0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 IDP
↳7 IDependencyGraphProof (⇔)
↳8 IDP
↳9 IDPNonInfProof (⇒)
↳10 IDP
↳11 IDependencyGraphProof (⇔)
↳12 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaC1 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
while (x >= 0) {
int y = 1;
while (x > y) {
y = 2*y;
}
x--;
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 23 rules for P and 2 rules for R.
Combined rules. Obtained 2 rules for P and 0 rules for R.
Filtered ground terms:
397_0_main_LE(x1, x2, x3, x4, x5) → 397_0_main_LE(x2, x3, x4, x5)
Cond_397_0_main_LE1(x1, x2, x3, x4, x5, x6) → Cond_397_0_main_LE1(x1, x3, x4, x5, x6)
Cond_397_0_main_LE(x1, x2, x3, x4, x5, x6) → Cond_397_0_main_LE(x1, x3, x4, x5, x6)
Filtered duplicate args:
397_0_main_LE(x1, x2, x3, x4) → 397_0_main_LE(x3, x4)
Cond_397_0_main_LE1(x1, x2, x3, x4, x5) → Cond_397_0_main_LE1(x1, x4, x5)
Cond_397_0_main_LE(x1, x2, x3, x4, x5) → Cond_397_0_main_LE(x1, x4, x5)
Filtered unneeded arguments:
Cond_397_0_main_LE(x1, x2, x3) → Cond_397_0_main_LE(x1, x2)
Combined rules. Obtained 2 rules for P and 0 rules for R.
Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((x1[0] >= x0[0] && x0[0] >= 0 && 0 <= x0[0] + -1 →* TRUE)∧(x0[0] →* x0[1])∧(x1[0] →* x1[1]))
(1) -> (0), if ((x0[1] + -1 →* x0[0])∧(1 →* x1[0]))
(1) -> (2), if ((x0[1] + -1 →* x0[2])∧(1 →* x1[2]))
(2) -> (3), if ((x1[2] >= 1 && x1[2] < x0[2] →* TRUE)∧(x0[2] →* x0[3])∧(x1[2] →* x1[3]))
(3) -> (0), if ((x0[3] →* x0[0])∧(2 * x1[3] →* x1[0]))
(3) -> (2), if ((x0[3] →* x0[2])∧(2 * x1[3] →* x1[2]))
(1) (&&(&&(>=(x1[0], x0[0]), >=(x0[0], 0)), <=(0, +(x0[0], -1)))=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1] ⇒ 397_0_MAIN_LE(x0[0], x1[0])≥NonInfC∧397_0_MAIN_LE(x0[0], x1[0])≥COND_397_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >=(x0[0], 0)), <=(0, +(x0[0], -1))), x0[0], x1[0])∧(UIncreasing(COND_397_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >=(x0[0], 0)), <=(0, +(x0[0], -1))), x0[0], x1[0])), ≥))
(2) (<=(0, +(x0[0], -1))=TRUE∧>=(x1[0], x0[0])=TRUE∧>=(x0[0], 0)=TRUE ⇒ 397_0_MAIN_LE(x0[0], x1[0])≥NonInfC∧397_0_MAIN_LE(x0[0], x1[0])≥COND_397_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >=(x0[0], 0)), <=(0, +(x0[0], -1))), x0[0], x1[0])∧(UIncreasing(COND_397_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >=(x0[0], 0)), <=(0, +(x0[0], -1))), x0[0], x1[0])), ≥))
(3) (x0[0] + [-1] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_397_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >=(x0[0], 0)), <=(0, +(x0[0], -1))), x0[0], x1[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[(-1)bso_19] ≥ 0)
(4) (x0[0] + [-1] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_397_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >=(x0[0], 0)), <=(0, +(x0[0], -1))), x0[0], x1[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[(-1)bso_19] ≥ 0)
(5) (x0[0] + [-1] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_397_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >=(x0[0], 0)), <=(0, +(x0[0], -1))), x0[0], x1[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[(-1)bso_19] ≥ 0)
(6) (x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧[1] + x0[0] ≥ 0 ⇒ (UIncreasing(COND_397_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >=(x0[0], 0)), <=(0, +(x0[0], -1))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[(-1)bso_19] ≥ 0)
(7) (x0[0] ≥ 0∧x1[0] ≥ 0∧[1] + x0[0] ≥ 0 ⇒ (UIncreasing(COND_397_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >=(x0[0], 0)), <=(0, +(x0[0], -1))), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[(-1)bso_19] ≥ 0)
(8) (&&(&&(>=(x1[0], x0[0]), >=(x0[0], 0)), <=(0, +(x0[0], -1)))=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1]∧+(x0[1], -1)=x0[0]1∧1=x1[0]1 ⇒ COND_397_0_MAIN_LE(TRUE, x0[1], x1[1])≥NonInfC∧COND_397_0_MAIN_LE(TRUE, x0[1], x1[1])≥397_0_MAIN_LE(+(x0[1], -1), 1)∧(UIncreasing(397_0_MAIN_LE(+(x0[1], -1), 1)), ≥))
(9) (<=(0, +(x0[0], -1))=TRUE∧>=(x1[0], x0[0])=TRUE∧>=(x0[0], 0)=TRUE ⇒ COND_397_0_MAIN_LE(TRUE, x0[0], x1[0])≥NonInfC∧COND_397_0_MAIN_LE(TRUE, x0[0], x1[0])≥397_0_MAIN_LE(+(x0[0], -1), 1)∧(UIncreasing(397_0_MAIN_LE(+(x0[1], -1), 1)), ≥))
(10) (x0[0] + [-1] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(397_0_MAIN_LE(+(x0[1], -1), 1)), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[0] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(11) (x0[0] + [-1] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(397_0_MAIN_LE(+(x0[1], -1), 1)), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[0] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(12) (x0[0] + [-1] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(397_0_MAIN_LE(+(x0[1], -1), 1)), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[0] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(13) (x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧[1] + x0[0] ≥ 0 ⇒ (UIncreasing(397_0_MAIN_LE(+(x0[1], -1), 1)), ≥)∧[(-1)Bound*bni_20] + [bni_20]x0[0] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(14) (x0[0] ≥ 0∧x1[0] ≥ 0∧[1] + x0[0] ≥ 0 ⇒ (UIncreasing(397_0_MAIN_LE(+(x0[1], -1), 1)), ≥)∧[(-1)Bound*bni_20] + [bni_20]x0[0] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(15) (&&(&&(>=(x1[0], x0[0]), >=(x0[0], 0)), <=(0, +(x0[0], -1)))=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1]∧+(x0[1], -1)=x0[2]∧1=x1[2] ⇒ COND_397_0_MAIN_LE(TRUE, x0[1], x1[1])≥NonInfC∧COND_397_0_MAIN_LE(TRUE, x0[1], x1[1])≥397_0_MAIN_LE(+(x0[1], -1), 1)∧(UIncreasing(397_0_MAIN_LE(+(x0[1], -1), 1)), ≥))
(16) (<=(0, +(x0[0], -1))=TRUE∧>=(x1[0], x0[0])=TRUE∧>=(x0[0], 0)=TRUE ⇒ COND_397_0_MAIN_LE(TRUE, x0[0], x1[0])≥NonInfC∧COND_397_0_MAIN_LE(TRUE, x0[0], x1[0])≥397_0_MAIN_LE(+(x0[0], -1), 1)∧(UIncreasing(397_0_MAIN_LE(+(x0[1], -1), 1)), ≥))
(17) (x0[0] + [-1] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(397_0_MAIN_LE(+(x0[1], -1), 1)), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[0] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(18) (x0[0] + [-1] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(397_0_MAIN_LE(+(x0[1], -1), 1)), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[0] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(19) (x0[0] + [-1] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(397_0_MAIN_LE(+(x0[1], -1), 1)), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[0] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(20) (x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧[1] + x0[0] ≥ 0 ⇒ (UIncreasing(397_0_MAIN_LE(+(x0[1], -1), 1)), ≥)∧[(-1)Bound*bni_20] + [bni_20]x0[0] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(21) (x0[0] ≥ 0∧x1[0] ≥ 0∧[1] + x0[0] ≥ 0 ⇒ (UIncreasing(397_0_MAIN_LE(+(x0[1], -1), 1)), ≥)∧[(-1)Bound*bni_20] + [bni_20]x0[0] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(22) (&&(>=(x1[2], 1), <(x1[2], x0[2]))=TRUE∧x0[2]=x0[3]∧x1[2]=x1[3] ⇒ 397_0_MAIN_LE(x0[2], x1[2])≥NonInfC∧397_0_MAIN_LE(x0[2], x1[2])≥COND_397_0_MAIN_LE1(&&(>=(x1[2], 1), <(x1[2], x0[2])), x0[2], x1[2])∧(UIncreasing(COND_397_0_MAIN_LE1(&&(>=(x1[2], 1), <(x1[2], x0[2])), x0[2], x1[2])), ≥))
(23) (>=(x1[2], 1)=TRUE∧<(x1[2], x0[2])=TRUE ⇒ 397_0_MAIN_LE(x0[2], x1[2])≥NonInfC∧397_0_MAIN_LE(x0[2], x1[2])≥COND_397_0_MAIN_LE1(&&(>=(x1[2], 1), <(x1[2], x0[2])), x0[2], x1[2])∧(UIncreasing(COND_397_0_MAIN_LE1(&&(>=(x1[2], 1), <(x1[2], x0[2])), x0[2], x1[2])), ≥))
(24) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_397_0_MAIN_LE1(&&(>=(x1[2], 1), <(x1[2], x0[2])), x0[2], x1[2])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x0[2] ≥ 0∧[(-1)bso_23] ≥ 0)
(25) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_397_0_MAIN_LE1(&&(>=(x1[2], 1), <(x1[2], x0[2])), x0[2], x1[2])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x0[2] ≥ 0∧[(-1)bso_23] ≥ 0)
(26) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_397_0_MAIN_LE1(&&(>=(x1[2], 1), <(x1[2], x0[2])), x0[2], x1[2])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x0[2] ≥ 0∧[(-1)bso_23] ≥ 0)
(27) (x1[2] ≥ 0∧x0[2] + [-2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_397_0_MAIN_LE1(&&(>=(x1[2], 1), <(x1[2], x0[2])), x0[2], x1[2])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x0[2] ≥ 0∧[(-1)bso_23] ≥ 0)
(28) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_397_0_MAIN_LE1(&&(>=(x1[2], 1), <(x1[2], x0[2])), x0[2], x1[2])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] + [bni_22]x0[2] ≥ 0∧[(-1)bso_23] ≥ 0)
(29) (&&(>=(x1[2], 1), <(x1[2], x0[2]))=TRUE∧x0[2]=x0[3]∧x1[2]=x1[3]∧x0[3]=x0[0]∧*(2, x1[3])=x1[0] ⇒ COND_397_0_MAIN_LE1(TRUE, x0[3], x1[3])≥NonInfC∧COND_397_0_MAIN_LE1(TRUE, x0[3], x1[3])≥397_0_MAIN_LE(x0[3], *(2, x1[3]))∧(UIncreasing(397_0_MAIN_LE(x0[3], *(2, x1[3]))), ≥))
(30) (>=(x1[2], 1)=TRUE∧<(x1[2], x0[2])=TRUE ⇒ COND_397_0_MAIN_LE1(TRUE, x0[2], x1[2])≥NonInfC∧COND_397_0_MAIN_LE1(TRUE, x0[2], x1[2])≥397_0_MAIN_LE(x0[2], *(2, x1[2]))∧(UIncreasing(397_0_MAIN_LE(x0[3], *(2, x1[3]))), ≥))
(31) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(397_0_MAIN_LE(x0[3], *(2, x1[3]))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(32) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(397_0_MAIN_LE(x0[3], *(2, x1[3]))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(33) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(397_0_MAIN_LE(x0[3], *(2, x1[3]))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(34) (x1[2] ≥ 0∧x0[2] + [-2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(397_0_MAIN_LE(x0[3], *(2, x1[3]))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(35) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(397_0_MAIN_LE(x0[3], *(2, x1[3]))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[2] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(36) (&&(>=(x1[2], 1), <(x1[2], x0[2]))=TRUE∧x0[2]=x0[3]∧x1[2]=x1[3]∧x0[3]=x0[2]1∧*(2, x1[3])=x1[2]1 ⇒ COND_397_0_MAIN_LE1(TRUE, x0[3], x1[3])≥NonInfC∧COND_397_0_MAIN_LE1(TRUE, x0[3], x1[3])≥397_0_MAIN_LE(x0[3], *(2, x1[3]))∧(UIncreasing(397_0_MAIN_LE(x0[3], *(2, x1[3]))), ≥))
(37) (>=(x1[2], 1)=TRUE∧<(x1[2], x0[2])=TRUE ⇒ COND_397_0_MAIN_LE1(TRUE, x0[2], x1[2])≥NonInfC∧COND_397_0_MAIN_LE1(TRUE, x0[2], x1[2])≥397_0_MAIN_LE(x0[2], *(2, x1[2]))∧(UIncreasing(397_0_MAIN_LE(x0[3], *(2, x1[3]))), ≥))
(38) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(397_0_MAIN_LE(x0[3], *(2, x1[3]))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(39) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(397_0_MAIN_LE(x0[3], *(2, x1[3]))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(40) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(397_0_MAIN_LE(x0[3], *(2, x1[3]))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(41) (x1[2] ≥ 0∧x0[2] + [-2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(397_0_MAIN_LE(x0[3], *(2, x1[3]))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(42) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(397_0_MAIN_LE(x0[3], *(2, x1[3]))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[2] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)
POL(TRUE) = [2]
POL(FALSE) = [1]
POL(397_0_MAIN_LE(x1, x2)) = [-1] + x1
POL(COND_397_0_MAIN_LE(x1, x2, x3)) = [-1] + x2
POL(&&(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(0) = 0
POL(<=(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(1) = [1]
POL(COND_397_0_MAIN_LE1(x1, x2, x3)) = [-1] + x2
POL(<(x1, x2)) = [-1]
POL(*(x1, x2)) = x1·x2
POL(2) = [2]
COND_397_0_MAIN_LE(TRUE, x0[1], x1[1]) → 397_0_MAIN_LE(+(x0[1], -1), 1)
397_0_MAIN_LE(x0[0], x1[0]) → COND_397_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >=(x0[0], 0)), <=(0, +(x0[0], -1))), x0[0], x1[0])
COND_397_0_MAIN_LE(TRUE, x0[1], x1[1]) → 397_0_MAIN_LE(+(x0[1], -1), 1)
397_0_MAIN_LE(x0[2], x1[2]) → COND_397_0_MAIN_LE1(&&(>=(x1[2], 1), <(x1[2], x0[2])), x0[2], x1[2])
COND_397_0_MAIN_LE1(TRUE, x0[3], x1[3]) → 397_0_MAIN_LE(x0[3], *(2, x1[3]))
397_0_MAIN_LE(x0[0], x1[0]) → COND_397_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >=(x0[0], 0)), <=(0, +(x0[0], -1))), x0[0], x1[0])
397_0_MAIN_LE(x0[2], x1[2]) → COND_397_0_MAIN_LE1(&&(>=(x1[2], 1), <(x1[2], x0[2])), x0[2], x1[2])
COND_397_0_MAIN_LE1(TRUE, x0[3], x1[3]) → 397_0_MAIN_LE(x0[3], *(2, x1[3]))
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(3) -> (0), if ((x0[3] →* x0[0])∧(2 * x1[3] →* x1[0]))
(3) -> (2), if ((x0[3] →* x0[2])∧(2 * x1[3] →* x1[2]))
(2) -> (3), if ((x1[2] >= 1 && x1[2] < x0[2] →* TRUE)∧(x0[2] →* x0[3])∧(x1[2] →* x1[3]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(3) -> (2), if ((x0[3] →* x0[2])∧(2 * x1[3] →* x1[2]))
(2) -> (3), if ((x1[2] >= 1 && x1[2] < x0[2] →* TRUE)∧(x0[2] →* x0[3])∧(x1[2] →* x1[3]))
(1) (&&(>=(x1[2], 1), <(x1[2], x0[2]))=TRUE∧x0[2]=x0[3]∧x1[2]=x1[3]∧x0[3]=x0[2]1∧*(2, x1[3])=x1[2]1 ⇒ COND_397_0_MAIN_LE1(TRUE, x0[3], x1[3])≥NonInfC∧COND_397_0_MAIN_LE1(TRUE, x0[3], x1[3])≥397_0_MAIN_LE(x0[3], *(2, x1[3]))∧(UIncreasing(397_0_MAIN_LE(x0[3], *(2, x1[3]))), ≥))
(2) (>=(x1[2], 1)=TRUE∧<(x1[2], x0[2])=TRUE ⇒ COND_397_0_MAIN_LE1(TRUE, x0[2], x1[2])≥NonInfC∧COND_397_0_MAIN_LE1(TRUE, x0[2], x1[2])≥397_0_MAIN_LE(x0[2], *(2, x1[2]))∧(UIncreasing(397_0_MAIN_LE(x0[3], *(2, x1[3]))), ≥))
(3) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(397_0_MAIN_LE(x0[3], *(2, x1[3]))), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x1[2] + [bni_13]x0[2] ≥ 0∧[(-1)bso_14] + x1[2] ≥ 0)
(4) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(397_0_MAIN_LE(x0[3], *(2, x1[3]))), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x1[2] + [bni_13]x0[2] ≥ 0∧[(-1)bso_14] + x1[2] ≥ 0)
(5) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(397_0_MAIN_LE(x0[3], *(2, x1[3]))), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x1[2] + [bni_13]x0[2] ≥ 0∧[(-1)bso_14] + x1[2] ≥ 0)
(6) (x1[2] ≥ 0∧x0[2] + [-2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(397_0_MAIN_LE(x0[3], *(2, x1[3]))), ≥)∧[(-2)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x1[2] + [bni_13]x0[2] ≥ 0∧[1 + (-1)bso_14] + x1[2] ≥ 0)
(7) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(397_0_MAIN_LE(x0[3], *(2, x1[3]))), ≥)∧[(-1)Bound*bni_13] + [bni_13]x0[2] ≥ 0∧[1 + (-1)bso_14] + x1[2] ≥ 0)
(8) (&&(>=(x1[2], 1), <(x1[2], x0[2]))=TRUE∧x0[2]=x0[3]∧x1[2]=x1[3] ⇒ 397_0_MAIN_LE(x0[2], x1[2])≥NonInfC∧397_0_MAIN_LE(x0[2], x1[2])≥COND_397_0_MAIN_LE1(&&(>=(x1[2], 1), <(x1[2], x0[2])), x0[2], x1[2])∧(UIncreasing(COND_397_0_MAIN_LE1(&&(>=(x1[2], 1), <(x1[2], x0[2])), x0[2], x1[2])), ≥))
(9) (>=(x1[2], 1)=TRUE∧<(x1[2], x0[2])=TRUE ⇒ 397_0_MAIN_LE(x0[2], x1[2])≥NonInfC∧397_0_MAIN_LE(x0[2], x1[2])≥COND_397_0_MAIN_LE1(&&(>=(x1[2], 1), <(x1[2], x0[2])), x0[2], x1[2])∧(UIncreasing(COND_397_0_MAIN_LE1(&&(>=(x1[2], 1), <(x1[2], x0[2])), x0[2], x1[2])), ≥))
(10) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_397_0_MAIN_LE1(&&(>=(x1[2], 1), <(x1[2], x0[2])), x0[2], x1[2])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]x1[2] + [bni_15]x0[2] ≥ 0∧[(-1)bso_16] ≥ 0)
(11) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_397_0_MAIN_LE1(&&(>=(x1[2], 1), <(x1[2], x0[2])), x0[2], x1[2])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]x1[2] + [bni_15]x0[2] ≥ 0∧[(-1)bso_16] ≥ 0)
(12) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_397_0_MAIN_LE1(&&(>=(x1[2], 1), <(x1[2], x0[2])), x0[2], x1[2])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]x1[2] + [bni_15]x0[2] ≥ 0∧[(-1)bso_16] ≥ 0)
(13) (x1[2] ≥ 0∧x0[2] + [-2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_397_0_MAIN_LE1(&&(>=(x1[2], 1), <(x1[2], x0[2])), x0[2], x1[2])), ≥)∧[(-2)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]x1[2] + [bni_15]x0[2] ≥ 0∧[(-1)bso_16] ≥ 0)
(14) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_397_0_MAIN_LE1(&&(>=(x1[2], 1), <(x1[2], x0[2])), x0[2], x1[2])), ≥)∧[(-1)Bound*bni_15] + [bni_15]x0[2] ≥ 0∧[(-1)bso_16] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = [2]
POL(COND_397_0_MAIN_LE1(x1, x2, x3)) = [-1] + [-1]x3 + x2
POL(397_0_MAIN_LE(x1, x2)) = [-1] + [-1]x2 + x1
POL(*(x1, x2)) = x1·x2
POL(2) = [2]
POL(&&(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(1) = [1]
POL(<(x1, x2)) = [-1]
COND_397_0_MAIN_LE1(TRUE, x0[3], x1[3]) → 397_0_MAIN_LE(x0[3], *(2, x1[3]))
COND_397_0_MAIN_LE1(TRUE, x0[3], x1[3]) → 397_0_MAIN_LE(x0[3], *(2, x1[3]))
397_0_MAIN_LE(x0[2], x1[2]) → COND_397_0_MAIN_LE1(&&(>=(x1[2], 1), <(x1[2], x0[2])), x0[2], x1[2])
397_0_MAIN_LE(x0[2], x1[2]) → COND_397_0_MAIN_LE1(&&(>=(x1[2], 1), <(x1[2], x0[2])), x0[2], x1[2])
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer