0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 ITRStoIDPProof (⇔)
↳6 IDP
↳7 UsableRulesProof (⇔)
↳8 IDP
↳9 IDPNonInfProof (⇐)
↳10 AND
↳11 IDP
↳12 IDependencyGraphProof (⇔)
↳13 TRUE
↳14 IDP
↳15 IDependencyGraphProof (⇔)
↳16 TRUE
No human-readable program information known.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i84[0] > 0 && i80[0] + 1 > 0 →* TRUE)∧(i84[0] →* i84[1])∧(i80[0] →* i80[1])∧(i78[0] →* i78[1]))
(1) -> (0), if ((i80[1] + 1 →* i80[0])∧(i78[1] →* i84[0])∧(i84[1] - 1 →* i78[0]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i84[0] > 0 && i80[0] + 1 > 0 →* TRUE)∧(i84[0] →* i84[1])∧(i80[0] →* i80[1])∧(i78[0] →* i78[1]))
(1) -> (0), if ((i80[1] + 1 →* i80[0])∧(i78[1] →* i84[0])∧(i84[1] - 1 →* i78[0]))
(1) (&&(>(i84[0], 0), >(+(i80[0], 1), 0))=TRUE∧i84[0]=i84[1]∧i80[0]=i80[1]∧i78[0]=i78[1] ⇒ LOAD668(i78[0], i84[0], i80[0])≥NonInfC∧LOAD668(i78[0], i84[0], i80[0])≥COND_LOAD668(&&(>(i84[0], 0), >(+(i80[0], 1), 0)), i78[0], i84[0], i80[0])∧(UIncreasing(COND_LOAD668(&&(>(i84[0], 0), >(+(i80[0], 1), 0)), i78[0], i84[0], i80[0])), ≥))
(2) (>(i84[0], 0)=TRUE∧>(+(i80[0], 1), 0)=TRUE ⇒ LOAD668(i78[0], i84[0], i80[0])≥NonInfC∧LOAD668(i78[0], i84[0], i80[0])≥COND_LOAD668(&&(>(i84[0], 0), >(+(i80[0], 1), 0)), i78[0], i84[0], i80[0])∧(UIncreasing(COND_LOAD668(&&(>(i84[0], 0), >(+(i80[0], 1), 0)), i78[0], i84[0], i80[0])), ≥))
(3) (i84[0] + [-1] ≥ 0∧i80[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD668(&&(>(i84[0], 0), >(+(i80[0], 1), 0)), i78[0], i84[0], i80[0])), ≥)∧[bni_14 + (-1)Bound*bni_14] + [bni_14]i84[0] + [bni_14]i78[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(4) (i84[0] + [-1] ≥ 0∧i80[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD668(&&(>(i84[0], 0), >(+(i80[0], 1), 0)), i78[0], i84[0], i80[0])), ≥)∧[bni_14 + (-1)Bound*bni_14] + [bni_14]i84[0] + [bni_14]i78[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(5) (i84[0] + [-1] ≥ 0∧i80[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD668(&&(>(i84[0], 0), >(+(i80[0], 1), 0)), i78[0], i84[0], i80[0])), ≥)∧[bni_14 + (-1)Bound*bni_14] + [bni_14]i84[0] + [bni_14]i78[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(6) (i84[0] + [-1] ≥ 0∧i80[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD668(&&(>(i84[0], 0), >(+(i80[0], 1), 0)), i78[0], i84[0], i80[0])), ≥)∧[bni_14] = 0∧[bni_14 + (-1)Bound*bni_14] + [bni_14]i84[0] ≥ 0∧0 = 0∧[1 + (-1)bso_15] ≥ 0)
(7) (i84[0] ≥ 0∧i80[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD668(&&(>(i84[0], 0), >(+(i80[0], 1), 0)), i78[0], i84[0], i80[0])), ≥)∧[bni_14] = 0∧[(2)bni_14 + (-1)Bound*bni_14] + [bni_14]i84[0] ≥ 0∧0 = 0∧[1 + (-1)bso_15] ≥ 0)
(8) (&&(>(i84[0], 0), >(+(i80[0], 1), 0))=TRUE∧i84[0]=i84[1]∧i80[0]=i80[1]∧i78[0]=i78[1]∧+(i80[1], 1)=i80[0]1∧i78[1]=i84[0]1∧-(i84[1], 1)=i78[0]1∧&&(>(i84[0]1, 0), >(+(i80[0]1, 1), 0))=TRUE∧i84[0]1=i84[1]1∧i80[0]1=i80[1]1∧i78[0]1=i78[1]1∧+(i80[1]1, 1)=i80[0]2∧i78[1]1=i84[0]2∧-(i84[1]1, 1)=i78[0]2∧&&(>(i84[0]2, 0), >(+(i80[0]2, 1), 0))=TRUE∧i84[0]2=i84[1]2∧i80[0]2=i80[1]2∧i78[0]2=i78[1]2 ⇒ COND_LOAD668(TRUE, i78[1]1, i84[1]1, i80[1]1)≥NonInfC∧COND_LOAD668(TRUE, i78[1]1, i84[1]1, i80[1]1)≥LOAD668(-(i84[1]1, 1), i78[1]1, +(i80[1]1, 1))∧(UIncreasing(LOAD668(-(i84[1]1, 1), i78[1]1, +(i80[1]1, 1))), ≥))
(9) (>(i84[0], 0)=TRUE∧>(+(i80[0], 1), 0)=TRUE∧>(i84[0]1, 0)=TRUE∧>(+(+(i80[0], 1), 1), 0)=TRUE∧>(-(i84[0], 1), 0)=TRUE∧>(+(+(+(i80[0], 1), 1), 1), 0)=TRUE ⇒ COND_LOAD668(TRUE, -(i84[0], 1), i84[0]1, +(i80[0], 1))≥NonInfC∧COND_LOAD668(TRUE, -(i84[0], 1), i84[0]1, +(i80[0], 1))≥LOAD668(-(i84[0]1, 1), -(i84[0], 1), +(+(i80[0], 1), 1))∧(UIncreasing(LOAD668(-(i84[1]1, 1), i78[1]1, +(i80[1]1, 1))), ≥))
(10) (i84[0] + [-1] ≥ 0∧i80[0] ≥ 0∧i84[0]1 + [-1] ≥ 0∧i80[0] + [1] ≥ 0∧i84[0] + [-2] ≥ 0∧i80[0] + [2] ≥ 0 ⇒ (UIncreasing(LOAD668(-(i84[1]1, 1), i78[1]1, +(i80[1]1, 1))), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]i84[0]1 + [bni_16]i84[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(11) (i84[0] + [-1] ≥ 0∧i80[0] ≥ 0∧i84[0]1 + [-1] ≥ 0∧i80[0] + [1] ≥ 0∧i84[0] + [-2] ≥ 0∧i80[0] + [2] ≥ 0 ⇒ (UIncreasing(LOAD668(-(i84[1]1, 1), i78[1]1, +(i80[1]1, 1))), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]i84[0]1 + [bni_16]i84[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(12) (i84[0] + [-1] ≥ 0∧i80[0] ≥ 0∧i84[0]1 + [-1] ≥ 0∧i80[0] + [1] ≥ 0∧i84[0] + [-2] ≥ 0∧i80[0] + [2] ≥ 0 ⇒ (UIncreasing(LOAD668(-(i84[1]1, 1), i78[1]1, +(i80[1]1, 1))), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]i84[0]1 + [bni_16]i84[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(13) (i84[0] ≥ 0∧i80[0] ≥ 0∧i84[0]1 + [-1] ≥ 0∧i80[0] + [1] ≥ 0∧[-1] + i84[0] ≥ 0∧i80[0] + [2] ≥ 0 ⇒ (UIncreasing(LOAD668(-(i84[1]1, 1), i78[1]1, +(i80[1]1, 1))), ≥)∧[(-1)Bound*bni_16] + [bni_16]i84[0]1 + [bni_16]i84[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(14) ([1] + i84[0] ≥ 0∧i80[0] ≥ 0∧i84[0]1 + [-1] ≥ 0∧i80[0] + [1] ≥ 0∧i84[0] ≥ 0∧i80[0] + [2] ≥ 0 ⇒ (UIncreasing(LOAD668(-(i84[1]1, 1), i78[1]1, +(i80[1]1, 1))), ≥)∧[bni_16 + (-1)Bound*bni_16] + [bni_16]i84[0]1 + [bni_16]i84[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(15) ([1] + i84[0] ≥ 0∧i80[0] ≥ 0∧i84[0]1 ≥ 0∧i80[0] + [1] ≥ 0∧i84[0] ≥ 0∧i80[0] + [2] ≥ 0 ⇒ (UIncreasing(LOAD668(-(i84[1]1, 1), i78[1]1, +(i80[1]1, 1))), ≥)∧[(-1)Bound*bni_16 + (2)bni_16] + [bni_16]i84[0]1 + [bni_16]i84[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(16) ([1] + i84[0] ≥ 0∧i80[0] ≥ 0∧i84[0]1 ≥ 0∧i80[0] + [1] ≥ 0∧i84[0] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(LOAD668(-(i84[1]1, 1), i78[1]1, +(i80[1]1, 1))), ≥)∧[(-1)Bound*bni_16 + (2)bni_16] + [bni_16]i84[0]1 + [bni_16]i84[0] ≥ 0∧[(-1)bso_17] ≥ 0)
POL(TRUE) = [2]
POL(FALSE) = [2]
POL(LOAD668(x1, x2, x3)) = [1] + x2 + x1
POL(COND_LOAD668(x1, x2, x3, x4)) = [2] + x3 + x2 + [-1]x1
POL(&&(x1, x2)) = [2]
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
POL(-(x1, x2)) = x1 + [-1]x2
LOAD668(i78[0], i84[0], i80[0]) → COND_LOAD668(&&(>(i84[0], 0), >(+(i80[0], 1), 0)), i78[0], i84[0], i80[0])
COND_LOAD668(TRUE, i78[1], i84[1], i80[1]) → LOAD668(-(i84[1], 1), i78[1], +(i80[1], 1))
COND_LOAD668(TRUE, i78[1], i84[1], i80[1]) → LOAD668(-(i84[1], 1), i78[1], +(i80[1], 1))
&&(TRUE, TRUE)1 ↔ TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(FALSE, FALSE)1 ↔ FALSE1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer