0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 IDP
↳7 IDPNonInfProof (⇒)
↳8 IDP
↳9 IDPNonInfProof (⇒)
↳10 IDP
↳11 IDependencyGraphProof (⇔)
↳12 TRUE
/**
* The classical Ackermann function.
*
* All calls terminate.
*
* Julia + BinTerm prove that all calls terminate
*
* Note that we have to express the basic cases as m <= 0 and n <= 0
* in order to prove termination.
*
* @author <A HREF="mailto:fausto.spoto@univr.it">Fausto Spoto</A>
*/
public class Ackermann {
public static int ack(int m, int n) {
if (m <= 0) return n + 1;
else if (n <= 0) return ack(m - 1,1);
else return ack(m - 1,ack(m,n - 1));
}
public static void main(String[] args) {
ack(10,12);
}
}
Generated 33 rules for P and 20 rules for R.
Combined rules. Obtained 4 rules for P and 6 rules for R.
Filtered ground terms:
215_0_ack_GT(x1, x2, x3, x4) → 215_0_ack_GT(x2, x3, x4)
295_0_ack_Return(x1, x2) → 295_0_ack_Return(x2)
266_0_ack_Return(x1, x2, x3, x4) → 266_0_ack_Return(x2, x3, x4)
Cond_215_0_ack_GT1(x1, x2, x3, x4, x5) → Cond_215_0_ack_GT1(x1, x3, x4, x5)
258_1_ack_InvokeMethod(x1, x2, x3, x4, x5) → 258_1_ack_InvokeMethod(x1, x2, x3, x4)
Cond_215_0_ack_GT(x1, x2, x3, x4, x5) → Cond_215_0_ack_GT(x1, x3, x4, x5)
231_0_ack_Return(x1, x2, x3, x4) → 231_0_ack_Return(x3, x4)
Filtered duplicate args:
215_0_ack_GT(x1, x2, x3) → 215_0_ack_GT(x2, x3)
Cond_215_0_ack_GT1(x1, x2, x3, x4) → Cond_215_0_ack_GT1(x1, x3, x4)
Cond_215_0_ack_GT(x1, x2, x3, x4) → Cond_215_0_ack_GT(x1, x3, x4)
Filtered unneeded arguments:
Cond_215_0_ack_GT(x1, x2, x3) → Cond_215_0_ack_GT(x1, x3)
258_1_ack_InvokeMethod(x1, x2, x3, x4) → 258_1_ack_InvokeMethod(x1, x4)
Combined rules. Obtained 4 rules for P and 6 rules for R.
Finished conversion. Obtained 4 rules for P and 6 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(0) -> (1), if ((x1[0] <= 0 && x0[0] > 0 →* TRUE)∧(x1[0] →* x1[1])∧(x0[0] →* x0[1]))
(1) -> (0), if ((1 →* x1[0])∧(x0[1] - 1 →* x0[0]))
(1) -> (2), if ((1 →* x1[2])∧(x0[1] - 1 →* x0[2]))
(2) -> (3), if ((x1[2] > 0 && x0[2] > 0 →* TRUE)∧(x1[2] →* x1[3])∧(x0[2] →* x0[3]))
(2) -> (4), if ((x1[2] > 0 && x0[2] > 0 →* TRUE)∧(x1[2] →* x1[4])∧(x0[2] →* x0[4]))
(3) -> (5), if ((215_0_ack_GT(x1[3] - 1, x0[3]) →* 266_0_ack_Return(x0[5], 0, x2[5]))∧(x0[3] - 1 →* x3[5])∧(x0[3] →* x0[5])∧(x1[3] - 1 →* 0))
(3) -> (6), if ((215_0_ack_GT(x1[3] - 1, x0[3]) →* 295_0_ack_Return(x0[6]))∧(x0[3] - 1 →* x1[6])∧(x0[3] →* x2[6])∧(x1[3] - 1 →* x3[6]))
(4) -> (0), if ((x1[4] - 1 →* x1[0])∧(x0[4] →* x0[0]))
(4) -> (2), if ((x1[4] - 1 →* x1[2])∧(x0[4] →* x0[2]))
(5) -> (0), if ((x2[5] →* x1[0])∧(x3[5] →* x0[0]))
(5) -> (2), if ((x2[5] →* x1[2])∧(x3[5] →* x0[2]))
(6) -> (0), if ((x0[6] →* x1[0])∧(x1[6] →* x0[0]))
(6) -> (2), if ((x0[6] →* x1[2])∧(x1[6] →* x0[2]))
(1) (&&(<=(x1[0], 0), >(x0[0], 0))=TRUE∧x1[0]=x1[1]∧x0[0]=x0[1] ⇒ 215_0_ACK_GT(x1[0], x0[0])≥NonInfC∧215_0_ACK_GT(x1[0], x0[0])≥COND_215_0_ACK_GT(&&(<=(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])∧(UIncreasing(COND_215_0_ACK_GT(&&(<=(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥))
(2) (&&(<=(x1[0], 0), >(x0[0], 0))=TRUE ⇒ 215_0_ACK_GT(x1[0], x0[0])≥NonInfC∧215_0_ACK_GT(x1[0], x0[0])≥COND_215_0_ACK_GT(&&(<=(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])∧(UIncreasing(COND_215_0_ACK_GT(&&(<=(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥))
(3) (0 ≥ 0 ⇒ (UIncreasing(COND_215_0_ACK_GT(&&(<=(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)bni_36 + (-1)Bound*bni_36] ≥ 0∧[(-1)bso_37] ≥ 0)
(4) (0 ≥ 0 ⇒ (UIncreasing(COND_215_0_ACK_GT(&&(<=(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)bni_36 + (-1)Bound*bni_36] ≥ 0∧[(-1)bso_37] ≥ 0)
(5) (0 ≥ 0 ⇒ (UIncreasing(COND_215_0_ACK_GT(&&(<=(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)bni_36 + (-1)Bound*bni_36] ≥ 0∧[(-1)bso_37] ≥ 0)
(6) (0 ≥ 0 ⇒ (UIncreasing(COND_215_0_ACK_GT(&&(<=(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥)∧0 ≥ 0∧0 ≥ 0∧[(-1)bni_36 + (-1)Bound*bni_36] ≥ 0∧0 ≥ 0∧0 ≥ 0∧[(-1)bso_37] ≥ 0)
(7) (&&(<=(x1[0], 0), >(x0[0], 0))=TRUE∧x1[0]=x1[1]∧x0[0]=x0[1]∧1=x1[0]1∧-(x0[1], 1)=x0[0]1 ⇒ COND_215_0_ACK_GT(TRUE, x1[1], x0[1])≥NonInfC∧COND_215_0_ACK_GT(TRUE, x1[1], x0[1])≥215_0_ACK_GT(1, -(x0[1], 1))∧(UIncreasing(215_0_ACK_GT(1, -(x0[1], 1))), ≥))
(8) (&&(<=(x1[0], 0), >(x0[0], 0))=TRUE ⇒ COND_215_0_ACK_GT(TRUE, x1[0], x0[0])≥NonInfC∧COND_215_0_ACK_GT(TRUE, x1[0], x0[0])≥215_0_ACK_GT(1, -(x0[0], 1))∧(UIncreasing(215_0_ACK_GT(1, -(x0[1], 1))), ≥))
(9) (0 ≥ 0 ⇒ (UIncreasing(215_0_ACK_GT(1, -(x0[1], 1))), ≥)∧[(-1)bni_38 + (-1)Bound*bni_38] ≥ 0∧[(-1)bso_39] ≥ 0)
(10) (0 ≥ 0 ⇒ (UIncreasing(215_0_ACK_GT(1, -(x0[1], 1))), ≥)∧[(-1)bni_38 + (-1)Bound*bni_38] ≥ 0∧[(-1)bso_39] ≥ 0)
(11) (0 ≥ 0 ⇒ (UIncreasing(215_0_ACK_GT(1, -(x0[1], 1))), ≥)∧[(-1)bni_38 + (-1)Bound*bni_38] ≥ 0∧[(-1)bso_39] ≥ 0)
(12) (0 ≥ 0 ⇒ (UIncreasing(215_0_ACK_GT(1, -(x0[1], 1))), ≥)∧0 ≥ 0∧0 ≥ 0∧[(-1)bni_38 + (-1)Bound*bni_38] ≥ 0∧0 ≥ 0∧0 ≥ 0∧[(-1)bso_39] ≥ 0)
(13) (&&(<=(x1[0], 0), >(x0[0], 0))=TRUE∧x1[0]=x1[1]∧x0[0]=x0[1]∧1=x1[2]∧-(x0[1], 1)=x0[2] ⇒ COND_215_0_ACK_GT(TRUE, x1[1], x0[1])≥NonInfC∧COND_215_0_ACK_GT(TRUE, x1[1], x0[1])≥215_0_ACK_GT(1, -(x0[1], 1))∧(UIncreasing(215_0_ACK_GT(1, -(x0[1], 1))), ≥))
(14) (&&(<=(x1[0], 0), >(x0[0], 0))=TRUE ⇒ COND_215_0_ACK_GT(TRUE, x1[0], x0[0])≥NonInfC∧COND_215_0_ACK_GT(TRUE, x1[0], x0[0])≥215_0_ACK_GT(1, -(x0[0], 1))∧(UIncreasing(215_0_ACK_GT(1, -(x0[1], 1))), ≥))
(15) (0 ≥ 0 ⇒ (UIncreasing(215_0_ACK_GT(1, -(x0[1], 1))), ≥)∧[(-1)bni_38 + (-1)Bound*bni_38] ≥ 0∧[(-1)bso_39] ≥ 0)
(16) (0 ≥ 0 ⇒ (UIncreasing(215_0_ACK_GT(1, -(x0[1], 1))), ≥)∧[(-1)bni_38 + (-1)Bound*bni_38] ≥ 0∧[(-1)bso_39] ≥ 0)
(17) (0 ≥ 0 ⇒ (UIncreasing(215_0_ACK_GT(1, -(x0[1], 1))), ≥)∧[(-1)bni_38 + (-1)Bound*bni_38] ≥ 0∧[(-1)bso_39] ≥ 0)
(18) (0 ≥ 0 ⇒ (UIncreasing(215_0_ACK_GT(1, -(x0[1], 1))), ≥)∧0 ≥ 0∧0 ≥ 0∧[(-1)bni_38 + (-1)Bound*bni_38] ≥ 0∧0 ≥ 0∧0 ≥ 0∧[(-1)bso_39] ≥ 0)
(19) (&&(>(x1[2], 0), >(x0[2], 0))=TRUE∧x1[2]=x1[3]∧x0[2]=x0[3] ⇒ 215_0_ACK_GT(x1[2], x0[2])≥NonInfC∧215_0_ACK_GT(x1[2], x0[2])≥COND_215_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])∧(UIncreasing(COND_215_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥))
(20) (&&(>(x1[2], 0), >(x0[2], 0))=TRUE ⇒ 215_0_ACK_GT(x1[2], x0[2])≥NonInfC∧215_0_ACK_GT(x1[2], x0[2])≥COND_215_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])∧(UIncreasing(COND_215_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥))
(21) (0 ≥ 0 ⇒ (UIncreasing(COND_215_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)bni_40 + (-1)Bound*bni_40] ≥ 0∧[(-1)bso_41] ≥ 0)
(22) (0 ≥ 0 ⇒ (UIncreasing(COND_215_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)bni_40 + (-1)Bound*bni_40] ≥ 0∧[(-1)bso_41] ≥ 0)
(23) (0 ≥ 0 ⇒ (UIncreasing(COND_215_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)bni_40 + (-1)Bound*bni_40] ≥ 0∧[(-1)bso_41] ≥ 0)
(24) (0 ≥ 0 ⇒ (UIncreasing(COND_215_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧0 ≥ 0∧0 ≥ 0∧[(-1)bni_40 + (-1)Bound*bni_40] ≥ 0∧0 ≥ 0∧0 ≥ 0∧[(-1)bso_41] ≥ 0)
(25) (&&(>(x1[2], 0), >(x0[2], 0))=TRUE∧x1[2]=x1[4]∧x0[2]=x0[4] ⇒ 215_0_ACK_GT(x1[2], x0[2])≥NonInfC∧215_0_ACK_GT(x1[2], x0[2])≥COND_215_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])∧(UIncreasing(COND_215_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥))
(26) (&&(>(x1[2], 0), >(x0[2], 0))=TRUE ⇒ 215_0_ACK_GT(x1[2], x0[2])≥NonInfC∧215_0_ACK_GT(x1[2], x0[2])≥COND_215_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])∧(UIncreasing(COND_215_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥))
(27) (0 ≥ 0 ⇒ (UIncreasing(COND_215_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)bni_40 + (-1)Bound*bni_40] ≥ 0∧[(-1)bso_41] ≥ 0)
(28) (0 ≥ 0 ⇒ (UIncreasing(COND_215_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)bni_40 + (-1)Bound*bni_40] ≥ 0∧[(-1)bso_41] ≥ 0)
(29) (0 ≥ 0 ⇒ (UIncreasing(COND_215_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)bni_40 + (-1)Bound*bni_40] ≥ 0∧[(-1)bso_41] ≥ 0)
(30) (0 ≥ 0 ⇒ (UIncreasing(COND_215_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧0 ≥ 0∧0 ≥ 0∧[(-1)bni_40 + (-1)Bound*bni_40] ≥ 0∧0 ≥ 0∧0 ≥ 0∧[(-1)bso_41] ≥ 0)
(31) (&&(>(x1[2], 0), >(x0[2], 0))=TRUE∧x1[2]=x1[3]∧x0[2]=x0[3]∧215_0_ack_GT(-(x1[3], 1), x0[3])=266_0_ack_Return(x0[5], 0, x2[5])∧-(x0[3], 1)=x3[5]∧x0[3]=x0[5]∧-(x1[3], 1)=0 ⇒ COND_215_0_ACK_GT1(TRUE, x1[3], x0[3])≥NonInfC∧COND_215_0_ACK_GT1(TRUE, x1[3], x0[3])≥277_1_ACK_INVOKEMETHOD(215_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), x0[3], -(x1[3], 1))∧(UIncreasing(277_1_ACK_INVOKEMETHOD(215_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), x0[3], -(x1[3], 1))), ≥))
(32) (&&(>(x1[2], 0), >(x0[2], 0))=TRUE∧215_0_ack_GT(-(x1[2], 1), x0[2])=266_0_ack_Return(x0[2], 0, x2[5])∧-(x1[2], 1)=0 ⇒ COND_215_0_ACK_GT1(TRUE, x1[2], x0[2])≥NonInfC∧COND_215_0_ACK_GT1(TRUE, x1[2], x0[2])≥277_1_ACK_INVOKEMETHOD(215_0_ack_GT(-(x1[2], 1), x0[2]), -(x0[2], 1), x0[2], -(x1[2], 1))∧(UIncreasing(277_1_ACK_INVOKEMETHOD(215_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), x0[3], -(x1[3], 1))), ≥))
(33) (0 ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(277_1_ACK_INVOKEMETHOD(215_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_42 + (-1)Bound*bni_42] ≥ 0∧[1 + (-1)bso_43] + x0[2] ≥ 0)
(34) (0 ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(277_1_ACK_INVOKEMETHOD(215_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_42 + (-1)Bound*bni_42] ≥ 0∧[1 + (-1)bso_43] + x0[2] ≥ 0)
(35) (0 ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(277_1_ACK_INVOKEMETHOD(215_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_42 + (-1)Bound*bni_42] ≥ 0∧[1 + (-1)bso_43] + x0[2] ≥ 0)
(36) (0 ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(277_1_ACK_INVOKEMETHOD(215_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), x0[3], -(x1[3], 1))), ≥)∧0 ≥ 0∧0 ≥ 0∧[(-1)bni_42 + (-1)Bound*bni_42] ≥ 0∧[1] ≥ 0∧0 ≥ 0∧[1 + (-1)bso_43] ≥ 0)
(37) (&&(>(x1[2], 0), >(x0[2], 0))=TRUE∧x1[2]=x1[3]∧x0[2]=x0[3]∧215_0_ack_GT(-(x1[3], 1), x0[3])=295_0_ack_Return(x0[6])∧-(x0[3], 1)=x1[6]∧x0[3]=x2[6]∧-(x1[3], 1)=x3[6] ⇒ COND_215_0_ACK_GT1(TRUE, x1[3], x0[3])≥NonInfC∧COND_215_0_ACK_GT1(TRUE, x1[3], x0[3])≥277_1_ACK_INVOKEMETHOD(215_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), x0[3], -(x1[3], 1))∧(UIncreasing(277_1_ACK_INVOKEMETHOD(215_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), x0[3], -(x1[3], 1))), ≥))
(38) (&&(>(x1[2], 0), >(x0[2], 0))=TRUE∧215_0_ack_GT(-(x1[2], 1), x0[2])=295_0_ack_Return(x0[6]) ⇒ COND_215_0_ACK_GT1(TRUE, x1[2], x0[2])≥NonInfC∧COND_215_0_ACK_GT1(TRUE, x1[2], x0[2])≥277_1_ACK_INVOKEMETHOD(215_0_ack_GT(-(x1[2], 1), x0[2]), -(x0[2], 1), x0[2], -(x1[2], 1))∧(UIncreasing(277_1_ACK_INVOKEMETHOD(215_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), x0[3], -(x1[3], 1))), ≥))
(39) (0 ≥ 0 ⇒ (UIncreasing(277_1_ACK_INVOKEMETHOD(215_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_42 + (-1)Bound*bni_42] ≥ 0∧[1 + (-1)bso_43] + x0[2] ≥ 0)
(40) (0 ≥ 0 ⇒ (UIncreasing(277_1_ACK_INVOKEMETHOD(215_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_42 + (-1)Bound*bni_42] ≥ 0∧[1 + (-1)bso_43] + x0[2] ≥ 0)
(41) (0 ≥ 0 ⇒ (UIncreasing(277_1_ACK_INVOKEMETHOD(215_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), x0[3], -(x1[3], 1))), ≥)∧[(-1)bni_42 + (-1)Bound*bni_42] ≥ 0∧[1 + (-1)bso_43] + x0[2] ≥ 0)
(42) (0 ≥ 0 ⇒ (UIncreasing(277_1_ACK_INVOKEMETHOD(215_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), x0[3], -(x1[3], 1))), ≥)∧0 ≥ 0∧0 ≥ 0∧[(-1)bni_42 + (-1)Bound*bni_42] ≥ 0∧[1] ≥ 0∧0 ≥ 0∧[1 + (-1)bso_43] ≥ 0)
(43) (&&(>(x1[2], 0), >(x0[2], 0))=TRUE∧x1[2]=x1[4]∧x0[2]=x0[4]∧-(x1[4], 1)=x1[0]∧x0[4]=x0[0] ⇒ COND_215_0_ACK_GT1(TRUE, x1[4], x0[4])≥NonInfC∧COND_215_0_ACK_GT1(TRUE, x1[4], x0[4])≥215_0_ACK_GT(-(x1[4], 1), x0[4])∧(UIncreasing(215_0_ACK_GT(-(x1[4], 1), x0[4])), ≥))
(44) (&&(>(x1[2], 0), >(x0[2], 0))=TRUE ⇒ COND_215_0_ACK_GT1(TRUE, x1[2], x0[2])≥NonInfC∧COND_215_0_ACK_GT1(TRUE, x1[2], x0[2])≥215_0_ACK_GT(-(x1[2], 1), x0[2])∧(UIncreasing(215_0_ACK_GT(-(x1[4], 1), x0[4])), ≥))
(45) (0 ≥ 0 ⇒ (UIncreasing(215_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[(-1)bni_44 + (-1)Bound*bni_44] ≥ 0∧[(-1)bso_45] ≥ 0)
(46) (0 ≥ 0 ⇒ (UIncreasing(215_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[(-1)bni_44 + (-1)Bound*bni_44] ≥ 0∧[(-1)bso_45] ≥ 0)
(47) (0 ≥ 0 ⇒ (UIncreasing(215_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[(-1)bni_44 + (-1)Bound*bni_44] ≥ 0∧[(-1)bso_45] ≥ 0)
(48) (0 ≥ 0 ⇒ (UIncreasing(215_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧0 ≥ 0∧0 ≥ 0∧[(-1)bni_44 + (-1)Bound*bni_44] ≥ 0∧0 ≥ 0∧0 ≥ 0∧[(-1)bso_45] ≥ 0)
(49) (&&(>(x1[2], 0), >(x0[2], 0))=TRUE∧x1[2]=x1[4]∧x0[2]=x0[4]∧-(x1[4], 1)=x1[2]1∧x0[4]=x0[2]1 ⇒ COND_215_0_ACK_GT1(TRUE, x1[4], x0[4])≥NonInfC∧COND_215_0_ACK_GT1(TRUE, x1[4], x0[4])≥215_0_ACK_GT(-(x1[4], 1), x0[4])∧(UIncreasing(215_0_ACK_GT(-(x1[4], 1), x0[4])), ≥))
(50) (&&(>(x1[2], 0), >(x0[2], 0))=TRUE ⇒ COND_215_0_ACK_GT1(TRUE, x1[2], x0[2])≥NonInfC∧COND_215_0_ACK_GT1(TRUE, x1[2], x0[2])≥215_0_ACK_GT(-(x1[2], 1), x0[2])∧(UIncreasing(215_0_ACK_GT(-(x1[4], 1), x0[4])), ≥))
(51) (0 ≥ 0 ⇒ (UIncreasing(215_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[(-1)bni_44 + (-1)Bound*bni_44] ≥ 0∧[(-1)bso_45] ≥ 0)
(52) (0 ≥ 0 ⇒ (UIncreasing(215_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[(-1)bni_44 + (-1)Bound*bni_44] ≥ 0∧[(-1)bso_45] ≥ 0)
(53) (0 ≥ 0 ⇒ (UIncreasing(215_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[(-1)bni_44 + (-1)Bound*bni_44] ≥ 0∧[(-1)bso_45] ≥ 0)
(54) (0 ≥ 0 ⇒ (UIncreasing(215_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧0 ≥ 0∧0 ≥ 0∧[(-1)bni_44 + (-1)Bound*bni_44] ≥ 0∧0 ≥ 0∧0 ≥ 0∧[(-1)bso_45] ≥ 0)
(55) (215_0_ack_GT(-(x1[3], 1), x0[3])=266_0_ack_Return(x0[5], 0, x2[5])∧-(x0[3], 1)=x3[5]∧x0[3]=x0[5]∧-(x1[3], 1)=0∧x2[5]=x1[0]∧x3[5]=x0[0] ⇒ 277_1_ACK_INVOKEMETHOD(266_0_ack_Return(x0[5], 0, x2[5]), x3[5], x0[5], 0)≥NonInfC∧277_1_ACK_INVOKEMETHOD(266_0_ack_Return(x0[5], 0, x2[5]), x3[5], x0[5], 0)≥215_0_ACK_GT(x2[5], x3[5])∧(UIncreasing(215_0_ACK_GT(x2[5], x3[5])), ≥))
(56) (-(x1[3], 1)=x0∧215_0_ack_GT(x0, x0[3])=266_0_ack_Return(x0[3], 0, x2[5])∧-(x1[3], 1)=0 ⇒ 277_1_ACK_INVOKEMETHOD(266_0_ack_Return(x0[3], 0, x2[5]), -(x0[3], 1), x0[3], 0)≥NonInfC∧277_1_ACK_INVOKEMETHOD(266_0_ack_Return(x0[3], 0, x2[5]), -(x0[3], 1), x0[3], 0)≥215_0_ACK_GT(x2[5], -(x0[3], 1))∧(UIncreasing(215_0_ACK_GT(x2[5], x3[5])), ≥))
(57) (215_0_ack_GT(-(x1[3], 1), x0[3])=266_0_ack_Return(x0[5], 0, x2[5])∧-(x0[3], 1)=x3[5]∧x0[3]=x0[5]∧-(x1[3], 1)=0∧x2[5]=x1[2]∧x3[5]=x0[2] ⇒ 277_1_ACK_INVOKEMETHOD(266_0_ack_Return(x0[5], 0, x2[5]), x3[5], x0[5], 0)≥NonInfC∧277_1_ACK_INVOKEMETHOD(266_0_ack_Return(x0[5], 0, x2[5]), x3[5], x0[5], 0)≥215_0_ACK_GT(x2[5], x3[5])∧(UIncreasing(215_0_ACK_GT(x2[5], x3[5])), ≥))
(58) (-(x1[3], 1)=x2∧215_0_ack_GT(x2, x0[3])=266_0_ack_Return(x0[3], 0, x2[5])∧-(x1[3], 1)=0 ⇒ 277_1_ACK_INVOKEMETHOD(266_0_ack_Return(x0[3], 0, x2[5]), -(x0[3], 1), x0[3], 0)≥NonInfC∧277_1_ACK_INVOKEMETHOD(266_0_ack_Return(x0[3], 0, x2[5]), -(x0[3], 1), x0[3], 0)≥215_0_ACK_GT(x2[5], -(x0[3], 1))∧(UIncreasing(215_0_ACK_GT(x2[5], x3[5])), ≥))
(59) (215_0_ack_GT(-(x1[3], 1), x0[3])=295_0_ack_Return(x0[6])∧-(x0[3], 1)=x1[6]∧x0[3]=x2[6]∧-(x1[3], 1)=x3[6]∧x0[6]=x1[0]∧x1[6]=x0[0] ⇒ 277_1_ACK_INVOKEMETHOD(295_0_ack_Return(x0[6]), x1[6], x2[6], x3[6])≥NonInfC∧277_1_ACK_INVOKEMETHOD(295_0_ack_Return(x0[6]), x1[6], x2[6], x3[6])≥215_0_ACK_GT(x0[6], x1[6])∧(UIncreasing(215_0_ACK_GT(x0[6], x1[6])), ≥))
(60) (-(x1[3], 1)=x4∧215_0_ack_GT(x4, x0[3])=295_0_ack_Return(x0[6]) ⇒ 277_1_ACK_INVOKEMETHOD(295_0_ack_Return(x0[6]), -(x0[3], 1), x0[3], -(x1[3], 1))≥NonInfC∧277_1_ACK_INVOKEMETHOD(295_0_ack_Return(x0[6]), -(x0[3], 1), x0[3], -(x1[3], 1))≥215_0_ACK_GT(x0[6], -(x0[3], 1))∧(UIncreasing(215_0_ACK_GT(x0[6], x1[6])), ≥))
(61) (215_0_ack_GT(-(x1[3], 1), x0[3])=295_0_ack_Return(x0[6])∧-(x0[3], 1)=x1[6]∧x0[3]=x2[6]∧-(x1[3], 1)=x3[6]∧x0[6]=x1[2]∧x1[6]=x0[2] ⇒ 277_1_ACK_INVOKEMETHOD(295_0_ack_Return(x0[6]), x1[6], x2[6], x3[6])≥NonInfC∧277_1_ACK_INVOKEMETHOD(295_0_ack_Return(x0[6]), x1[6], x2[6], x3[6])≥215_0_ACK_GT(x0[6], x1[6])∧(UIncreasing(215_0_ACK_GT(x0[6], x1[6])), ≥))
(62) (-(x1[3], 1)=x6∧215_0_ack_GT(x6, x0[3])=295_0_ack_Return(x0[6]) ⇒ 277_1_ACK_INVOKEMETHOD(295_0_ack_Return(x0[6]), -(x0[3], 1), x0[3], -(x1[3], 1))≥NonInfC∧277_1_ACK_INVOKEMETHOD(295_0_ack_Return(x0[6]), -(x0[3], 1), x0[3], -(x1[3], 1))≥215_0_ACK_GT(x0[6], -(x0[3], 1))∧(UIncreasing(215_0_ACK_GT(x0[6], x1[6])), ≥))
POL(TRUE) = 0
POL(FALSE) = 0
POL(215_0_ack_GT(x1, x2)) = [2] + [3]x2 + [3]x1
POL(0) = 0
POL(231_0_ack_Return(x1, x2)) = [3] + [3]x1
POL(+(x1, x2)) = 0
POL(1) = 0
POL(258_1_ack_InvokeMethod(x1, x2)) = 0
POL(266_0_ack_Return(x1, x2, x3)) = 0
POL(295_0_ack_Return(x1)) = 0
POL(287_1_ack_InvokeMethod(x1, x2, x3)) = 0
POL(215_0_ACK_GT(x1, x2)) = [-1]
POL(COND_215_0_ACK_GT(x1, x2, x3)) = [-1]
POL(&&(x1, x2)) = 0
POL(<=(x1, x2)) = 0
POL(>(x1, x2)) = 0
POL(-(x1, x2)) = 0
POL(COND_215_0_ACK_GT1(x1, x2, x3)) = [-1] + [2]x1
POL(277_1_ACK_INVOKEMETHOD(x1, x2, x3, x4)) = [-1]x4 + [2]x3 + [-1]x2 + [-1]x1
COND_215_0_ACK_GT1(TRUE, x1[3], x0[3]) → 277_1_ACK_INVOKEMETHOD(215_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), x0[3], -(x1[3], 1))
277_1_ACK_INVOKEMETHOD(266_0_ack_Return(x0[5], 0, x2[5]), x3[5], x0[5], 0) → 215_0_ACK_GT(x2[5], x3[5])
277_1_ACK_INVOKEMETHOD(295_0_ack_Return(x0[6]), x1[6], x2[6], x3[6]) → 215_0_ACK_GT(x0[6], x1[6])
215_0_ACK_GT(x1[0], x0[0]) → COND_215_0_ACK_GT(&&(<=(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])
COND_215_0_ACK_GT(TRUE, x1[1], x0[1]) → 215_0_ACK_GT(1, -(x0[1], 1))
215_0_ACK_GT(x1[2], x0[2]) → COND_215_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])
COND_215_0_ACK_GT1(TRUE, x1[3], x0[3]) → 277_1_ACK_INVOKEMETHOD(215_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), x0[3], -(x1[3], 1))
COND_215_0_ACK_GT1(TRUE, x1[4], x0[4]) → 215_0_ACK_GT(-(x1[4], 1), x0[4])
277_1_ACK_INVOKEMETHOD(266_0_ack_Return(x0[5], 0, x2[5]), x3[5], x0[5], 0) → 215_0_ACK_GT(x2[5], x3[5])
277_1_ACK_INVOKEMETHOD(295_0_ack_Return(x0[6]), x1[6], x2[6], x3[6]) → 215_0_ACK_GT(x0[6], x1[6])
215_0_ACK_GT(x1[0], x0[0]) → COND_215_0_ACK_GT(&&(<=(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])
COND_215_0_ACK_GT(TRUE, x1[1], x0[1]) → 215_0_ACK_GT(1, -(x0[1], 1))
215_0_ACK_GT(x1[2], x0[2]) → COND_215_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])
COND_215_0_ACK_GT1(TRUE, x1[4], x0[4]) → 215_0_ACK_GT(-(x1[4], 1), x0[4])
&&(TRUE, TRUE)1 → TRUE1
&&(TRUE, FALSE)1 → FALSE1
&&(FALSE, TRUE)1 → FALSE1
&&(FALSE, FALSE)1 → FALSE1
231_0_ack_Return(x1, +(x1, 1))1 → 215_0_ack_GT(x1, 0)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(1) -> (0), if ((1 →* x1[0])∧(x0[1] - 1 →* x0[0]))
(4) -> (0), if ((x1[4] - 1 →* x1[0])∧(x0[4] →* x0[0]))
(0) -> (1), if ((x1[0] <= 0 && x0[0] > 0 →* TRUE)∧(x1[0] →* x1[1])∧(x0[0] →* x0[1]))
(1) -> (2), if ((1 →* x1[2])∧(x0[1] - 1 →* x0[2]))
(4) -> (2), if ((x1[4] - 1 →* x1[2])∧(x0[4] →* x0[2]))
(2) -> (4), if ((x1[2] > 0 && x0[2] > 0 →* TRUE)∧(x1[2] →* x1[4])∧(x0[2] →* x0[4]))
(1) (&&(<=(x1[0], 0), >(x0[0], 0))=TRUE∧x1[0]=x1[1]∧x0[0]=x0[1] ⇒ 215_0_ACK_GT(x1[0], x0[0])≥NonInfC∧215_0_ACK_GT(x1[0], x0[0])≥COND_215_0_ACK_GT(&&(<=(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])∧(UIncreasing(COND_215_0_ACK_GT(&&(<=(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥))
(2) (<=(x1[0], 0)=TRUE∧>(x0[0], 0)=TRUE ⇒ 215_0_ACK_GT(x1[0], x0[0])≥NonInfC∧215_0_ACK_GT(x1[0], x0[0])≥COND_215_0_ACK_GT(&&(<=(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])∧(UIncreasing(COND_215_0_ACK_GT(&&(<=(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥))
(3) ([-1]x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_215_0_ACK_GT(&&(<=(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)Bound*bni_36] + [(2)bni_36]x0[0] ≥ 0∧[1 + (-1)bso_37] ≥ 0)
(4) ([-1]x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_215_0_ACK_GT(&&(<=(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)Bound*bni_36] + [(2)bni_36]x0[0] ≥ 0∧[1 + (-1)bso_37] ≥ 0)
(5) ([-1]x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_215_0_ACK_GT(&&(<=(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)Bound*bni_36] + [(2)bni_36]x0[0] ≥ 0∧[1 + (-1)bso_37] ≥ 0)
(6) (x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_215_0_ACK_GT(&&(<=(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)Bound*bni_36] + [(2)bni_36]x0[0] ≥ 0∧[1 + (-1)bso_37] ≥ 0)
(7) (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_215_0_ACK_GT(&&(<=(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)Bound*bni_36 + (2)bni_36] + [(2)bni_36]x0[0] ≥ 0∧[1 + (-1)bso_37] ≥ 0)
(8) (&&(<=(x1[0], 0), >(x0[0], 0))=TRUE∧x1[0]=x1[1]∧x0[0]=x0[1]∧1=x1[0]1∧-(x0[1], 1)=x0[0]1 ⇒ COND_215_0_ACK_GT(TRUE, x1[1], x0[1])≥NonInfC∧COND_215_0_ACK_GT(TRUE, x1[1], x0[1])≥215_0_ACK_GT(1, -(x0[1], 1))∧(UIncreasing(215_0_ACK_GT(1, -(x0[1], 1))), ≥))
(9) (<=(x1[0], 0)=TRUE∧>(x0[0], 0)=TRUE ⇒ COND_215_0_ACK_GT(TRUE, x1[0], x0[0])≥NonInfC∧COND_215_0_ACK_GT(TRUE, x1[0], x0[0])≥215_0_ACK_GT(1, -(x0[0], 1))∧(UIncreasing(215_0_ACK_GT(1, -(x0[1], 1))), ≥))
(10) ([-1]x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(215_0_ACK_GT(1, -(x0[1], 1))), ≥)∧[(-1)bni_38 + (-1)Bound*bni_38] + [(2)bni_38]x0[0] ≥ 0∧[1 + (-1)bso_39] ≥ 0)
(11) ([-1]x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(215_0_ACK_GT(1, -(x0[1], 1))), ≥)∧[(-1)bni_38 + (-1)Bound*bni_38] + [(2)bni_38]x0[0] ≥ 0∧[1 + (-1)bso_39] ≥ 0)
(12) ([-1]x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(215_0_ACK_GT(1, -(x0[1], 1))), ≥)∧[(-1)bni_38 + (-1)Bound*bni_38] + [(2)bni_38]x0[0] ≥ 0∧[1 + (-1)bso_39] ≥ 0)
(13) (x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(215_0_ACK_GT(1, -(x0[1], 1))), ≥)∧[(-1)bni_38 + (-1)Bound*bni_38] + [(2)bni_38]x0[0] ≥ 0∧[1 + (-1)bso_39] ≥ 0)
(14) (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(215_0_ACK_GT(1, -(x0[1], 1))), ≥)∧[bni_38 + (-1)Bound*bni_38] + [(2)bni_38]x0[0] ≥ 0∧[1 + (-1)bso_39] ≥ 0)
(15) (&&(<=(x1[0], 0), >(x0[0], 0))=TRUE∧x1[0]=x1[1]∧x0[0]=x0[1]∧1=x1[2]∧-(x0[1], 1)=x0[2] ⇒ COND_215_0_ACK_GT(TRUE, x1[1], x0[1])≥NonInfC∧COND_215_0_ACK_GT(TRUE, x1[1], x0[1])≥215_0_ACK_GT(1, -(x0[1], 1))∧(UIncreasing(215_0_ACK_GT(1, -(x0[1], 1))), ≥))
(16) (<=(x1[0], 0)=TRUE∧>(x0[0], 0)=TRUE ⇒ COND_215_0_ACK_GT(TRUE, x1[0], x0[0])≥NonInfC∧COND_215_0_ACK_GT(TRUE, x1[0], x0[0])≥215_0_ACK_GT(1, -(x0[0], 1))∧(UIncreasing(215_0_ACK_GT(1, -(x0[1], 1))), ≥))
(17) ([-1]x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(215_0_ACK_GT(1, -(x0[1], 1))), ≥)∧[(-1)bni_38 + (-1)Bound*bni_38] + [(2)bni_38]x0[0] ≥ 0∧[1 + (-1)bso_39] ≥ 0)
(18) ([-1]x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(215_0_ACK_GT(1, -(x0[1], 1))), ≥)∧[(-1)bni_38 + (-1)Bound*bni_38] + [(2)bni_38]x0[0] ≥ 0∧[1 + (-1)bso_39] ≥ 0)
(19) ([-1]x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(215_0_ACK_GT(1, -(x0[1], 1))), ≥)∧[(-1)bni_38 + (-1)Bound*bni_38] + [(2)bni_38]x0[0] ≥ 0∧[1 + (-1)bso_39] ≥ 0)
(20) (x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(215_0_ACK_GT(1, -(x0[1], 1))), ≥)∧[(-1)bni_38 + (-1)Bound*bni_38] + [(2)bni_38]x0[0] ≥ 0∧[1 + (-1)bso_39] ≥ 0)
(21) (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(215_0_ACK_GT(1, -(x0[1], 1))), ≥)∧[bni_38 + (-1)Bound*bni_38] + [(2)bni_38]x0[0] ≥ 0∧[1 + (-1)bso_39] ≥ 0)
(22) (&&(>(x1[2], 0), >(x0[2], 0))=TRUE∧x1[2]=x1[4]∧x0[2]=x0[4] ⇒ 215_0_ACK_GT(x1[2], x0[2])≥NonInfC∧215_0_ACK_GT(x1[2], x0[2])≥COND_215_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])∧(UIncreasing(COND_215_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥))
(23) (>(x1[2], 0)=TRUE∧>(x0[2], 0)=TRUE ⇒ 215_0_ACK_GT(x1[2], x0[2])≥NonInfC∧215_0_ACK_GT(x1[2], x0[2])≥COND_215_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])∧(UIncreasing(COND_215_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥))
(24) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_215_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)Bound*bni_40] + [(2)bni_40]x0[2] ≥ 0∧[(-1)bso_41] ≥ 0)
(25) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_215_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)Bound*bni_40] + [(2)bni_40]x0[2] ≥ 0∧[(-1)bso_41] ≥ 0)
(26) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_215_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)Bound*bni_40] + [(2)bni_40]x0[2] ≥ 0∧[(-1)bso_41] ≥ 0)
(27) (x1[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_215_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)Bound*bni_40] + [(2)bni_40]x0[2] ≥ 0∧[(-1)bso_41] ≥ 0)
(28) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_215_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)Bound*bni_40 + (2)bni_40] + [(2)bni_40]x0[2] ≥ 0∧[(-1)bso_41] ≥ 0)
(29) (&&(>(x1[2], 0), >(x0[2], 0))=TRUE∧x1[2]=x1[4]∧x0[2]=x0[4]∧-(x1[4], 1)=x1[0]∧x0[4]=x0[0] ⇒ COND_215_0_ACK_GT1(TRUE, x1[4], x0[4])≥NonInfC∧COND_215_0_ACK_GT1(TRUE, x1[4], x0[4])≥215_0_ACK_GT(-(x1[4], 1), x0[4])∧(UIncreasing(215_0_ACK_GT(-(x1[4], 1), x0[4])), ≥))
(30) (>(x1[2], 0)=TRUE∧>(x0[2], 0)=TRUE ⇒ COND_215_0_ACK_GT1(TRUE, x1[2], x0[2])≥NonInfC∧COND_215_0_ACK_GT1(TRUE, x1[2], x0[2])≥215_0_ACK_GT(-(x1[2], 1), x0[2])∧(UIncreasing(215_0_ACK_GT(-(x1[4], 1), x0[4])), ≥))
(31) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(215_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[(-1)Bound*bni_42] + [(2)bni_42]x0[2] ≥ 0∧[(-1)bso_43] ≥ 0)
(32) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(215_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[(-1)Bound*bni_42] + [(2)bni_42]x0[2] ≥ 0∧[(-1)bso_43] ≥ 0)
(33) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(215_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[(-1)Bound*bni_42] + [(2)bni_42]x0[2] ≥ 0∧[(-1)bso_43] ≥ 0)
(34) (x1[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(215_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[(-1)Bound*bni_42] + [(2)bni_42]x0[2] ≥ 0∧[(-1)bso_43] ≥ 0)
(35) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(215_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[(-1)Bound*bni_42 + (2)bni_42] + [(2)bni_42]x0[2] ≥ 0∧[(-1)bso_43] ≥ 0)
(36) (&&(>(x1[2], 0), >(x0[2], 0))=TRUE∧x1[2]=x1[4]∧x0[2]=x0[4]∧-(x1[4], 1)=x1[2]1∧x0[4]=x0[2]1 ⇒ COND_215_0_ACK_GT1(TRUE, x1[4], x0[4])≥NonInfC∧COND_215_0_ACK_GT1(TRUE, x1[4], x0[4])≥215_0_ACK_GT(-(x1[4], 1), x0[4])∧(UIncreasing(215_0_ACK_GT(-(x1[4], 1), x0[4])), ≥))
(37) (>(x1[2], 0)=TRUE∧>(x0[2], 0)=TRUE ⇒ COND_215_0_ACK_GT1(TRUE, x1[2], x0[2])≥NonInfC∧COND_215_0_ACK_GT1(TRUE, x1[2], x0[2])≥215_0_ACK_GT(-(x1[2], 1), x0[2])∧(UIncreasing(215_0_ACK_GT(-(x1[4], 1), x0[4])), ≥))
(38) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(215_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[(-1)Bound*bni_42] + [(2)bni_42]x0[2] ≥ 0∧[(-1)bso_43] ≥ 0)
(39) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(215_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[(-1)Bound*bni_42] + [(2)bni_42]x0[2] ≥ 0∧[(-1)bso_43] ≥ 0)
(40) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(215_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[(-1)Bound*bni_42] + [(2)bni_42]x0[2] ≥ 0∧[(-1)bso_43] ≥ 0)
(41) (x1[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(215_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[(-1)Bound*bni_42] + [(2)bni_42]x0[2] ≥ 0∧[(-1)bso_43] ≥ 0)
(42) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(215_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[(-1)Bound*bni_42 + (2)bni_42] + [(2)bni_42]x0[2] ≥ 0∧[(-1)bso_43] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = [2]
POL(215_0_ack_GT(x1, x2)) = [-1] + [-1]x2 + [-1]x1
POL(0) = 0
POL(231_0_ack_Return(x1, x2)) = [-1] + [-1]x2 + [-1]x1
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
POL(258_1_ack_InvokeMethod(x1, x2)) = [-1] + [-1]x2 + [-1]x1
POL(266_0_ack_Return(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x2 + [-1]x1
POL(295_0_ack_Return(x1)) = [-1] + [-1]x1
POL(287_1_ack_InvokeMethod(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x2 + [-1]x1
POL(215_0_ACK_GT(x1, x2)) = [2]x2
POL(COND_215_0_ACK_GT(x1, x2, x3)) = [-1] + [2]x3
POL(&&(x1, x2)) = [-1]
POL(<=(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(-(x1, x2)) = x1 + [-1]x2
POL(COND_215_0_ACK_GT1(x1, x2, x3)) = [2]x3
215_0_ACK_GT(x1[0], x0[0]) → COND_215_0_ACK_GT(&&(<=(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])
COND_215_0_ACK_GT(TRUE, x1[1], x0[1]) → 215_0_ACK_GT(1, -(x0[1], 1))
215_0_ACK_GT(x1[0], x0[0]) → COND_215_0_ACK_GT(&&(<=(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])
COND_215_0_ACK_GT(TRUE, x1[1], x0[1]) → 215_0_ACK_GT(1, -(x0[1], 1))
215_0_ACK_GT(x1[2], x0[2]) → COND_215_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])
COND_215_0_ACK_GT1(TRUE, x1[4], x0[4]) → 215_0_ACK_GT(-(x1[4], 1), x0[4])
215_0_ACK_GT(x1[2], x0[2]) → COND_215_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])
COND_215_0_ACK_GT1(TRUE, x1[4], x0[4]) → 215_0_ACK_GT(-(x1[4], 1), x0[4])
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(4) -> (2), if ((x1[4] - 1 →* x1[2])∧(x0[4] →* x0[2]))
(2) -> (4), if ((x1[2] > 0 && x0[2] > 0 →* TRUE)∧(x1[2] →* x1[4])∧(x0[2] →* x0[4]))
(1) (&&(>(x1[2], 0), >(x0[2], 0))=TRUE∧x1[2]=x1[4]∧x0[2]=x0[4] ⇒ 215_0_ACK_GT(x1[2], x0[2])≥NonInfC∧215_0_ACK_GT(x1[2], x0[2])≥COND_215_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])∧(UIncreasing(COND_215_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥))
(2) (>(x1[2], 0)=TRUE∧>(x0[2], 0)=TRUE ⇒ 215_0_ACK_GT(x1[2], x0[2])≥NonInfC∧215_0_ACK_GT(x1[2], x0[2])≥COND_215_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])∧(UIncreasing(COND_215_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥))
(3) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_215_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[bni_31 + (-1)Bound*bni_31] + [(2)bni_31]x1[2] ≥ 0∧[(-1)bso_32] ≥ 0)
(4) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_215_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[bni_31 + (-1)Bound*bni_31] + [(2)bni_31]x1[2] ≥ 0∧[(-1)bso_32] ≥ 0)
(5) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_215_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[bni_31 + (-1)Bound*bni_31] + [(2)bni_31]x1[2] ≥ 0∧[(-1)bso_32] ≥ 0)
(6) (x1[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_215_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(3)bni_31 + (-1)Bound*bni_31] + [(2)bni_31]x1[2] ≥ 0∧[(-1)bso_32] ≥ 0)
(7) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_215_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(3)bni_31 + (-1)Bound*bni_31] + [(2)bni_31]x1[2] ≥ 0∧[(-1)bso_32] ≥ 0)
(8) (&&(>(x1[2], 0), >(x0[2], 0))=TRUE∧x1[2]=x1[4]∧x0[2]=x0[4]∧-(x1[4], 1)=x1[2]1∧x0[4]=x0[2]1 ⇒ COND_215_0_ACK_GT1(TRUE, x1[4], x0[4])≥NonInfC∧COND_215_0_ACK_GT1(TRUE, x1[4], x0[4])≥215_0_ACK_GT(-(x1[4], 1), x0[4])∧(UIncreasing(215_0_ACK_GT(-(x1[4], 1), x0[4])), ≥))
(9) (>(x1[2], 0)=TRUE∧>(x0[2], 0)=TRUE ⇒ COND_215_0_ACK_GT1(TRUE, x1[2], x0[2])≥NonInfC∧COND_215_0_ACK_GT1(TRUE, x1[2], x0[2])≥215_0_ACK_GT(-(x1[2], 1), x0[2])∧(UIncreasing(215_0_ACK_GT(-(x1[4], 1), x0[4])), ≥))
(10) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(215_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[(-1)Bound*bni_33] + [(2)bni_33]x1[2] ≥ 0∧[1 + (-1)bso_34] ≥ 0)
(11) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(215_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[(-1)Bound*bni_33] + [(2)bni_33]x1[2] ≥ 0∧[1 + (-1)bso_34] ≥ 0)
(12) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(215_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[(-1)Bound*bni_33] + [(2)bni_33]x1[2] ≥ 0∧[1 + (-1)bso_34] ≥ 0)
(13) (x1[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(215_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[(-1)Bound*bni_33 + (2)bni_33] + [(2)bni_33]x1[2] ≥ 0∧[1 + (-1)bso_34] ≥ 0)
(14) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(215_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[(-1)Bound*bni_33 + (2)bni_33] + [(2)bni_33]x1[2] ≥ 0∧[1 + (-1)bso_34] ≥ 0)
POL(TRUE) = [1]
POL(FALSE) = [1]
POL(215_0_ack_GT(x1, x2)) = [-1] + [-1]x2 + [-1]x1
POL(0) = 0
POL(231_0_ack_Return(x1, x2)) = [-1] + [-1]x2 + [-1]x1
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
POL(258_1_ack_InvokeMethod(x1, x2)) = [-1] + [-1]x2 + [-1]x1
POL(266_0_ack_Return(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x2 + [-1]x1
POL(295_0_ack_Return(x1)) = [-1] + [-1]x1
POL(287_1_ack_InvokeMethod(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x2 + [-1]x1
POL(215_0_ACK_GT(x1, x2)) = [1] + [2]x1
POL(COND_215_0_ACK_GT1(x1, x2, x3)) = [1] + [2]x2 + [-1]x1
POL(&&(x1, x2)) = 0
POL(>(x1, x2)) = [-1]
POL(-(x1, x2)) = x1 + [-1]x2
COND_215_0_ACK_GT1(TRUE, x1[4], x0[4]) → 215_0_ACK_GT(-(x1[4], 1), x0[4])
215_0_ACK_GT(x1[2], x0[2]) → COND_215_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])
COND_215_0_ACK_GT1(TRUE, x1[4], x0[4]) → 215_0_ACK_GT(-(x1[4], 1), x0[4])
215_0_ACK_GT(x1[2], x0[2]) → COND_215_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean