(0) Obligation:

JBC Problem based on JBC Program:
No human-readable program information known.

Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: PastaB4

(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
Graph of 166 nodes with 1 SCC.

(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph to ITRS rules

(4) Obligation:

ITRS problem:

The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean

The TRS R consists of the following rules:
Load432(i12, i30) → Cond_Load432(i30 >= 0 && i12 > i30, i12, i30)
Cond_Load432(TRUE, i12, i30) → Load432(i30, i12)
The set Q consists of the following terms:
Load432(x0, x1)
Cond_Load432(TRUE, x0, x1)

(5) ITRStoIDPProof (EQUIVALENT transformation)

Added dependency pairs

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


The ITRS R consists of the following rules:
Load432(i12, i30) → Cond_Load432(i30 >= 0 && i12 > i30, i12, i30)
Cond_Load432(TRUE, i12, i30) → Load432(i30, i12)

The integer pair graph contains the following rules and edges:
(0): LOAD432(i12[0], i30[0]) → COND_LOAD432(i30[0] >= 0 && i12[0] > i30[0], i12[0], i30[0])
(1): COND_LOAD432(TRUE, i12[1], i30[1]) → LOAD432(i30[1], i12[1])

(0) -> (1), if ((i30[0] >= 0 && i12[0] > i30[0]* TRUE)∧(i12[0]* i12[1])∧(i30[0]* i30[1]))


(1) -> (0), if ((i12[1]* i30[0])∧(i30[1]* i12[0]))



The set Q consists of the following terms:
Load432(x0, x1)
Cond_Load432(TRUE, x0, x1)

(7) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(8) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): LOAD432(i12[0], i30[0]) → COND_LOAD432(i30[0] >= 0 && i12[0] > i30[0], i12[0], i30[0])
(1): COND_LOAD432(TRUE, i12[1], i30[1]) → LOAD432(i30[1], i12[1])

(0) -> (1), if ((i30[0] >= 0 && i12[0] > i30[0]* TRUE)∧(i12[0]* i12[1])∧(i30[0]* i30[1]))


(1) -> (0), if ((i12[1]* i30[0])∧(i30[1]* i12[0]))



The set Q consists of the following terms:
Load432(x0, x1)
Cond_Load432(TRUE, x0, x1)

(9) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair LOAD432(i12, i30) → COND_LOAD432(&&(>=(i30, 0), >(i12, i30)), i12, i30) the following chains were created:
  • We consider the chain COND_LOAD432(TRUE, i12[1], i30[1]) → LOAD432(i30[1], i12[1]), LOAD432(i12[0], i30[0]) → COND_LOAD432(&&(>=(i30[0], 0), >(i12[0], i30[0])), i12[0], i30[0]), COND_LOAD432(TRUE, i12[1], i30[1]) → LOAD432(i30[1], i12[1]) which results in the following constraint:

    (1)    (i12[1]=i30[0]i30[1]=i12[0]&&(>=(i30[0], 0), >(i12[0], i30[0]))=TRUEi12[0]=i12[1]1i30[0]=i30[1]1LOAD432(i12[0], i30[0])≥NonInfC∧LOAD432(i12[0], i30[0])≥COND_LOAD432(&&(>=(i30[0], 0), >(i12[0], i30[0])), i12[0], i30[0])∧(UIncreasing(COND_LOAD432(&&(>=(i30[0], 0), >(i12[0], i30[0])), i12[0], i30[0])), ≥))



    We simplified constraint (1) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>=(i30[0], 0)=TRUE>(i12[0], i30[0])=TRUELOAD432(i12[0], i30[0])≥NonInfC∧LOAD432(i12[0], i30[0])≥COND_LOAD432(&&(>=(i30[0], 0), >(i12[0], i30[0])), i12[0], i30[0])∧(UIncreasing(COND_LOAD432(&&(>=(i30[0], 0), >(i12[0], i30[0])), i12[0], i30[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (i30[0] ≥ 0∧i12[0] + [-1] + [-1]i30[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD432(&&(>=(i30[0], 0), >(i12[0], i30[0])), i12[0], i30[0])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]i30[0] + [bni_13]i12[0] ≥ 0∧[(-1)bso_14] + [-2]i30[0] + [2]i12[0] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (i30[0] ≥ 0∧i12[0] + [-1] + [-1]i30[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD432(&&(>=(i30[0], 0), >(i12[0], i30[0])), i12[0], i30[0])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]i30[0] + [bni_13]i12[0] ≥ 0∧[(-1)bso_14] + [-2]i30[0] + [2]i12[0] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (i30[0] ≥ 0∧i12[0] + [-1] + [-1]i30[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD432(&&(>=(i30[0], 0), >(i12[0], i30[0])), i12[0], i30[0])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]i30[0] + [bni_13]i12[0] ≥ 0∧[(-1)bso_14] + [-2]i30[0] + [2]i12[0] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (i30[0] ≥ 0∧i12[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD432(&&(>=(i30[0], 0), >(i12[0], i30[0])), i12[0], i30[0])), ≥)∧[(-1)Bound*bni_13] + [bni_13]i12[0] ≥ 0∧[2 + (-1)bso_14] + [2]i12[0] ≥ 0)







For Pair COND_LOAD432(TRUE, i12, i30) → LOAD432(i30, i12) the following chains were created:
  • We consider the chain LOAD432(i12[0], i30[0]) → COND_LOAD432(&&(>=(i30[0], 0), >(i12[0], i30[0])), i12[0], i30[0]), COND_LOAD432(TRUE, i12[1], i30[1]) → LOAD432(i30[1], i12[1]), LOAD432(i12[0], i30[0]) → COND_LOAD432(&&(>=(i30[0], 0), >(i12[0], i30[0])), i12[0], i30[0]) which results in the following constraint:

    (7)    (&&(>=(i30[0], 0), >(i12[0], i30[0]))=TRUEi12[0]=i12[1]i30[0]=i30[1]i12[1]=i30[0]1i30[1]=i12[0]1COND_LOAD432(TRUE, i12[1], i30[1])≥NonInfC∧COND_LOAD432(TRUE, i12[1], i30[1])≥LOAD432(i30[1], i12[1])∧(UIncreasing(LOAD432(i30[1], i12[1])), ≥))



    We simplified constraint (7) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (8)    (>=(i30[0], 0)=TRUE>(i12[0], i30[0])=TRUECOND_LOAD432(TRUE, i12[0], i30[0])≥NonInfC∧COND_LOAD432(TRUE, i12[0], i30[0])≥LOAD432(i30[0], i12[0])∧(UIncreasing(LOAD432(i30[1], i12[1])), ≥))



    We simplified constraint (8) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (9)    (i30[0] ≥ 0∧i12[0] + [-1] + [-1]i30[0] ≥ 0 ⇒ (UIncreasing(LOAD432(i30[1], i12[1])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]i30[0] + [(-1)bni_15]i12[0] ≥ 0∧[(-1)bso_16] ≥ 0)



    We simplified constraint (9) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (10)    (i30[0] ≥ 0∧i12[0] + [-1] + [-1]i30[0] ≥ 0 ⇒ (UIncreasing(LOAD432(i30[1], i12[1])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]i30[0] + [(-1)bni_15]i12[0] ≥ 0∧[(-1)bso_16] ≥ 0)



    We simplified constraint (10) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (11)    (i30[0] ≥ 0∧i12[0] + [-1] + [-1]i30[0] ≥ 0 ⇒ (UIncreasing(LOAD432(i30[1], i12[1])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]i30[0] + [(-1)bni_15]i12[0] ≥ 0∧[(-1)bso_16] ≥ 0)



    We simplified constraint (11) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (12)    (i30[0] ≥ 0∧i12[0] ≥ 0 ⇒ (UIncreasing(LOAD432(i30[1], i12[1])), ≥)∧[(-2)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]i12[0] ≥ 0∧[(-1)bso_16] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • LOAD432(i12, i30) → COND_LOAD432(&&(>=(i30, 0), >(i12, i30)), i12, i30)
    • (i30[0] ≥ 0∧i12[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD432(&&(>=(i30[0], 0), >(i12[0], i30[0])), i12[0], i30[0])), ≥)∧[(-1)Bound*bni_13] + [bni_13]i12[0] ≥ 0∧[2 + (-1)bso_14] + [2]i12[0] ≥ 0)

  • COND_LOAD432(TRUE, i12, i30) → LOAD432(i30, i12)
    • (i30[0] ≥ 0∧i12[0] ≥ 0 ⇒ (UIncreasing(LOAD432(i30[1], i12[1])), ≥)∧[(-2)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]i12[0] ≥ 0∧[(-1)bso_16] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(LOAD432(x1, x2)) = [-1] + [-1]x2 + x1   
POL(COND_LOAD432(x1, x2, x3)) = [-1] + x3 + [-1]x2 + x1   
POL(&&(x1, x2)) = 0   
POL(>=(x1, x2)) = [-1]   
POL(0) = 0   
POL(>(x1, x2)) = [-1]   

The following pairs are in P>:

LOAD432(i12[0], i30[0]) → COND_LOAD432(&&(>=(i30[0], 0), >(i12[0], i30[0])), i12[0], i30[0])

The following pairs are in Pbound:

LOAD432(i12[0], i30[0]) → COND_LOAD432(&&(>=(i30[0], 0), >(i12[0], i30[0])), i12[0], i30[0])

The following pairs are in P:

COND_LOAD432(TRUE, i12[1], i30[1]) → LOAD432(i30[1], i12[1])

At least the following rules have been oriented under context sensitive arithmetic replacement:

&&(TRUE, TRUE)1TRUE1
&&(TRUE, FALSE)1FALSE1
&&(FALSE, TRUE)1FALSE1
&&(FALSE, FALSE)1FALSE1

(10) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:
none


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_LOAD432(TRUE, i12[1], i30[1]) → LOAD432(i30[1], i12[1])


The set Q consists of the following terms:
Load432(x0, x1)
Cond_Load432(TRUE, x0, x1)

(11) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(12) TRUE