0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 AND
↳7 IDP
↳8 IDependencyGraphProof (⇔)
↳9 TRUE
↳10 IDP
↳11 IDependencyGraphProof (⇔)
↳12 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaB11 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
while (x + y > 0) {
if (x > y) {
x--;
} else if (x == y) {
x--;
} else {
y--;
}
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 26 rules for P and 2 rules for R.
Combined rules. Obtained 3 rules for P and 0 rules for R.
Filtered ground terms:
1063_0_main_Load(x1, x2, x3, x4) → 1063_0_main_Load(x2, x3, x4)
Cond_1063_0_main_Load2(x1, x2, x3, x4, x5) → Cond_1063_0_main_Load2(x1, x3, x4, x5)
Cond_1063_0_main_Load1(x1, x2, x3, x4, x5) → Cond_1063_0_main_Load1(x1, x3, x4, x5)
Cond_1063_0_main_Load(x1, x2, x3, x4, x5) → Cond_1063_0_main_Load(x1, x3, x4, x5)
Filtered duplicate args:
1063_0_main_Load(x1, x2, x3) → 1063_0_main_Load(x2, x3)
Cond_1063_0_main_Load2(x1, x2, x3, x4) → Cond_1063_0_main_Load2(x1, x3, x4)
Cond_1063_0_main_Load1(x1, x2, x3, x4) → Cond_1063_0_main_Load1(x1, x4)
Cond_1063_0_main_Load(x1, x2, x3, x4) → Cond_1063_0_main_Load(x1, x3, x4)
Combined rules. Obtained 3 rules for P and 0 rules for R.
Finished conversion. Obtained 3 rules for P and 0 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((x1[0] > x0[0] && 0 < x0[0] + x1[0] →* TRUE)∧(x1[0] →* x1[1])∧(x0[0] →* x0[1]))
(1) -> (0), if ((x1[1] + -1 →* x1[0])∧(x0[1] →* x0[0]))
(1) -> (2), if ((x1[1] + -1 →* x0[2])∧(x0[1] →* x0[2]))
(1) -> (4), if ((x1[1] + -1 →* x1[4])∧(x0[1] →* x0[4]))
(2) -> (3), if ((0 < x0[2] + x0[2] →* TRUE)∧(x0[2] →* x0[3]))
(3) -> (0), if ((x0[3] →* x1[0])∧(x0[3] + -1 →* x0[0]))
(3) -> (2), if ((x0[3] →* x0[2])∧(x0[3] + -1 →* x0[2]))
(3) -> (4), if ((x0[3] →* x1[4])∧(x0[3] + -1 →* x0[4]))
(4) -> (5), if ((x1[4] < x0[4] && 0 < x0[4] + x1[4] →* TRUE)∧(x1[4] →* x1[5])∧(x0[4] →* x0[5]))
(5) -> (0), if ((x1[5] →* x1[0])∧(x0[5] + -1 →* x0[0]))
(5) -> (2), if ((x1[5] →* x0[2])∧(x0[5] + -1 →* x0[2]))
(5) -> (4), if ((x1[5] →* x1[4])∧(x0[5] + -1 →* x0[4]))
(1) (&&(>(x1[0], x0[0]), <(0, +(x0[0], x1[0])))=TRUE∧x1[0]=x1[1]∧x0[0]=x0[1] ⇒ 1063_0_MAIN_LOAD(x1[0], x0[0])≥NonInfC∧1063_0_MAIN_LOAD(x1[0], x0[0])≥COND_1063_0_MAIN_LOAD(&&(>(x1[0], x0[0]), <(0, +(x0[0], x1[0]))), x1[0], x0[0])∧(UIncreasing(COND_1063_0_MAIN_LOAD(&&(>(x1[0], x0[0]), <(0, +(x0[0], x1[0]))), x1[0], x0[0])), ≥))
(2) (>(x1[0], x0[0])=TRUE∧<(0, +(x0[0], x1[0]))=TRUE ⇒ 1063_0_MAIN_LOAD(x1[0], x0[0])≥NonInfC∧1063_0_MAIN_LOAD(x1[0], x0[0])≥COND_1063_0_MAIN_LOAD(&&(>(x1[0], x0[0]), <(0, +(x0[0], x1[0]))), x1[0], x0[0])∧(UIncreasing(COND_1063_0_MAIN_LOAD(&&(>(x1[0], x0[0]), <(0, +(x0[0], x1[0]))), x1[0], x0[0])), ≥))
(3) (x1[0] + [-1] + [-1]x0[0] ≥ 0∧x0[0] + [-1] + x1[0] ≥ 0 ⇒ (UIncreasing(COND_1063_0_MAIN_LOAD(&&(>(x1[0], x0[0]), <(0, +(x0[0], x1[0]))), x1[0], x0[0])), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [(2)bni_14]x0[0] + [(2)bni_14]x1[0] ≥ 0∧[(-1)bso_15] ≥ 0)
(4) (x1[0] + [-1] + [-1]x0[0] ≥ 0∧x0[0] + [-1] + x1[0] ≥ 0 ⇒ (UIncreasing(COND_1063_0_MAIN_LOAD(&&(>(x1[0], x0[0]), <(0, +(x0[0], x1[0]))), x1[0], x0[0])), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [(2)bni_14]x0[0] + [(2)bni_14]x1[0] ≥ 0∧[(-1)bso_15] ≥ 0)
(5) (x1[0] + [-1] + [-1]x0[0] ≥ 0∧x0[0] + [-1] + x1[0] ≥ 0 ⇒ (UIncreasing(COND_1063_0_MAIN_LOAD(&&(>(x1[0], x0[0]), <(0, +(x0[0], x1[0]))), x1[0], x0[0])), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [(2)bni_14]x0[0] + [(2)bni_14]x1[0] ≥ 0∧[(-1)bso_15] ≥ 0)
(6) (x1[0] ≥ 0∧[2]x0[0] + x1[0] ≥ 0 ⇒ (UIncreasing(COND_1063_0_MAIN_LOAD(&&(>(x1[0], x0[0]), <(0, +(x0[0], x1[0]))), x1[0], x0[0])), ≥)∧[bni_14 + (-1)Bound*bni_14] + [(4)bni_14]x0[0] + [(2)bni_14]x1[0] ≥ 0∧[(-1)bso_15] ≥ 0)
(7) (x1[0] ≥ 0∧[2]x0[0] + x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1063_0_MAIN_LOAD(&&(>(x1[0], x0[0]), <(0, +(x0[0], x1[0]))), x1[0], x0[0])), ≥)∧[bni_14 + (-1)Bound*bni_14] + [(4)bni_14]x0[0] + [(2)bni_14]x1[0] ≥ 0∧[(-1)bso_15] ≥ 0)
(8) (x1[0] ≥ 0∧[-2]x0[0] + x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1063_0_MAIN_LOAD(&&(>(x1[0], x0[0]), <(0, +(x0[0], x1[0]))), x1[0], x0[0])), ≥)∧[bni_14 + (-1)Bound*bni_14] + [(-4)bni_14]x0[0] + [(2)bni_14]x1[0] ≥ 0∧[(-1)bso_15] ≥ 0)
(9) ([2]x0[0] + x1[0] ≥ 0∧x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1063_0_MAIN_LOAD(&&(>(x1[0], x0[0]), <(0, +(x0[0], x1[0]))), x1[0], x0[0])), ≥)∧[bni_14 + (-1)Bound*bni_14] + [(2)bni_14]x1[0] ≥ 0∧[(-1)bso_15] ≥ 0)
(10) (COND_1063_0_MAIN_LOAD(TRUE, x1[1], x0[1])≥NonInfC∧COND_1063_0_MAIN_LOAD(TRUE, x1[1], x0[1])≥1063_0_MAIN_LOAD(+(x1[1], -1), x0[1])∧(UIncreasing(1063_0_MAIN_LOAD(+(x1[1], -1), x0[1])), ≥))
(11) ((UIncreasing(1063_0_MAIN_LOAD(+(x1[1], -1), x0[1])), ≥)∧[2 + (-1)bso_17] ≥ 0)
(12) ((UIncreasing(1063_0_MAIN_LOAD(+(x1[1], -1), x0[1])), ≥)∧[2 + (-1)bso_17] ≥ 0)
(13) ((UIncreasing(1063_0_MAIN_LOAD(+(x1[1], -1), x0[1])), ≥)∧[2 + (-1)bso_17] ≥ 0)
(14) ((UIncreasing(1063_0_MAIN_LOAD(+(x1[1], -1), x0[1])), ≥)∧0 = 0∧0 = 0∧[2 + (-1)bso_17] ≥ 0)
(15) (<(0, +(x0[2], x0[2]))=TRUE∧x0[2]=x0[3] ⇒ 1063_0_MAIN_LOAD(x0[2], x0[2])≥NonInfC∧1063_0_MAIN_LOAD(x0[2], x0[2])≥COND_1063_0_MAIN_LOAD1(<(0, +(x0[2], x0[2])), x0[2], x0[2])∧(UIncreasing(COND_1063_0_MAIN_LOAD1(<(0, +(x0[2], x0[2])), x0[2], x0[2])), ≥))
(16) (<(0, +(x0[2], x0[2]))=TRUE ⇒ 1063_0_MAIN_LOAD(x0[2], x0[2])≥NonInfC∧1063_0_MAIN_LOAD(x0[2], x0[2])≥COND_1063_0_MAIN_LOAD1(<(0, +(x0[2], x0[2])), x0[2], x0[2])∧(UIncreasing(COND_1063_0_MAIN_LOAD1(<(0, +(x0[2], x0[2])), x0[2], x0[2])), ≥))
(17) ([2]x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1063_0_MAIN_LOAD1(<(0, +(x0[2], x0[2])), x0[2], x0[2])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [(4)bni_18]x0[2] ≥ 0∧[(-1)bso_19] ≥ 0)
(18) ([2]x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1063_0_MAIN_LOAD1(<(0, +(x0[2], x0[2])), x0[2], x0[2])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [(4)bni_18]x0[2] ≥ 0∧[(-1)bso_19] ≥ 0)
(19) ([2]x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1063_0_MAIN_LOAD1(<(0, +(x0[2], x0[2])), x0[2], x0[2])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [(4)bni_18]x0[2] ≥ 0∧[(-1)bso_19] ≥ 0)
(20) (COND_1063_0_MAIN_LOAD1(TRUE, x0[3], x0[3])≥NonInfC∧COND_1063_0_MAIN_LOAD1(TRUE, x0[3], x0[3])≥1063_0_MAIN_LOAD(x0[3], +(x0[3], -1))∧(UIncreasing(1063_0_MAIN_LOAD(x0[3], +(x0[3], -1))), ≥))
(21) ((UIncreasing(1063_0_MAIN_LOAD(x0[3], +(x0[3], -1))), ≥)∧[2 + (-1)bso_21] ≥ 0)
(22) ((UIncreasing(1063_0_MAIN_LOAD(x0[3], +(x0[3], -1))), ≥)∧[2 + (-1)bso_21] ≥ 0)
(23) ((UIncreasing(1063_0_MAIN_LOAD(x0[3], +(x0[3], -1))), ≥)∧[2 + (-1)bso_21] ≥ 0)
(24) ((UIncreasing(1063_0_MAIN_LOAD(x0[3], +(x0[3], -1))), ≥)∧0 = 0∧[2 + (-1)bso_21] ≥ 0)
(25) (&&(<(x1[4], x0[4]), <(0, +(x0[4], x1[4])))=TRUE∧x1[4]=x1[5]∧x0[4]=x0[5] ⇒ 1063_0_MAIN_LOAD(x1[4], x0[4])≥NonInfC∧1063_0_MAIN_LOAD(x1[4], x0[4])≥COND_1063_0_MAIN_LOAD2(&&(<(x1[4], x0[4]), <(0, +(x0[4], x1[4]))), x1[4], x0[4])∧(UIncreasing(COND_1063_0_MAIN_LOAD2(&&(<(x1[4], x0[4]), <(0, +(x0[4], x1[4]))), x1[4], x0[4])), ≥))
(26) (<(x1[4], x0[4])=TRUE∧<(0, +(x0[4], x1[4]))=TRUE ⇒ 1063_0_MAIN_LOAD(x1[4], x0[4])≥NonInfC∧1063_0_MAIN_LOAD(x1[4], x0[4])≥COND_1063_0_MAIN_LOAD2(&&(<(x1[4], x0[4]), <(0, +(x0[4], x1[4]))), x1[4], x0[4])∧(UIncreasing(COND_1063_0_MAIN_LOAD2(&&(<(x1[4], x0[4]), <(0, +(x0[4], x1[4]))), x1[4], x0[4])), ≥))
(27) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + [-1] + x1[4] ≥ 0 ⇒ (UIncreasing(COND_1063_0_MAIN_LOAD2(&&(<(x1[4], x0[4]), <(0, +(x0[4], x1[4]))), x1[4], x0[4])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(2)bni_22]x0[4] + [(2)bni_22]x1[4] ≥ 0∧[(-1)bso_23] ≥ 0)
(28) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + [-1] + x1[4] ≥ 0 ⇒ (UIncreasing(COND_1063_0_MAIN_LOAD2(&&(<(x1[4], x0[4]), <(0, +(x0[4], x1[4]))), x1[4], x0[4])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(2)bni_22]x0[4] + [(2)bni_22]x1[4] ≥ 0∧[(-1)bso_23] ≥ 0)
(29) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + [-1] + x1[4] ≥ 0 ⇒ (UIncreasing(COND_1063_0_MAIN_LOAD2(&&(<(x1[4], x0[4]), <(0, +(x0[4], x1[4]))), x1[4], x0[4])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(2)bni_22]x0[4] + [(2)bni_22]x1[4] ≥ 0∧[(-1)bso_23] ≥ 0)
(30) (x0[4] ≥ 0∧[2]x1[4] + x0[4] ≥ 0 ⇒ (UIncreasing(COND_1063_0_MAIN_LOAD2(&&(<(x1[4], x0[4]), <(0, +(x0[4], x1[4]))), x1[4], x0[4])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [(4)bni_22]x1[4] + [(2)bni_22]x0[4] ≥ 0∧[(-1)bso_23] ≥ 0)
(31) (x0[4] ≥ 0∧[2]x1[4] + x0[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_1063_0_MAIN_LOAD2(&&(<(x1[4], x0[4]), <(0, +(x0[4], x1[4]))), x1[4], x0[4])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [(4)bni_22]x1[4] + [(2)bni_22]x0[4] ≥ 0∧[(-1)bso_23] ≥ 0)
(32) (x0[4] ≥ 0∧[-2]x1[4] + x0[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_1063_0_MAIN_LOAD2(&&(<(x1[4], x0[4]), <(0, +(x0[4], x1[4]))), x1[4], x0[4])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [(-4)bni_22]x1[4] + [(2)bni_22]x0[4] ≥ 0∧[(-1)bso_23] ≥ 0)
(33) ([2]x1[4] + x0[4] ≥ 0∧x0[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_1063_0_MAIN_LOAD2(&&(<(x1[4], x0[4]), <(0, +(x0[4], x1[4]))), x1[4], x0[4])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [(2)bni_22]x0[4] ≥ 0∧[(-1)bso_23] ≥ 0)
(34) (COND_1063_0_MAIN_LOAD2(TRUE, x1[5], x0[5])≥NonInfC∧COND_1063_0_MAIN_LOAD2(TRUE, x1[5], x0[5])≥1063_0_MAIN_LOAD(x1[5], +(x0[5], -1))∧(UIncreasing(1063_0_MAIN_LOAD(x1[5], +(x0[5], -1))), ≥))
(35) ((UIncreasing(1063_0_MAIN_LOAD(x1[5], +(x0[5], -1))), ≥)∧[2 + (-1)bso_25] ≥ 0)
(36) ((UIncreasing(1063_0_MAIN_LOAD(x1[5], +(x0[5], -1))), ≥)∧[2 + (-1)bso_25] ≥ 0)
(37) ((UIncreasing(1063_0_MAIN_LOAD(x1[5], +(x0[5], -1))), ≥)∧[2 + (-1)bso_25] ≥ 0)
(38) ((UIncreasing(1063_0_MAIN_LOAD(x1[5], +(x0[5], -1))), ≥)∧0 = 0∧0 = 0∧[2 + (-1)bso_25] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(1063_0_MAIN_LOAD(x1, x2)) = [-1] + [2]x2 + [2]x1
POL(COND_1063_0_MAIN_LOAD(x1, x2, x3)) = [-1] + [2]x3 + [2]x2
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(<(x1, x2)) = [-1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(COND_1063_0_MAIN_LOAD1(x1, x2, x3)) = [-1] + [2]x3 + [2]x2
POL(COND_1063_0_MAIN_LOAD2(x1, x2, x3)) = [-1] + [2]x3 + [2]x2
COND_1063_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 1063_0_MAIN_LOAD(+(x1[1], -1), x0[1])
COND_1063_0_MAIN_LOAD1(TRUE, x0[3], x0[3]) → 1063_0_MAIN_LOAD(x0[3], +(x0[3], -1))
COND_1063_0_MAIN_LOAD2(TRUE, x1[5], x0[5]) → 1063_0_MAIN_LOAD(x1[5], +(x0[5], -1))
1063_0_MAIN_LOAD(x1[0], x0[0]) → COND_1063_0_MAIN_LOAD(&&(>(x1[0], x0[0]), <(0, +(x0[0], x1[0]))), x1[0], x0[0])
1063_0_MAIN_LOAD(x0[2], x0[2]) → COND_1063_0_MAIN_LOAD1(<(0, +(x0[2], x0[2])), x0[2], x0[2])
1063_0_MAIN_LOAD(x1[4], x0[4]) → COND_1063_0_MAIN_LOAD2(&&(<(x1[4], x0[4]), <(0, +(x0[4], x1[4]))), x1[4], x0[4])
1063_0_MAIN_LOAD(x1[0], x0[0]) → COND_1063_0_MAIN_LOAD(&&(>(x1[0], x0[0]), <(0, +(x0[0], x1[0]))), x1[0], x0[0])
1063_0_MAIN_LOAD(x0[2], x0[2]) → COND_1063_0_MAIN_LOAD1(<(0, +(x0[2], x0[2])), x0[2], x0[2])
1063_0_MAIN_LOAD(x1[4], x0[4]) → COND_1063_0_MAIN_LOAD2(&&(<(x1[4], x0[4]), <(0, +(x0[4], x1[4]))), x1[4], x0[4])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer