKPUSH(+(x0[5], -1))), ≥)∧[1 + (-1)bso_27] ≥ 0)
(43) ((UIncreasing(120_0_TEST_CONSTANTSTACKPUSH(+(x0[5], -1))), ≥)∧[1 + (-1)bso_27] ≥ 0)
(44) ((UIncreasing(120_0_TEST_CONSTANTSTACKPUSH(+(x0[5], -1))), ≥)∧0 = 0∧[1 + (-1)bso_27] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(120_0_TEST_CONSTANTSTACKPUSH(x1)) = [1] + x1
POL(COND_120_0_TEST_CONSTANTSTACKPUSH(x1, x2)) = [1] + x2
POL(<=(x1, x2)) = [-1]
POL(0) = 0
POL(-(x1, x2)) = x1 + [-1]x2
POL(1) = [1]
POL(143_1_TEST_INVOKEMETHOD(x1, x2)) = [1] + x2
POL(120_0_test_ConstantStackPush(x1)) = x1
POL(132_0_test_Return) = [-1]
POL(COND_143_1_TEST_INVOKEMETHOD(x1, x2, x3)) = [1] + x3
POL(&&(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
COND_120_0_TEST_CONSTANTSTACKPUSH(TRUE, x0[1]) → 143_1_TEST_INVOKEMETHOD(120_0_test_ConstantStackPush(-(x0[1], 1)), -(x0[1], 1))
COND_120_0_TEST_CONSTANTSTACKPUSH(TRUE, x0[2]) → 120_0_TEST_CONSTANTSTACKPUSH(-(x0[2], 1))
COND_143_1_TEST_INVOKEMETHOD(TRUE, 132_0_test_Return, x0[4]) → 143_1_TEST_INVOKEMETHOD(120_0_test_ConstantStackPush(+(x0[4], -1)), +(x0[4], -1))
COND_143_1_TEST_INVOKEMETHOD(TRUE, 132_0_test_Return, x0[5]) → 120_0_TEST_CONSTANTSTACKPUSH(+(x0[5], -1))
120_0_TEST_CONSTANTSTACKPUSH(x0[0]) → COND_120_0_TEST_CONSTANTSTACKPUSH(<=(0, -(x0[0], 1)), x0[0])
143_1_TEST_INVOKEMETHOD(132_0_test_Return, x0[3]) → COND_143_1_TEST_INVOKEMETHOD(&&(>=(x0[3], 0), <=(0, +(x0[3], -1))), 132_0_test_Return, x0[3])
120_0_TEST_CONSTANTSTACKPUSH(x0[0]) → COND_120_0_TEST_CONSTANTSTACKPUSH(<=(0, -(x0[0], 1)), x0[0])
143_1_TEST_INVOKEMETHOD(132_0_test_Return, x0[3]) → COND_143_1_TEST_INVOKEMETHOD(&&(>=(x0[3], 0), <=(0, +(x0[3], -1))), 132_0_test_Return, x0[3])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer