0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 IDP
↳7 IDependencyGraphProof (⇔)
↳8 IDP
↳9 IDPNonInfProof (⇒)
↳10 IDP
↳11 IDependencyGraphProof (⇔)
↳12 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaC3 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
int z = Random.random();
while (x < y) {
if (x < z) {
x++;
} else {
z++;
}
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 16 rules for P and 2 rules for R.
Combined rules. Obtained 2 rules for P and 0 rules for R.
Filtered ground terms:
917_0_main_Load(x1, x2, x3, x4, x5) → 917_0_main_Load(x2, x3, x4, x5)
Cond_917_0_main_Load1(x1, x2, x3, x4, x5, x6) → Cond_917_0_main_Load1(x1, x3, x4, x5, x6)
Cond_917_0_main_Load(x1, x2, x3, x4, x5, x6) → Cond_917_0_main_Load(x1, x3, x4, x5, x6)
Filtered duplicate args:
917_0_main_Load(x1, x2, x3, x4) → 917_0_main_Load(x2, x3, x4)
Cond_917_0_main_Load1(x1, x2, x3, x4, x5) → Cond_917_0_main_Load1(x1, x3, x4, x5)
Cond_917_0_main_Load(x1, x2, x3, x4, x5) → Cond_917_0_main_Load(x1, x3, x4, x5)
Combined rules. Obtained 2 rules for P and 0 rules for R.
Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((x2[0] >= 0 && x2[0] <= x0[0] && x1[0] > x0[0] →* TRUE)∧(x1[0] →* x1[1])∧(x2[0] →* x2[1])∧(x0[0] →* x0[1]))
(1) -> (0), if ((x1[1] →* x1[0])∧(x2[1] + 1 →* x2[0])∧(x0[1] →* x0[0]))
(1) -> (2), if ((x1[1] →* x1[2])∧(x2[1] + 1 →* x2[2])∧(x0[1] →* x0[2]))
(2) -> (3), if ((x2[2] > x0[2] && x1[2] > x0[2] && x0[2] >= 0 →* TRUE)∧(x1[2] →* x1[3])∧(x2[2] →* x2[3])∧(x0[2] →* x0[3]))
(3) -> (0), if ((x1[3] →* x1[0])∧(x2[3] →* x2[0])∧(x0[3] + 1 →* x0[0]))
(3) -> (2), if ((x1[3] →* x1[2])∧(x2[3] →* x2[2])∧(x0[3] + 1 →* x0[2]))
(1) (&&(&&(>=(x2[0], 0), <=(x2[0], x0[0])), >(x1[0], x0[0]))=TRUE∧x1[0]=x1[1]∧x2[0]=x2[1]∧x0[0]=x0[1] ⇒ 917_0_MAIN_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧917_0_MAIN_LOAD(x1[0], x2[0], x0[0])≥COND_917_0_MAIN_LOAD(&&(&&(>=(x2[0], 0), <=(x2[0], x0[0])), >(x1[0], x0[0])), x1[0], x2[0], x0[0])∧(UIncreasing(COND_917_0_MAIN_LOAD(&&(&&(>=(x2[0], 0), <=(x2[0], x0[0])), >(x1[0], x0[0])), x1[0], x2[0], x0[0])), ≥))
(2) (>(x1[0], x0[0])=TRUE∧>=(x2[0], 0)=TRUE∧<=(x2[0], x0[0])=TRUE ⇒ 917_0_MAIN_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧917_0_MAIN_LOAD(x1[0], x2[0], x0[0])≥COND_917_0_MAIN_LOAD(&&(&&(>=(x2[0], 0), <=(x2[0], x0[0])), >(x1[0], x0[0])), x1[0], x2[0], x0[0])∧(UIncreasing(COND_917_0_MAIN_LOAD(&&(&&(>=(x2[0], 0), <=(x2[0], x0[0])), >(x1[0], x0[0])), x1[0], x2[0], x0[0])), ≥))
(3) (x1[0] + [-1] + [-1]x0[0] ≥ 0∧x2[0] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_917_0_MAIN_LOAD(&&(&&(>=(x2[0], 0), <=(x2[0], x0[0])), >(x1[0], x0[0])), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [(-1)bni_21]x2[0] + [bni_21]x1[0] ≥ 0∧[(-1)bso_22] ≥ 0)
(4) (x1[0] + [-1] + [-1]x0[0] ≥ 0∧x2[0] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_917_0_MAIN_LOAD(&&(&&(>=(x2[0], 0), <=(x2[0], x0[0])), >(x1[0], x0[0])), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [(-1)bni_21]x2[0] + [bni_21]x1[0] ≥ 0∧[(-1)bso_22] ≥ 0)
(5) (x1[0] + [-1] + [-1]x0[0] ≥ 0∧x2[0] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_917_0_MAIN_LOAD(&&(&&(>=(x2[0], 0), <=(x2[0], x0[0])), >(x1[0], x0[0])), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [(-1)bni_21]x2[0] + [bni_21]x1[0] ≥ 0∧[(-1)bso_22] ≥ 0)
(6) (x1[0] ≥ 0∧x2[0] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_917_0_MAIN_LOAD(&&(&&(>=(x2[0], 0), <=(x2[0], x0[0])), >(x1[0], x0[0])), x1[0], x2[0], x0[0])), ≥)∧[(-1)Bound*bni_21] + [bni_21]x0[0] + [(-1)bni_21]x2[0] + [bni_21]x1[0] ≥ 0∧[(-1)bso_22] ≥ 0)
(7) (x1[0] ≥ 0∧x2[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_917_0_MAIN_LOAD(&&(&&(>=(x2[0], 0), <=(x2[0], x0[0])), >(x1[0], x0[0])), x1[0], x2[0], x0[0])), ≥)∧[(-1)Bound*bni_21] + [bni_21]x0[0] + [bni_21]x1[0] ≥ 0∧[(-1)bso_22] ≥ 0)
(8) (&&(&&(>=(x2[0], 0), <=(x2[0], x0[0])), >(x1[0], x0[0]))=TRUE∧x1[0]=x1[1]∧x2[0]=x2[1]∧x0[0]=x0[1]∧x1[1]=x1[0]1∧+(x2[1], 1)=x2[0]1∧x0[1]=x0[0]1 ⇒ COND_917_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_917_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥917_0_MAIN_LOAD(x1[1], +(x2[1], 1), x0[1])∧(UIncreasing(917_0_MAIN_LOAD(x1[1], +(x2[1], 1), x0[1])), ≥))
(9) (>(x1[0], x0[0])=TRUE∧>=(x2[0], 0)=TRUE∧<=(x2[0], x0[0])=TRUE ⇒ COND_917_0_MAIN_LOAD(TRUE, x1[0], x2[0], x0[0])≥NonInfC∧COND_917_0_MAIN_LOAD(TRUE, x1[0], x2[0], x0[0])≥917_0_MAIN_LOAD(x1[0], +(x2[0], 1), x0[0])∧(UIncreasing(917_0_MAIN_LOAD(x1[1], +(x2[1], 1), x0[1])), ≥))
(10) (x1[0] + [-1] + [-1]x0[0] ≥ 0∧x2[0] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(917_0_MAIN_LOAD(x1[1], +(x2[1], 1), x0[1])), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [(-1)bni_23]x2[0] + [bni_23]x1[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(11) (x1[0] + [-1] + [-1]x0[0] ≥ 0∧x2[0] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(917_0_MAIN_LOAD(x1[1], +(x2[1], 1), x0[1])), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [(-1)bni_23]x2[0] + [bni_23]x1[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(12) (x1[0] + [-1] + [-1]x0[0] ≥ 0∧x2[0] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(917_0_MAIN_LOAD(x1[1], +(x2[1], 1), x0[1])), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [(-1)bni_23]x2[0] + [bni_23]x1[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(13) (x1[0] ≥ 0∧x2[0] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(917_0_MAIN_LOAD(x1[1], +(x2[1], 1), x0[1])), ≥)∧[(-1)Bound*bni_23] + [bni_23]x0[0] + [(-1)bni_23]x2[0] + [bni_23]x1[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(14) (x1[0] ≥ 0∧x2[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(917_0_MAIN_LOAD(x1[1], +(x2[1], 1), x0[1])), ≥)∧[(-1)Bound*bni_23] + [bni_23]x0[0] + [bni_23]x1[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(15) (&&(&&(>=(x2[0], 0), <=(x2[0], x0[0])), >(x1[0], x0[0]))=TRUE∧x1[0]=x1[1]∧x2[0]=x2[1]∧x0[0]=x0[1]∧x1[1]=x1[2]∧+(x2[1], 1)=x2[2]∧x0[1]=x0[2] ⇒ COND_917_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_917_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥917_0_MAIN_LOAD(x1[1], +(x2[1], 1), x0[1])∧(UIncreasing(917_0_MAIN_LOAD(x1[1], +(x2[1], 1), x0[1])), ≥))
(16) (>(x1[0], x0[0])=TRUE∧>=(x2[0], 0)=TRUE∧<=(x2[0], x0[0])=TRUE ⇒ COND_917_0_MAIN_LOAD(TRUE, x1[0], x2[0], x0[0])≥NonInfC∧COND_917_0_MAIN_LOAD(TRUE, x1[0], x2[0], x0[0])≥917_0_MAIN_LOAD(x1[0], +(x2[0], 1), x0[0])∧(UIncreasing(917_0_MAIN_LOAD(x1[1], +(x2[1], 1), x0[1])), ≥))
(17) (x1[0] + [-1] + [-1]x0[0] ≥ 0∧x2[0] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(917_0_MAIN_LOAD(x1[1], +(x2[1], 1), x0[1])), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [(-1)bni_23]x2[0] + [bni_23]x1[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(18) (x1[0] + [-1] + [-1]x0[0] ≥ 0∧x2[0] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(917_0_MAIN_LOAD(x1[1], +(x2[1], 1), x0[1])), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [(-1)bni_23]x2[0] + [bni_23]x1[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(19) (x1[0] + [-1] + [-1]x0[0] ≥ 0∧x2[0] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(917_0_MAIN_LOAD(x1[1], +(x2[1], 1), x0[1])), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [(-1)bni_23]x2[0] + [bni_23]x1[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(20) (x1[0] ≥ 0∧x2[0] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(917_0_MAIN_LOAD(x1[1], +(x2[1], 1), x0[1])), ≥)∧[(-1)Bound*bni_23] + [bni_23]x0[0] + [(-1)bni_23]x2[0] + [bni_23]x1[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(21) (x1[0] ≥ 0∧x2[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(917_0_MAIN_LOAD(x1[1], +(x2[1], 1), x0[1])), ≥)∧[(-1)Bound*bni_23] + [bni_23]x0[0] + [bni_23]x1[0] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(22) (&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >=(x0[2], 0))=TRUE∧x1[2]=x1[3]∧x2[2]=x2[3]∧x0[2]=x0[3] ⇒ 917_0_MAIN_LOAD(x1[2], x2[2], x0[2])≥NonInfC∧917_0_MAIN_LOAD(x1[2], x2[2], x0[2])≥COND_917_0_MAIN_LOAD1(&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >=(x0[2], 0)), x1[2], x2[2], x0[2])∧(UIncreasing(COND_917_0_MAIN_LOAD1(&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >=(x0[2], 0)), x1[2], x2[2], x0[2])), ≥))
(23) (>=(x0[2], 0)=TRUE∧>(x2[2], x0[2])=TRUE∧>(x1[2], x0[2])=TRUE ⇒ 917_0_MAIN_LOAD(x1[2], x2[2], x0[2])≥NonInfC∧917_0_MAIN_LOAD(x1[2], x2[2], x0[2])≥COND_917_0_MAIN_LOAD1(&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >=(x0[2], 0)), x1[2], x2[2], x0[2])∧(UIncreasing(COND_917_0_MAIN_LOAD1(&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >=(x0[2], 0)), x1[2], x2[2], x0[2])), ≥))
(24) (x0[2] ≥ 0∧x2[2] + [-1] + [-1]x0[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_917_0_MAIN_LOAD1(&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >=(x0[2], 0)), x1[2], x2[2], x0[2])), ≥)∧[(-1)bni_25 + (-1)Bound*bni_25] + [(-1)bni_25]x2[2] + [bni_25]x1[2] ≥ 0∧[(-1)bso_26] ≥ 0)
(25) (x0[2] ≥ 0∧x2[2] + [-1] + [-1]x0[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_917_0_MAIN_LOAD1(&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >=(x0[2], 0)), x1[2], x2[2], x0[2])), ≥)∧[(-1)bni_25 + (-1)Bound*bni_25] + [(-1)bni_25]x2[2] + [bni_25]x1[2] ≥ 0∧[(-1)bso_26] ≥ 0)
(26) (x0[2] ≥ 0∧x2[2] + [-1] + [-1]x0[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_917_0_MAIN_LOAD1(&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >=(x0[2], 0)), x1[2], x2[2], x0[2])), ≥)∧[(-1)bni_25 + (-1)Bound*bni_25] + [(-1)bni_25]x2[2] + [bni_25]x1[2] ≥ 0∧[(-1)bso_26] ≥ 0)
(27) (x0[2] ≥ 0∧x2[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_917_0_MAIN_LOAD1(&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >=(x0[2], 0)), x1[2], x2[2], x0[2])), ≥)∧[(-2)bni_25 + (-1)Bound*bni_25] + [(-1)bni_25]x0[2] + [(-1)bni_25]x2[2] + [bni_25]x1[2] ≥ 0∧[(-1)bso_26] ≥ 0)
(28) (x0[2] ≥ 0∧x2[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(COND_917_0_MAIN_LOAD1(&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >=(x0[2], 0)), x1[2], x2[2], x0[2])), ≥)∧[(-1)bni_25 + (-1)Bound*bni_25] + [(-1)bni_25]x2[2] + [bni_25]x1[2] ≥ 0∧[(-1)bso_26] ≥ 0)
(29) (&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >=(x0[2], 0))=TRUE∧x1[2]=x1[3]∧x2[2]=x2[3]∧x0[2]=x0[3]∧x1[3]=x1[0]∧x2[3]=x2[0]∧+(x0[3], 1)=x0[0] ⇒ COND_917_0_MAIN_LOAD1(TRUE, x1[3], x2[3], x0[3])≥NonInfC∧COND_917_0_MAIN_LOAD1(TRUE, x1[3], x2[3], x0[3])≥917_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))∧(UIncreasing(917_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))), ≥))
(30) (>=(x0[2], 0)=TRUE∧>(x2[2], x0[2])=TRUE∧>(x1[2], x0[2])=TRUE ⇒ COND_917_0_MAIN_LOAD1(TRUE, x1[2], x2[2], x0[2])≥NonInfC∧COND_917_0_MAIN_LOAD1(TRUE, x1[2], x2[2], x0[2])≥917_0_MAIN_LOAD(x1[2], x2[2], +(x0[2], 1))∧(UIncreasing(917_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))), ≥))
(31) (x0[2] ≥ 0∧x2[2] + [-1] + [-1]x0[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(917_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [(-1)bni_27]x2[2] + [bni_27]x1[2] ≥ 0∧[(-1)bso_28] ≥ 0)
(32) (x0[2] ≥ 0∧x2[2] + [-1] + [-1]x0[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(917_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [(-1)bni_27]x2[2] + [bni_27]x1[2] ≥ 0∧[(-1)bso_28] ≥ 0)
(33) (x0[2] ≥ 0∧x2[2] + [-1] + [-1]x0[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(917_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [(-1)bni_27]x2[2] + [bni_27]x1[2] ≥ 0∧[(-1)bso_28] ≥ 0)
(34) (x0[2] ≥ 0∧x2[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(917_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))), ≥)∧[(-2)bni_27 + (-1)Bound*bni_27] + [(-1)bni_27]x0[2] + [(-1)bni_27]x2[2] + [bni_27]x1[2] ≥ 0∧[(-1)bso_28] ≥ 0)
(35) (x0[2] ≥ 0∧x2[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(917_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [(-1)bni_27]x2[2] + [bni_27]x1[2] ≥ 0∧[(-1)bso_28] ≥ 0)
(36) (&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >=(x0[2], 0))=TRUE∧x1[2]=x1[3]∧x2[2]=x2[3]∧x0[2]=x0[3]∧x1[3]=x1[2]1∧x2[3]=x2[2]1∧+(x0[3], 1)=x0[2]1 ⇒ COND_917_0_MAIN_LOAD1(TRUE, x1[3], x2[3], x0[3])≥NonInfC∧COND_917_0_MAIN_LOAD1(TRUE, x1[3], x2[3], x0[3])≥917_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))∧(UIncreasing(917_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))), ≥))
(37) (>=(x0[2], 0)=TRUE∧>(x2[2], x0[2])=TRUE∧>(x1[2], x0[2])=TRUE ⇒ COND_917_0_MAIN_LOAD1(TRUE, x1[2], x2[2], x0[2])≥NonInfC∧COND_917_0_MAIN_LOAD1(TRUE, x1[2], x2[2], x0[2])≥917_0_MAIN_LOAD(x1[2], x2[2], +(x0[2], 1))∧(UIncreasing(917_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))), ≥))
(38) (x0[2] ≥ 0∧x2[2] + [-1] + [-1]x0[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(917_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [(-1)bni_27]x2[2] + [bni_27]x1[2] ≥ 0∧[(-1)bso_28] ≥ 0)
(39) (x0[2] ≥ 0∧x2[2] + [-1] + [-1]x0[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(917_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [(-1)bni_27]x2[2] + [bni_27]x1[2] ≥ 0∧[(-1)bso_28] ≥ 0)
(40) (x0[2] ≥ 0∧x2[2] + [-1] + [-1]x0[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(917_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [(-1)bni_27]x2[2] + [bni_27]x1[2] ≥ 0∧[(-1)bso_28] ≥ 0)
(41) (x0[2] ≥ 0∧x2[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(917_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))), ≥)∧[(-2)bni_27 + (-1)Bound*bni_27] + [(-1)bni_27]x0[2] + [(-1)bni_27]x2[2] + [bni_27]x1[2] ≥ 0∧[(-1)bso_28] ≥ 0)
(42) (x0[2] ≥ 0∧x2[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(917_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [(-1)bni_27]x2[2] + [bni_27]x1[2] ≥ 0∧[(-1)bso_28] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(917_0_MAIN_LOAD(x1, x2, x3)) = [-1] + [-1]x2 + x1
POL(COND_917_0_MAIN_LOAD(x1, x2, x3, x4)) = [-1] + [-1]x3 + x2 + [-1]x1
POL(&&(x1, x2)) = 0
POL(>=(x1, x2)) = [-1]
POL(0) = 0
POL(<=(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
POL(COND_917_0_MAIN_LOAD1(x1, x2, x3, x4)) = [-1] + [-1]x3 + x2 + [-1]x1
COND_917_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1]) → 917_0_MAIN_LOAD(x1[1], +(x2[1], 1), x0[1])
917_0_MAIN_LOAD(x1[0], x2[0], x0[0]) → COND_917_0_MAIN_LOAD(&&(&&(>=(x2[0], 0), <=(x2[0], x0[0])), >(x1[0], x0[0])), x1[0], x2[0], x0[0])
COND_917_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1]) → 917_0_MAIN_LOAD(x1[1], +(x2[1], 1), x0[1])
917_0_MAIN_LOAD(x1[0], x2[0], x0[0]) → COND_917_0_MAIN_LOAD(&&(&&(>=(x2[0], 0), <=(x2[0], x0[0])), >(x1[0], x0[0])), x1[0], x2[0], x0[0])
917_0_MAIN_LOAD(x1[2], x2[2], x0[2]) → COND_917_0_MAIN_LOAD1(&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >=(x0[2], 0)), x1[2], x2[2], x0[2])
COND_917_0_MAIN_LOAD1(TRUE, x1[3], x2[3], x0[3]) → 917_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))
&&(TRUE, TRUE)1 ↔ TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(FALSE, FALSE)1 ↔ FALSE1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(3) -> (0), if ((x1[3] →* x1[0])∧(x2[3] →* x2[0])∧(x0[3] + 1 →* x0[0]))
(3) -> (2), if ((x1[3] →* x1[2])∧(x2[3] →* x2[2])∧(x0[3] + 1 →* x0[2]))
(2) -> (3), if ((x2[2] > x0[2] && x1[2] > x0[2] && x0[2] >= 0 →* TRUE)∧(x1[2] →* x1[3])∧(x2[2] →* x2[3])∧(x0[2] →* x0[3]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(3) -> (2), if ((x1[3] →* x1[2])∧(x2[3] →* x2[2])∧(x0[3] + 1 →* x0[2]))
(2) -> (3), if ((x2[2] > x0[2] && x1[2] > x0[2] && x0[2] >= 0 →* TRUE)∧(x1[2] →* x1[3])∧(x2[2] →* x2[3])∧(x0[2] →* x0[3]))
(1) (&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >=(x0[2], 0))=TRUE∧x1[2]=x1[3]∧x2[2]=x2[3]∧x0[2]=x0[3]∧x1[3]=x1[2]1∧x2[3]=x2[2]1∧+(x0[3], 1)=x0[2]1 ⇒ COND_917_0_MAIN_LOAD1(TRUE, x1[3], x2[3], x0[3])≥NonInfC∧COND_917_0_MAIN_LOAD1(TRUE, x1[3], x2[3], x0[3])≥917_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))∧(UIncreasing(917_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))), ≥))
(2) (>=(x0[2], 0)=TRUE∧>(x2[2], x0[2])=TRUE∧>(x1[2], x0[2])=TRUE ⇒ COND_917_0_MAIN_LOAD1(TRUE, x1[2], x2[2], x0[2])≥NonInfC∧COND_917_0_MAIN_LOAD1(TRUE, x1[2], x2[2], x0[2])≥917_0_MAIN_LOAD(x1[2], x2[2], +(x0[2], 1))∧(UIncreasing(917_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))), ≥))
(3) (x0[2] ≥ 0∧x2[2] + [-1] + [-1]x0[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(917_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]x0[2] + [(2)bni_15]x2[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
(4) (x0[2] ≥ 0∧x2[2] + [-1] + [-1]x0[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(917_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]x0[2] + [(2)bni_15]x2[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
(5) (x0[2] ≥ 0∧x2[2] + [-1] + [-1]x0[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(917_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]x0[2] + [(2)bni_15]x2[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
(6) (x0[2] ≥ 0∧x2[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(917_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))), ≥)∧[bni_15 + (-1)Bound*bni_15] + [bni_15]x0[2] + [(2)bni_15]x2[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
(7) (x0[2] ≥ 0∧x2[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(917_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))), ≥)∧[bni_15 + (-1)Bound*bni_15] + [bni_15]x0[2] + [(2)bni_15]x2[2] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
(8) (&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >=(x0[2], 0))=TRUE∧x1[2]=x1[3]∧x2[2]=x2[3]∧x0[2]=x0[3] ⇒ 917_0_MAIN_LOAD(x1[2], x2[2], x0[2])≥NonInfC∧917_0_MAIN_LOAD(x1[2], x2[2], x0[2])≥COND_917_0_MAIN_LOAD1(&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >=(x0[2], 0)), x1[2], x2[2], x0[2])∧(UIncreasing(COND_917_0_MAIN_LOAD1(&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >=(x0[2], 0)), x1[2], x2[2], x0[2])), ≥))
(9) (>=(x0[2], 0)=TRUE∧>(x2[2], x0[2])=TRUE∧>(x1[2], x0[2])=TRUE ⇒ 917_0_MAIN_LOAD(x1[2], x2[2], x0[2])≥NonInfC∧917_0_MAIN_LOAD(x1[2], x2[2], x0[2])≥COND_917_0_MAIN_LOAD1(&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >=(x0[2], 0)), x1[2], x2[2], x0[2])∧(UIncreasing(COND_917_0_MAIN_LOAD1(&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >=(x0[2], 0)), x1[2], x2[2], x0[2])), ≥))
(10) (x0[2] ≥ 0∧x2[2] + [-1] + [-1]x0[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_917_0_MAIN_LOAD1(&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >=(x0[2], 0)), x1[2], x2[2], x0[2])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]x0[2] + [(2)bni_17]x2[2] ≥ 0∧[(-1)bso_18] ≥ 0)
(11) (x0[2] ≥ 0∧x2[2] + [-1] + [-1]x0[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_917_0_MAIN_LOAD1(&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >=(x0[2], 0)), x1[2], x2[2], x0[2])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]x0[2] + [(2)bni_17]x2[2] ≥ 0∧[(-1)bso_18] ≥ 0)
(12) (x0[2] ≥ 0∧x2[2] + [-1] + [-1]x0[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_917_0_MAIN_LOAD1(&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >=(x0[2], 0)), x1[2], x2[2], x0[2])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]x0[2] + [(2)bni_17]x2[2] ≥ 0∧[(-1)bso_18] ≥ 0)
(13) (x0[2] ≥ 0∧x2[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_917_0_MAIN_LOAD1(&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >=(x0[2], 0)), x1[2], x2[2], x0[2])), ≥)∧[bni_17 + (-1)Bound*bni_17] + [bni_17]x0[2] + [(2)bni_17]x2[2] ≥ 0∧[(-1)bso_18] ≥ 0)
(14) (x0[2] ≥ 0∧x2[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(COND_917_0_MAIN_LOAD1(&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >=(x0[2], 0)), x1[2], x2[2], x0[2])), ≥)∧[bni_17 + (-1)Bound*bni_17] + [bni_17]x0[2] + [(2)bni_17]x2[2] ≥ 0∧[(-1)bso_18] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = [2]
POL(COND_917_0_MAIN_LOAD1(x1, x2, x3, x4)) = [-1] + [-1]x4 + [2]x3 + [-1]x1
POL(917_0_MAIN_LOAD(x1, x2, x3)) = [-1] + [-1]x3 + [2]x2
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
POL(&&(x1, x2)) = 0
POL(>(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(0) = 0
COND_917_0_MAIN_LOAD1(TRUE, x1[3], x2[3], x0[3]) → 917_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))
COND_917_0_MAIN_LOAD1(TRUE, x1[3], x2[3], x0[3]) → 917_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))
917_0_MAIN_LOAD(x1[2], x2[2], x0[2]) → COND_917_0_MAIN_LOAD1(&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >=(x0[2], 0)), x1[2], x2[2], x0[2])
917_0_MAIN_LOAD(x1[2], x2[2], x0[2]) → COND_917_0_MAIN_LOAD1(&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >=(x0[2], 0)), x1[2], x2[2], x0[2])
&&(TRUE, TRUE)1 ↔ TRUE1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer