(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: PastaB10
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/

public class PastaB10 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();

while (x + y > 0) {
if (x > 0) {
x--;
} else if (y > 0) {
y--;
} else {
continue;
}
}
}
}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
PastaB10.main([Ljava/lang/String;)V: Graph of 166 nodes with 1 SCC.


(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Logs:


Log for SCC 0:

Generated 22 rules for P and 2 rules for R.


Combined rules. Obtained 3 rules for P and 0 rules for R.


Filtered ground terms:


579_0_main_Load(x1, x2, x3, x4) → 579_0_main_Load(x2, x3, x4)
Cond_579_0_main_Load2(x1, x2, x3, x4, x5) → Cond_579_0_main_Load2(x1, x3, x4, x5)
Cond_579_0_main_Load1(x1, x2, x3, x4, x5) → Cond_579_0_main_Load1(x1, x4)
Cond_579_0_main_Load(x1, x2, x3, x4, x5) → Cond_579_0_main_Load(x1)

Filtered duplicate args:


579_0_main_Load(x1, x2, x3) → 579_0_main_Load(x2, x3)
Cond_579_0_main_Load2(x1, x2, x3, x4) → Cond_579_0_main_Load2(x1, x3, x4)

Combined rules. Obtained 3 rules for P and 0 rules for R.


Finished conversion. Obtained 3 rules for P and 0 rules for R. System has predefined symbols.


(4) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


R is empty.

The integer pair graph contains the following rules and edges:
(0): 579_0_MAIN_LOAD(0, 0) → COND_579_0_MAIN_LOAD(0 < 0 + 0, 0, 0)
(1): COND_579_0_MAIN_LOAD(TRUE, 0, 0) → 579_0_MAIN_LOAD(0, 0)
(2): 579_0_MAIN_LOAD(x1[2], 0) → COND_579_0_MAIN_LOAD1(x1[2] > 0 && 0 < 0 + x1[2], x1[2], 0)
(3): COND_579_0_MAIN_LOAD1(TRUE, x1[3], 0) → 579_0_MAIN_LOAD(x1[3] + -1, 0)
(4): 579_0_MAIN_LOAD(x1[4], x0[4]) → COND_579_0_MAIN_LOAD2(x1[4] >= 0 && x0[4] > 0 && 0 < x0[4] + x1[4], x1[4], x0[4])
(5): COND_579_0_MAIN_LOAD2(TRUE, x1[5], x0[5]) → 579_0_MAIN_LOAD(x1[5], x0[5] + -1)

(0) -> (1), if (0 < 0 + 0* TRUE)


(1) -> (0), if true


(1) -> (2), if (0* x1[2])


(1) -> (4), if ((0* x1[4])∧(0* x0[4]))


(2) -> (3), if ((x1[2] > 0 && 0 < 0 + x1[2]* TRUE)∧(x1[2]* x1[3]))


(3) -> (0), if (x1[3] + -1* 0)


(3) -> (2), if (x1[3] + -1* x1[2])


(3) -> (4), if ((x1[3] + -1* x1[4])∧(0* x0[4]))


(4) -> (5), if ((x1[4] >= 0 && x0[4] > 0 && 0 < x0[4] + x1[4]* TRUE)∧(x1[4]* x1[5])∧(x0[4]* x0[5]))


(5) -> (0), if ((x1[5]* 0)∧(x0[5] + -1* 0))


(5) -> (2), if ((x1[5]* x1[2])∧(x0[5] + -1* 0))


(5) -> (4), if ((x1[5]* x1[4])∧(x0[5] + -1* x0[4]))



The set Q is empty.

(5) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 579_0_MAIN_LOAD(0, 0) → COND_579_0_MAIN_LOAD(<(0, +(0, 0)), 0, 0) the following chains were created:
  • We consider the chain 579_0_MAIN_LOAD(0, 0) → COND_579_0_MAIN_LOAD(<(0, +(0, 0)), 0, 0), COND_579_0_MAIN_LOAD(TRUE, 0, 0) → 579_0_MAIN_LOAD(0, 0) which results in the following constraint:

    (1)    (<(0, +(0, 0))=TRUE579_0_MAIN_LOAD(0, 0)≥NonInfC∧579_0_MAIN_LOAD(0, 0)≥COND_579_0_MAIN_LOAD(<(0, +(0, 0)), 0, 0)∧(UIncreasing(COND_579_0_MAIN_LOAD(<(0, +(0, 0)), 0, 0)), ≥))



    We solved constraint (1) using rules (I), (II), (IDP_CONSTANT_FOLD).




For Pair COND_579_0_MAIN_LOAD(TRUE, 0, 0) → 579_0_MAIN_LOAD(0, 0) the following chains were created:
  • We consider the chain COND_579_0_MAIN_LOAD(TRUE, 0, 0) → 579_0_MAIN_LOAD(0, 0), 579_0_MAIN_LOAD(0, 0) → COND_579_0_MAIN_LOAD(<(0, +(0, 0)), 0, 0) which results in the following constraint:

    (2)    (COND_579_0_MAIN_LOAD(TRUE, 0, 0)≥NonInfC∧COND_579_0_MAIN_LOAD(TRUE, 0, 0)≥579_0_MAIN_LOAD(0, 0)∧(UIncreasing(579_0_MAIN_LOAD(0, 0)), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    ((UIncreasing(579_0_MAIN_LOAD(0, 0)), ≥)∧[2 + (-1)bso_15] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    ((UIncreasing(579_0_MAIN_LOAD(0, 0)), ≥)∧[2 + (-1)bso_15] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    ((UIncreasing(579_0_MAIN_LOAD(0, 0)), ≥)∧[2 + (-1)bso_15] ≥ 0)



  • We consider the chain COND_579_0_MAIN_LOAD(TRUE, 0, 0) → 579_0_MAIN_LOAD(0, 0), 579_0_MAIN_LOAD(x1[2], 0) → COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0) which results in the following constraint:

    (6)    (0=x1[2]COND_579_0_MAIN_LOAD(TRUE, 0, 0)≥NonInfC∧COND_579_0_MAIN_LOAD(TRUE, 0, 0)≥579_0_MAIN_LOAD(0, 0)∧(UIncreasing(579_0_MAIN_LOAD(0, 0)), ≥))



    We simplified constraint (6) using rule (IV) which results in the following new constraint:

    (7)    (COND_579_0_MAIN_LOAD(TRUE, 0, 0)≥NonInfC∧COND_579_0_MAIN_LOAD(TRUE, 0, 0)≥579_0_MAIN_LOAD(0, 0)∧(UIncreasing(579_0_MAIN_LOAD(0, 0)), ≥))



    We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (8)    ((UIncreasing(579_0_MAIN_LOAD(0, 0)), ≥)∧[2 + (-1)bso_15] ≥ 0)



    We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (9)    ((UIncreasing(579_0_MAIN_LOAD(0, 0)), ≥)∧[2 + (-1)bso_15] ≥ 0)



    We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (10)    ((UIncreasing(579_0_MAIN_LOAD(0, 0)), ≥)∧[2 + (-1)bso_15] ≥ 0)



  • We consider the chain COND_579_0_MAIN_LOAD(TRUE, 0, 0) → 579_0_MAIN_LOAD(0, 0), 579_0_MAIN_LOAD(x1[4], x0[4]) → COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4]) which results in the following constraint:

    (11)    (0=x1[4]0=x0[4]COND_579_0_MAIN_LOAD(TRUE, 0, 0)≥NonInfC∧COND_579_0_MAIN_LOAD(TRUE, 0, 0)≥579_0_MAIN_LOAD(0, 0)∧(UIncreasing(579_0_MAIN_LOAD(0, 0)), ≥))



    We simplified constraint (11) using rule (IV) which results in the following new constraint:

    (12)    (COND_579_0_MAIN_LOAD(TRUE, 0, 0)≥NonInfC∧COND_579_0_MAIN_LOAD(TRUE, 0, 0)≥579_0_MAIN_LOAD(0, 0)∧(UIncreasing(579_0_MAIN_LOAD(0, 0)), ≥))



    We simplified constraint (12) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (13)    ((UIncreasing(579_0_MAIN_LOAD(0, 0)), ≥)∧[2 + (-1)bso_15] ≥ 0)



    We simplified constraint (13) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (14)    ((UIncreasing(579_0_MAIN_LOAD(0, 0)), ≥)∧[2 + (-1)bso_15] ≥ 0)



    We simplified constraint (14) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (15)    ((UIncreasing(579_0_MAIN_LOAD(0, 0)), ≥)∧[2 + (-1)bso_15] ≥ 0)







For Pair 579_0_MAIN_LOAD(x1, 0) → COND_579_0_MAIN_LOAD1(&&(>(x1, 0), <(0, +(0, x1))), x1, 0) the following chains were created:
  • We consider the chain 579_0_MAIN_LOAD(x1[2], 0) → COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0), COND_579_0_MAIN_LOAD1(TRUE, x1[3], 0) → 579_0_MAIN_LOAD(+(x1[3], -1), 0) which results in the following constraint:

    (16)    (&&(>(x1[2], 0), <(0, +(0, x1[2])))=TRUEx1[2]=x1[3]579_0_MAIN_LOAD(x1[2], 0)≥NonInfC∧579_0_MAIN_LOAD(x1[2], 0)≥COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)∧(UIncreasing(COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)), ≥))



    We simplified constraint (16) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (17)    (>(x1[2], 0)=TRUE<(0, +(0, x1[2]))=TRUE579_0_MAIN_LOAD(x1[2], 0)≥NonInfC∧579_0_MAIN_LOAD(x1[2], 0)≥COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)∧(UIncreasing(COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)), ≥))



    We simplified constraint (17) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (18)    (x1[2] + [-1] ≥ 0∧[-1] + x1[2] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] ≥ 0∧[(-1)bso_17] ≥ 0)



    We simplified constraint (18) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (19)    (x1[2] + [-1] ≥ 0∧[-1] + x1[2] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] ≥ 0∧[(-1)bso_17] ≥ 0)



    We simplified constraint (19) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (20)    (x1[2] + [-1] ≥ 0∧[-1] + x1[2] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] ≥ 0∧[(-1)bso_17] ≥ 0)



    We simplified constraint (20) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (21)    (x1[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] ≥ 0∧[(-1)bso_17] ≥ 0)







For Pair COND_579_0_MAIN_LOAD1(TRUE, x1, 0) → 579_0_MAIN_LOAD(+(x1, -1), 0) the following chains were created:
  • We consider the chain COND_579_0_MAIN_LOAD1(TRUE, x1[3], 0) → 579_0_MAIN_LOAD(+(x1[3], -1), 0) which results in the following constraint:

    (22)    (COND_579_0_MAIN_LOAD1(TRUE, x1[3], 0)≥NonInfC∧COND_579_0_MAIN_LOAD1(TRUE, x1[3], 0)≥579_0_MAIN_LOAD(+(x1[3], -1), 0)∧(UIncreasing(579_0_MAIN_LOAD(+(x1[3], -1), 0)), ≥))



    We simplified constraint (22) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (23)    ((UIncreasing(579_0_MAIN_LOAD(+(x1[3], -1), 0)), ≥)∧[(-1)bso_19] ≥ 0)



    We simplified constraint (23) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (24)    ((UIncreasing(579_0_MAIN_LOAD(+(x1[3], -1), 0)), ≥)∧[(-1)bso_19] ≥ 0)



    We simplified constraint (24) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (25)    ((UIncreasing(579_0_MAIN_LOAD(+(x1[3], -1), 0)), ≥)∧[(-1)bso_19] ≥ 0)



    We simplified constraint (25) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (26)    ((UIncreasing(579_0_MAIN_LOAD(+(x1[3], -1), 0)), ≥)∧0 = 0∧[(-1)bso_19] ≥ 0)







For Pair 579_0_MAIN_LOAD(x1, x0) → COND_579_0_MAIN_LOAD2(&&(&&(>=(x1, 0), >(x0, 0)), <(0, +(x0, x1))), x1, x0) the following chains were created:
  • We consider the chain 579_0_MAIN_LOAD(x1[4], x0[4]) → COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4]), COND_579_0_MAIN_LOAD2(TRUE, x1[5], x0[5]) → 579_0_MAIN_LOAD(x1[5], +(x0[5], -1)) which results in the following constraint:

    (27)    (&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4])))=TRUEx1[4]=x1[5]x0[4]=x0[5]579_0_MAIN_LOAD(x1[4], x0[4])≥NonInfC∧579_0_MAIN_LOAD(x1[4], x0[4])≥COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])∧(UIncreasing(COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])), ≥))



    We simplified constraint (27) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (28)    (<(0, +(x0[4], x1[4]))=TRUE>=(x1[4], 0)=TRUE>(x0[4], 0)=TRUE579_0_MAIN_LOAD(x1[4], x0[4])≥NonInfC∧579_0_MAIN_LOAD(x1[4], x0[4])≥COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])∧(UIncreasing(COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])), ≥))



    We simplified constraint (28) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (29)    (x0[4] + [-1] + x1[4] ≥ 0∧x1[4] ≥ 0∧x0[4] + [-1] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] ≥ 0∧[(-1)bso_21] ≥ 0)



    We simplified constraint (29) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (30)    (x0[4] + [-1] + x1[4] ≥ 0∧x1[4] ≥ 0∧x0[4] + [-1] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] ≥ 0∧[(-1)bso_21] ≥ 0)



    We simplified constraint (30) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (31)    (x0[4] + [-1] + x1[4] ≥ 0∧x1[4] ≥ 0∧x0[4] + [-1] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] ≥ 0∧[(-1)bso_21] ≥ 0)



    We simplified constraint (31) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (32)    (x0[4] + x1[4] ≥ 0∧x1[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] ≥ 0∧[(-1)bso_21] ≥ 0)







For Pair COND_579_0_MAIN_LOAD2(TRUE, x1, x0) → 579_0_MAIN_LOAD(x1, +(x0, -1)) the following chains were created:
  • We consider the chain COND_579_0_MAIN_LOAD2(TRUE, x1[5], x0[5]) → 579_0_MAIN_LOAD(x1[5], +(x0[5], -1)) which results in the following constraint:

    (33)    (COND_579_0_MAIN_LOAD2(TRUE, x1[5], x0[5])≥NonInfC∧COND_579_0_MAIN_LOAD2(TRUE, x1[5], x0[5])≥579_0_MAIN_LOAD(x1[5], +(x0[5], -1))∧(UIncreasing(579_0_MAIN_LOAD(x1[5], +(x0[5], -1))), ≥))



    We simplified constraint (33) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (34)    ((UIncreasing(579_0_MAIN_LOAD(x1[5], +(x0[5], -1))), ≥)∧[(-1)bso_23] ≥ 0)



    We simplified constraint (34) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (35)    ((UIncreasing(579_0_MAIN_LOAD(x1[5], +(x0[5], -1))), ≥)∧[(-1)bso_23] ≥ 0)



    We simplified constraint (35) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (36)    ((UIncreasing(579_0_MAIN_LOAD(x1[5], +(x0[5], -1))), ≥)∧[(-1)bso_23] ≥ 0)



    We simplified constraint (36) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (37)    ((UIncreasing(579_0_MAIN_LOAD(x1[5], +(x0[5], -1))), ≥)∧0 = 0∧0 = 0∧[(-1)bso_23] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 579_0_MAIN_LOAD(0, 0) → COND_579_0_MAIN_LOAD(<(0, +(0, 0)), 0, 0)

  • COND_579_0_MAIN_LOAD(TRUE, 0, 0) → 579_0_MAIN_LOAD(0, 0)
    • ((UIncreasing(579_0_MAIN_LOAD(0, 0)), ≥)∧[2 + (-1)bso_15] ≥ 0)
    • ((UIncreasing(579_0_MAIN_LOAD(0, 0)), ≥)∧[2 + (-1)bso_15] ≥ 0)
    • ((UIncreasing(579_0_MAIN_LOAD(0, 0)), ≥)∧[2 + (-1)bso_15] ≥ 0)

  • 579_0_MAIN_LOAD(x1, 0) → COND_579_0_MAIN_LOAD1(&&(>(x1, 0), <(0, +(0, x1))), x1, 0)
    • (x1[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] ≥ 0∧[(-1)bso_17] ≥ 0)

  • COND_579_0_MAIN_LOAD1(TRUE, x1, 0) → 579_0_MAIN_LOAD(+(x1, -1), 0)
    • ((UIncreasing(579_0_MAIN_LOAD(+(x1[3], -1), 0)), ≥)∧0 = 0∧[(-1)bso_19] ≥ 0)

  • 579_0_MAIN_LOAD(x1, x0) → COND_579_0_MAIN_LOAD2(&&(&&(>=(x1, 0), >(x0, 0)), <(0, +(x0, x1))), x1, x0)
    • (x0[4] + x1[4] ≥ 0∧x1[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] ≥ 0∧[(-1)bso_21] ≥ 0)

  • COND_579_0_MAIN_LOAD2(TRUE, x1, x0) → 579_0_MAIN_LOAD(x1, +(x0, -1))
    • ((UIncreasing(579_0_MAIN_LOAD(x1[5], +(x0[5], -1))), ≥)∧0 = 0∧0 = 0∧[(-1)bso_23] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(579_0_MAIN_LOAD(x1, x2)) = [-1]   
POL(0) = 0   
POL(COND_579_0_MAIN_LOAD(x1, x2, x3)) = [1]   
POL(<(x1, x2)) = [-1]   
POL(+(x1, x2)) = x1 + x2   
POL(COND_579_0_MAIN_LOAD1(x1, x2, x3)) = [-1]   
POL(&&(x1, x2)) = [-1]   
POL(>(x1, x2)) = [-1]   
POL(-1) = [-1]   
POL(COND_579_0_MAIN_LOAD2(x1, x2, x3)) = [-1]   
POL(>=(x1, x2)) = [-1]   

The following pairs are in P>:

579_0_MAIN_LOAD(0, 0) → COND_579_0_MAIN_LOAD(<(0, +(0, 0)), 0, 0)
COND_579_0_MAIN_LOAD(TRUE, 0, 0) → 579_0_MAIN_LOAD(0, 0)

The following pairs are in Pbound:

579_0_MAIN_LOAD(0, 0) → COND_579_0_MAIN_LOAD(<(0, +(0, 0)), 0, 0)
579_0_MAIN_LOAD(x1[2], 0) → COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)
579_0_MAIN_LOAD(x1[4], x0[4]) → COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])

The following pairs are in P:

579_0_MAIN_LOAD(x1[2], 0) → COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)
COND_579_0_MAIN_LOAD1(TRUE, x1[3], 0) → 579_0_MAIN_LOAD(+(x1[3], -1), 0)
579_0_MAIN_LOAD(x1[4], x0[4]) → COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])
COND_579_0_MAIN_LOAD2(TRUE, x1[5], x0[5]) → 579_0_MAIN_LOAD(x1[5], +(x0[5], -1))

There are no usable rules.

(6) Complex Obligation (AND)

(7) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(2): 579_0_MAIN_LOAD(x1[2], 0) → COND_579_0_MAIN_LOAD1(x1[2] > 0 && 0 < 0 + x1[2], x1[2], 0)
(3): COND_579_0_MAIN_LOAD1(TRUE, x1[3], 0) → 579_0_MAIN_LOAD(x1[3] + -1, 0)
(4): 579_0_MAIN_LOAD(x1[4], x0[4]) → COND_579_0_MAIN_LOAD2(x1[4] >= 0 && x0[4] > 0 && 0 < x0[4] + x1[4], x1[4], x0[4])
(5): COND_579_0_MAIN_LOAD2(TRUE, x1[5], x0[5]) → 579_0_MAIN_LOAD(x1[5], x0[5] + -1)

(3) -> (2), if (x1[3] + -1* x1[2])


(5) -> (2), if ((x1[5]* x1[2])∧(x0[5] + -1* 0))


(2) -> (3), if ((x1[2] > 0 && 0 < 0 + x1[2]* TRUE)∧(x1[2]* x1[3]))


(3) -> (4), if ((x1[3] + -1* x1[4])∧(0* x0[4]))


(5) -> (4), if ((x1[5]* x1[4])∧(x0[5] + -1* x0[4]))


(4) -> (5), if ((x1[4] >= 0 && x0[4] > 0 && 0 < x0[4] + x1[4]* TRUE)∧(x1[4]* x1[5])∧(x0[4]* x0[5]))



The set Q is empty.

(8) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 579_0_MAIN_LOAD(x1[2], 0) → COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0) the following chains were created:
  • We consider the chain 579_0_MAIN_LOAD(x1[2], 0) → COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0), COND_579_0_MAIN_LOAD1(TRUE, x1[3], 0) → 579_0_MAIN_LOAD(+(x1[3], -1), 0) which results in the following constraint:

    (1)    (&&(>(x1[2], 0), <(0, +(0, x1[2])))=TRUEx1[2]=x1[3]579_0_MAIN_LOAD(x1[2], 0)≥NonInfC∧579_0_MAIN_LOAD(x1[2], 0)≥COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)∧(UIncreasing(COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)), ≥))



    We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>(x1[2], 0)=TRUE<(0, +(0, x1[2]))=TRUE579_0_MAIN_LOAD(x1[2], 0)≥NonInfC∧579_0_MAIN_LOAD(x1[2], 0)≥COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)∧(UIncreasing(COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x1[2] + [-1] ≥ 0∧[-1] + x1[2] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)), ≥)∧[bni_10 + (-1)Bound*bni_10] ≥ 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x1[2] + [-1] ≥ 0∧[-1] + x1[2] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)), ≥)∧[bni_10 + (-1)Bound*bni_10] ≥ 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x1[2] + [-1] ≥ 0∧[-1] + x1[2] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)), ≥)∧[bni_10 + (-1)Bound*bni_10] ≥ 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x1[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)), ≥)∧[bni_10 + (-1)Bound*bni_10] ≥ 0∧[(-1)bso_11] ≥ 0)







For Pair COND_579_0_MAIN_LOAD1(TRUE, x1[3], 0) → 579_0_MAIN_LOAD(+(x1[3], -1), 0) the following chains were created:
  • We consider the chain COND_579_0_MAIN_LOAD1(TRUE, x1[3], 0) → 579_0_MAIN_LOAD(+(x1[3], -1), 0) which results in the following constraint:

    (7)    (COND_579_0_MAIN_LOAD1(TRUE, x1[3], 0)≥NonInfC∧COND_579_0_MAIN_LOAD1(TRUE, x1[3], 0)≥579_0_MAIN_LOAD(+(x1[3], -1), 0)∧(UIncreasing(579_0_MAIN_LOAD(+(x1[3], -1), 0)), ≥))



    We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (8)    ((UIncreasing(579_0_MAIN_LOAD(+(x1[3], -1), 0)), ≥)∧[(-1)bso_13] ≥ 0)



    We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (9)    ((UIncreasing(579_0_MAIN_LOAD(+(x1[3], -1), 0)), ≥)∧[(-1)bso_13] ≥ 0)



    We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (10)    ((UIncreasing(579_0_MAIN_LOAD(+(x1[3], -1), 0)), ≥)∧[(-1)bso_13] ≥ 0)



    We simplified constraint (10) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (11)    ((UIncreasing(579_0_MAIN_LOAD(+(x1[3], -1), 0)), ≥)∧0 = 0∧[(-1)bso_13] ≥ 0)







For Pair 579_0_MAIN_LOAD(x1[4], x0[4]) → COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4]) the following chains were created:
  • We consider the chain 579_0_MAIN_LOAD(x1[4], x0[4]) → COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4]), COND_579_0_MAIN_LOAD2(TRUE, x1[5], x0[5]) → 579_0_MAIN_LOAD(x1[5], +(x0[5], -1)) which results in the following constraint:

    (12)    (&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4])))=TRUEx1[4]=x1[5]x0[4]=x0[5]579_0_MAIN_LOAD(x1[4], x0[4])≥NonInfC∧579_0_MAIN_LOAD(x1[4], x0[4])≥COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])∧(UIncreasing(COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])), ≥))



    We simplified constraint (12) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (13)    (<(0, +(x0[4], x1[4]))=TRUE>=(x1[4], 0)=TRUE>(x0[4], 0)=TRUE579_0_MAIN_LOAD(x1[4], x0[4])≥NonInfC∧579_0_MAIN_LOAD(x1[4], x0[4])≥COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])∧(UIncreasing(COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])), ≥))



    We simplified constraint (13) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (14)    (x0[4] + [-1] + x1[4] ≥ 0∧x1[4] ≥ 0∧x0[4] + [-1] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])), ≥)∧[bni_14 + (-1)Bound*bni_14] + [bni_14]x0[4] ≥ 0∧[1 + (-1)bso_15] ≥ 0)



    We simplified constraint (14) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (15)    (x0[4] + [-1] + x1[4] ≥ 0∧x1[4] ≥ 0∧x0[4] + [-1] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])), ≥)∧[bni_14 + (-1)Bound*bni_14] + [bni_14]x0[4] ≥ 0∧[1 + (-1)bso_15] ≥ 0)



    We simplified constraint (15) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (16)    (x0[4] + [-1] + x1[4] ≥ 0∧x1[4] ≥ 0∧x0[4] + [-1] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])), ≥)∧[bni_14 + (-1)Bound*bni_14] + [bni_14]x0[4] ≥ 0∧[1 + (-1)bso_15] ≥ 0)



    We simplified constraint (16) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (17)    (x0[4] + x1[4] ≥ 0∧x1[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])), ≥)∧[(2)bni_14 + (-1)Bound*bni_14] + [bni_14]x0[4] ≥ 0∧[1 + (-1)bso_15] ≥ 0)







For Pair COND_579_0_MAIN_LOAD2(TRUE, x1[5], x0[5]) → 579_0_MAIN_LOAD(x1[5], +(x0[5], -1)) the following chains were created:
  • We consider the chain COND_579_0_MAIN_LOAD2(TRUE, x1[5], x0[5]) → 579_0_MAIN_LOAD(x1[5], +(x0[5], -1)) which results in the following constraint:

    (18)    (COND_579_0_MAIN_LOAD2(TRUE, x1[5], x0[5])≥NonInfC∧COND_579_0_MAIN_LOAD2(TRUE, x1[5], x0[5])≥579_0_MAIN_LOAD(x1[5], +(x0[5], -1))∧(UIncreasing(579_0_MAIN_LOAD(x1[5], +(x0[5], -1))), ≥))



    We simplified constraint (18) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (19)    ((UIncreasing(579_0_MAIN_LOAD(x1[5], +(x0[5], -1))), ≥)∧[(-1)bso_17] ≥ 0)



    We simplified constraint (19) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (20)    ((UIncreasing(579_0_MAIN_LOAD(x1[5], +(x0[5], -1))), ≥)∧[(-1)bso_17] ≥ 0)



    We simplified constraint (20) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (21)    ((UIncreasing(579_0_MAIN_LOAD(x1[5], +(x0[5], -1))), ≥)∧[(-1)bso_17] ≥ 0)



    We simplified constraint (21) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (22)    ((UIncreasing(579_0_MAIN_LOAD(x1[5], +(x0[5], -1))), ≥)∧0 = 0∧0 = 0∧[(-1)bso_17] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 579_0_MAIN_LOAD(x1[2], 0) → COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)
    • (x1[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)), ≥)∧[bni_10 + (-1)Bound*bni_10] ≥ 0∧[(-1)bso_11] ≥ 0)

  • COND_579_0_MAIN_LOAD1(TRUE, x1[3], 0) → 579_0_MAIN_LOAD(+(x1[3], -1), 0)
    • ((UIncreasing(579_0_MAIN_LOAD(+(x1[3], -1), 0)), ≥)∧0 = 0∧[(-1)bso_13] ≥ 0)

  • 579_0_MAIN_LOAD(x1[4], x0[4]) → COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])
    • (x0[4] + x1[4] ≥ 0∧x1[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])), ≥)∧[(2)bni_14 + (-1)Bound*bni_14] + [bni_14]x0[4] ≥ 0∧[1 + (-1)bso_15] ≥ 0)

  • COND_579_0_MAIN_LOAD2(TRUE, x1[5], x0[5]) → 579_0_MAIN_LOAD(x1[5], +(x0[5], -1))
    • ((UIncreasing(579_0_MAIN_LOAD(x1[5], +(x0[5], -1))), ≥)∧0 = 0∧0 = 0∧[(-1)bso_17] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(579_0_MAIN_LOAD(x1, x2)) = [1] + x2   
POL(0) = 0   
POL(COND_579_0_MAIN_LOAD1(x1, x2, x3)) = [1]   
POL(&&(x1, x2)) = 0   
POL(>(x1, x2)) = [-1]   
POL(<(x1, x2)) = [-1]   
POL(+(x1, x2)) = x1 + x2   
POL(-1) = [-1]   
POL(COND_579_0_MAIN_LOAD2(x1, x2, x3)) = x3   
POL(>=(x1, x2)) = 0   

The following pairs are in P>:

579_0_MAIN_LOAD(x1[4], x0[4]) → COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])

The following pairs are in Pbound:

579_0_MAIN_LOAD(x1[2], 0) → COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)
579_0_MAIN_LOAD(x1[4], x0[4]) → COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])

The following pairs are in P:

579_0_MAIN_LOAD(x1[2], 0) → COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)
COND_579_0_MAIN_LOAD1(TRUE, x1[3], 0) → 579_0_MAIN_LOAD(+(x1[3], -1), 0)
COND_579_0_MAIN_LOAD2(TRUE, x1[5], x0[5]) → 579_0_MAIN_LOAD(x1[5], +(x0[5], -1))

There are no usable rules.

(9) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(2): 579_0_MAIN_LOAD(x1[2], 0) → COND_579_0_MAIN_LOAD1(x1[2] > 0 && 0 < 0 + x1[2], x1[2], 0)
(3): COND_579_0_MAIN_LOAD1(TRUE, x1[3], 0) → 579_0_MAIN_LOAD(x1[3] + -1, 0)
(5): COND_579_0_MAIN_LOAD2(TRUE, x1[5], x0[5]) → 579_0_MAIN_LOAD(x1[5], x0[5] + -1)

(3) -> (2), if (x1[3] + -1* x1[2])


(5) -> (2), if ((x1[5]* x1[2])∧(x0[5] + -1* 0))


(2) -> (3), if ((x1[2] > 0 && 0 < 0 + x1[2]* TRUE)∧(x1[2]* x1[3]))



The set Q is empty.

(10) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(11) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


R is empty.

The integer pair graph contains the following rules and edges:
(3): COND_579_0_MAIN_LOAD1(TRUE, x1[3], 0) → 579_0_MAIN_LOAD(x1[3] + -1, 0)
(2): 579_0_MAIN_LOAD(x1[2], 0) → COND_579_0_MAIN_LOAD1(x1[2] > 0 && 0 < 0 + x1[2], x1[2], 0)

(3) -> (2), if (x1[3] + -1* x1[2])


(2) -> (3), if ((x1[2] > 0 && 0 < 0 + x1[2]* TRUE)∧(x1[2]* x1[3]))



The set Q is empty.

(12) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair COND_579_0_MAIN_LOAD1(TRUE, x1[3], 0) → 579_0_MAIN_LOAD(+(x1[3], -1), 0) the following chains were created:
  • We consider the chain COND_579_0_MAIN_LOAD1(TRUE, x1[3], 0) → 579_0_MAIN_LOAD(+(x1[3], -1), 0) which results in the following constraint:

    (1)    (COND_579_0_MAIN_LOAD1(TRUE, x1[3], 0)≥NonInfC∧COND_579_0_MAIN_LOAD1(TRUE, x1[3], 0)≥579_0_MAIN_LOAD(+(x1[3], -1), 0)∧(UIncreasing(579_0_MAIN_LOAD(+(x1[3], -1), 0)), ≥))



    We simplified constraint (1) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (2)    ((UIncreasing(579_0_MAIN_LOAD(+(x1[3], -1), 0)), ≥)∧[1 + (-1)bso_9] ≥ 0)



    We simplified constraint (2) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (3)    ((UIncreasing(579_0_MAIN_LOAD(+(x1[3], -1), 0)), ≥)∧[1 + (-1)bso_9] ≥ 0)



    We simplified constraint (3) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (4)    ((UIncreasing(579_0_MAIN_LOAD(+(x1[3], -1), 0)), ≥)∧[1 + (-1)bso_9] ≥ 0)



    We simplified constraint (4) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (5)    ((UIncreasing(579_0_MAIN_LOAD(+(x1[3], -1), 0)), ≥)∧0 = 0∧[1 + (-1)bso_9] ≥ 0)







For Pair 579_0_MAIN_LOAD(x1[2], 0) → COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0) the following chains were created:
  • We consider the chain 579_0_MAIN_LOAD(x1[2], 0) → COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0), COND_579_0_MAIN_LOAD1(TRUE, x1[3], 0) → 579_0_MAIN_LOAD(+(x1[3], -1), 0) which results in the following constraint:

    (6)    (&&(>(x1[2], 0), <(0, +(0, x1[2])))=TRUEx1[2]=x1[3]579_0_MAIN_LOAD(x1[2], 0)≥NonInfC∧579_0_MAIN_LOAD(x1[2], 0)≥COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)∧(UIncreasing(COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)), ≥))



    We simplified constraint (6) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (7)    (>(x1[2], 0)=TRUE<(0, +(0, x1[2]))=TRUE579_0_MAIN_LOAD(x1[2], 0)≥NonInfC∧579_0_MAIN_LOAD(x1[2], 0)≥COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)∧(UIncreasing(COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)), ≥))



    We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (8)    (x1[2] + [-1] ≥ 0∧[-1] + x1[2] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] + [bni_10]x1[2] ≥ 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (9)    (x1[2] + [-1] ≥ 0∧[-1] + x1[2] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] + [bni_10]x1[2] ≥ 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (10)    (x1[2] + [-1] ≥ 0∧[-1] + x1[2] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] + [bni_10]x1[2] ≥ 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (10) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (11)    (x1[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)), ≥)∧[(-1)Bound*bni_10] + [bni_10]x1[2] ≥ 0∧[(-1)bso_11] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • COND_579_0_MAIN_LOAD1(TRUE, x1[3], 0) → 579_0_MAIN_LOAD(+(x1[3], -1), 0)
    • ((UIncreasing(579_0_MAIN_LOAD(+(x1[3], -1), 0)), ≥)∧0 = 0∧[1 + (-1)bso_9] ≥ 0)

  • 579_0_MAIN_LOAD(x1[2], 0) → COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)
    • (x1[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)), ≥)∧[(-1)Bound*bni_10] + [bni_10]x1[2] ≥ 0∧[(-1)bso_11] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(COND_579_0_MAIN_LOAD1(x1, x2, x3)) = [-1] + x2   
POL(0) = 0   
POL(579_0_MAIN_LOAD(x1, x2)) = [-1] + x1   
POL(+(x1, x2)) = x1 + x2   
POL(-1) = [-1]   
POL(&&(x1, x2)) = [1]   
POL(>(x1, x2)) = [-1]   
POL(<(x1, x2)) = [-1]   

The following pairs are in P>:

COND_579_0_MAIN_LOAD1(TRUE, x1[3], 0) → 579_0_MAIN_LOAD(+(x1[3], -1), 0)

The following pairs are in Pbound:

579_0_MAIN_LOAD(x1[2], 0) → COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)

The following pairs are in P:

579_0_MAIN_LOAD(x1[2], 0) → COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)

There are no usable rules.

(13) Complex Obligation (AND)

(14) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(2): 579_0_MAIN_LOAD(x1[2], 0) → COND_579_0_MAIN_LOAD1(x1[2] > 0 && 0 < 0 + x1[2], x1[2], 0)


The set Q is empty.

(15) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(16) TRUE

(17) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(3): COND_579_0_MAIN_LOAD1(TRUE, x1[3], 0) → 579_0_MAIN_LOAD(x1[3] + -1, 0)


The set Q is empty.

(18) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(19) TRUE

(20) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_579_0_MAIN_LOAD(TRUE, 0, 0) → 579_0_MAIN_LOAD(0, 0)
(3): COND_579_0_MAIN_LOAD1(TRUE, x1[3], 0) → 579_0_MAIN_LOAD(x1[3] + -1, 0)
(5): COND_579_0_MAIN_LOAD2(TRUE, x1[5], x0[5]) → 579_0_MAIN_LOAD(x1[5], x0[5] + -1)


The set Q is empty.

(21) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 3 less nodes.

(22) TRUE