0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 IDP
↳7 IDependencyGraphProof (⇔)
↳8 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaB15 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
int z = Random.random();
while (x == y && x > z) {
while (y > z) {
x--;
y--;
}
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 20 rules for P and 5 rules for R.
Combined rules. Obtained 2 rules for P and 0 rules for R.
Filtered ground terms:
1305_0_main_LE(x1, x2, x3, x4, x5, x6) → 1305_0_main_LE(x2, x3, x4, x5, x6)
Cond_1305_0_main_LE(x1, x2, x3, x4, x5, x6, x7) → Cond_1305_0_main_LE(x1, x3, x4, x5, x6, x7)
Filtered duplicate args:
1305_0_main_LE(x1, x2, x3, x4, x5) → 1305_0_main_LE(x1, x4, x5)
Cond_1305_0_main_LE(x1, x2, x3, x4, x5, x6) → Cond_1305_0_main_LE(x1, x2, x5, x6)
Filtered unneeded arguments:
1305_0_main_LE(x1, x2, x3) → 1305_0_main_LE(x2, x3)
Cond_1305_0_main_LE(x1, x2, x3, x4) → Cond_1305_0_main_LE(x1, x3, x4)
Combined rules. Obtained 1 rules for P and 0 rules for R.
Finished conversion. Obtained 1 rules for P and 0 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if ((x2[0] < x1[0] →* TRUE)∧(x1[0] →* x1[1])∧(x2[0] →* x2[1]))
(1) -> (0), if ((x1[1] + -1 →* x1[0])∧(x2[1] →* x2[0]))
(1) (<(x2[0], x1[0])=TRUE∧x1[0]=x1[1]∧x2[0]=x2[1] ⇒ 1305_0_MAIN_LE(x1[0], x2[0])≥NonInfC∧1305_0_MAIN_LE(x1[0], x2[0])≥COND_1305_0_MAIN_LE(<(x2[0], x1[0]), x1[0], x2[0])∧(UIncreasing(COND_1305_0_MAIN_LE(<(x2[0], x1[0]), x1[0], x2[0])), ≥))
(2) (<(x2[0], x1[0])=TRUE ⇒ 1305_0_MAIN_LE(x1[0], x2[0])≥NonInfC∧1305_0_MAIN_LE(x1[0], x2[0])≥COND_1305_0_MAIN_LE(<(x2[0], x1[0]), x1[0], x2[0])∧(UIncreasing(COND_1305_0_MAIN_LE(<(x2[0], x1[0]), x1[0], x2[0])), ≥))
(3) (x1[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1305_0_MAIN_LE(<(x2[0], x1[0]), x1[0], x2[0])), ≥)∧[bni_8 + (-1)Bound*bni_8] + [(-1)bni_8]x2[0] + [bni_8]x1[0] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(4) (x1[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1305_0_MAIN_LE(<(x2[0], x1[0]), x1[0], x2[0])), ≥)∧[bni_8 + (-1)Bound*bni_8] + [(-1)bni_8]x2[0] + [bni_8]x1[0] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(5) (x1[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_1305_0_MAIN_LE(<(x2[0], x1[0]), x1[0], x2[0])), ≥)∧[bni_8 + (-1)Bound*bni_8] + [(-1)bni_8]x2[0] + [bni_8]x1[0] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(6) (x1[0] ≥ 0 ⇒ (UIncreasing(COND_1305_0_MAIN_LE(<(x2[0], x1[0]), x1[0], x2[0])), ≥)∧[(2)bni_8 + (-1)Bound*bni_8] + [bni_8]x1[0] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(7) (x1[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(COND_1305_0_MAIN_LE(<(x2[0], x1[0]), x1[0], x2[0])), ≥)∧[(2)bni_8 + (-1)Bound*bni_8] + [bni_8]x1[0] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(8) (x1[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(COND_1305_0_MAIN_LE(<(x2[0], x1[0]), x1[0], x2[0])), ≥)∧[(2)bni_8 + (-1)Bound*bni_8] + [bni_8]x1[0] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(9) (COND_1305_0_MAIN_LE(TRUE, x1[1], x2[1])≥NonInfC∧COND_1305_0_MAIN_LE(TRUE, x1[1], x2[1])≥1305_0_MAIN_LE(+(x1[1], -1), x2[1])∧(UIncreasing(1305_0_MAIN_LE(+(x1[1], -1), x2[1])), ≥))
(10) ((UIncreasing(1305_0_MAIN_LE(+(x1[1], -1), x2[1])), ≥)∧[(-1)bso_11] ≥ 0)
(11) ((UIncreasing(1305_0_MAIN_LE(+(x1[1], -1), x2[1])), ≥)∧[(-1)bso_11] ≥ 0)
(12) ((UIncreasing(1305_0_MAIN_LE(+(x1[1], -1), x2[1])), ≥)∧[(-1)bso_11] ≥ 0)
(13) ((UIncreasing(1305_0_MAIN_LE(+(x1[1], -1), x2[1])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_11] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(1305_0_MAIN_LE(x1, x2)) = [1] + [-1]x2 + x1
POL(COND_1305_0_MAIN_LE(x1, x2, x3)) = [-1]x3 + x2
POL(<(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
1305_0_MAIN_LE(x1[0], x2[0]) → COND_1305_0_MAIN_LE(<(x2[0], x1[0]), x1[0], x2[0])
1305_0_MAIN_LE(x1[0], x2[0]) → COND_1305_0_MAIN_LE(<(x2[0], x1[0]), x1[0], x2[0])
COND_1305_0_MAIN_LE(TRUE, x1[1], x2[1]) → 1305_0_MAIN_LE(+(x1[1], -1), x2[1])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer