0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 AND
↳7 IDP
↳8 IDependencyGraphProof (⇔)
↳9 TRUE
↳10 IDP
↳11 IDependencyGraphProof (⇔)
↳12 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaB5 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
while (x > 0 && (x % 2) == 0) {
x--;
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 11 rules for P and 5 rules for R.
Combined rules. Obtained 1 rules for P and 1 rules for R.
Filtered ground terms:
118_0_main_LE(x1, x2, x3) → 118_0_main_LE(x2, x3)
Cond_118_0_main_LE(x1, x2, x3, x4) → Cond_118_0_main_LE(x1, x3, x4)
135_0_main_Return(x1) → 135_0_main_Return
Filtered duplicate args:
118_0_main_LE(x1, x2) → 118_0_main_LE(x2)
Cond_118_0_main_LE(x1, x2, x3) → Cond_118_0_main_LE(x1, x3)
Combined rules. Obtained 1 rules for P and 1 rules for R.
Finished conversion. Obtained 1 rules for P and 1 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((x0[0] > 0 && 0 = x0[0] % 2 →* TRUE)∧(x0[0] →* x0[1]))
(1) -> (0), if ((x0[1] + -1 →* x0[0]))
(1) (&&(>(x0[0], 0), =(0, %(x0[0], 2)))=TRUE∧x0[0]=x0[1] ⇒ 118_0_MAIN_LE(x0[0])≥NonInfC∧118_0_MAIN_LE(x0[0])≥COND_118_0_MAIN_LE(&&(>(x0[0], 0), =(0, %(x0[0], 2))), x0[0])∧(UIncreasing(COND_118_0_MAIN_LE(&&(>(x0[0], 0), =(0, %(x0[0], 2))), x0[0])), ≥))
(2) (>(x0[0], 0)=TRUE∧>=(0, %(x0[0], 2))=TRUE∧<=(0, %(x0[0], 2))=TRUE ⇒ 118_0_MAIN_LE(x0[0])≥NonInfC∧118_0_MAIN_LE(x0[0])≥COND_118_0_MAIN_LE(&&(>(x0[0], 0), =(0, %(x0[0], 2))), x0[0])∧(UIncreasing(COND_118_0_MAIN_LE(&&(>(x0[0], 0), =(0, %(x0[0], 2))), x0[0])), ≥))
(3) (x0[0] + [-1] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0 ⇒ (UIncreasing(COND_118_0_MAIN_LE(&&(>(x0[0], 0), =(0, %(x0[0], 2))), x0[0])), ≥)∧[(-1)Bound*bni_12] + [(2)bni_12]x0[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(4) (x0[0] + [-1] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0 ⇒ (UIncreasing(COND_118_0_MAIN_LE(&&(>(x0[0], 0), =(0, %(x0[0], 2))), x0[0])), ≥)∧[(-1)Bound*bni_12] + [(2)bni_12]x0[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(5) (x0[0] + [-1] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_118_0_MAIN_LE(&&(>(x0[0], 0), =(0, %(x0[0], 2))), x0[0])), ≥)∧[(-1)Bound*bni_12] + [(2)bni_12]x0[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(6) (x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_118_0_MAIN_LE(&&(>(x0[0], 0), =(0, %(x0[0], 2))), x0[0])), ≥)∧[(-1)Bound*bni_12 + (2)bni_12] + [(2)bni_12]x0[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(7) (x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_118_0_MAIN_LE(&&(>(x0[0], 0), =(0, %(x0[0], 2))), x0[0])), ≥)∧[(-1)Bound*bni_12 + (2)bni_12] + [(2)bni_12]x0[0] ≥ 0∧[(-1)bso_13] ≥ 0)
(8) (COND_118_0_MAIN_LE(TRUE, x0[1])≥NonInfC∧COND_118_0_MAIN_LE(TRUE, x0[1])≥118_0_MAIN_LE(+(x0[1], -1))∧(UIncreasing(118_0_MAIN_LE(+(x0[1], -1))), ≥))
(9) ((UIncreasing(118_0_MAIN_LE(+(x0[1], -1))), ≥)∧[2 + (-1)bso_15] ≥ 0)
(10) ((UIncreasing(118_0_MAIN_LE(+(x0[1], -1))), ≥)∧[2 + (-1)bso_15] ≥ 0)
(11) ((UIncreasing(118_0_MAIN_LE(+(x0[1], -1))), ≥)∧[2 + (-1)bso_15] ≥ 0)
(12) ((UIncreasing(118_0_MAIN_LE(+(x0[1], -1))), ≥)∧0 = 0∧[2 + (-1)bso_15] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(118_0_main_LE(x1)) = [-1]
POL(0) = 0
POL(135_0_main_Return) = [-1]
POL(118_0_MAIN_LE(x1)) = [2]x1
POL(COND_118_0_MAIN_LE(x1, x2)) = [2]x2
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(=(x1, x2)) = [-1]
POL(2) = [2]
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
Polynomial Interpretations with Context Sensitive Arithemetic Replacement
POL(TermCSAR-Mode @ Context)
POL(%(x1, 2)-1 @ {}) = min{x2, [-1]x2}
POL(%(x1, 2)1 @ {}) = max{x2, [-1]x2}
COND_118_0_MAIN_LE(TRUE, x0[1]) → 118_0_MAIN_LE(+(x0[1], -1))
118_0_MAIN_LE(x0[0]) → COND_118_0_MAIN_LE(&&(>(x0[0], 0), =(0, %(x0[0], 2))), x0[0])
118_0_MAIN_LE(x0[0]) → COND_118_0_MAIN_LE(&&(>(x0[0], 0), =(0, %(x0[0], 2))), x0[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer