0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 AND
↳7 IDP
↳8 IDPNonInfProof (⇒)
↳9 IDP
↳10 IDependencyGraphProof (⇔)
↳11 IDP
↳12 IDPNonInfProof (⇒)
↳13 AND
↳14 IDP
↳15 IDependencyGraphProof (⇔)
↳16 TRUE
↳17 IDP
↳18 IDependencyGraphProof (⇔)
↳19 TRUE
↳20 IDP
↳21 IDependencyGraphProof (⇔)
↳22 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaB10 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
while (x + y > 0) {
if (x > 0) {
x--;
} else if (y > 0) {
y--;
} else {
continue;
}
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 22 rules for P and 2 rules for R.
Combined rules. Obtained 3 rules for P and 0 rules for R.
Filtered ground terms:
579_0_main_Load(x1, x2, x3, x4) → 579_0_main_Load(x2, x3, x4)
Cond_579_0_main_Load2(x1, x2, x3, x4, x5) → Cond_579_0_main_Load2(x1, x3, x4, x5)
Cond_579_0_main_Load1(x1, x2, x3, x4, x5) → Cond_579_0_main_Load1(x1, x4)
Cond_579_0_main_Load(x1, x2, x3, x4, x5) → Cond_579_0_main_Load(x1)
Filtered duplicate args:
579_0_main_Load(x1, x2, x3) → 579_0_main_Load(x2, x3)
Cond_579_0_main_Load2(x1, x2, x3, x4) → Cond_579_0_main_Load2(x1, x3, x4)
Combined rules. Obtained 3 rules for P and 0 rules for R.
Finished conversion. Obtained 3 rules for P and 0 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(0) -> (1), if (0 < 0 + 0 →* TRUE)
(1) -> (0), if true
(1) -> (2), if (0 →* x1[2])
(1) -> (4), if ((0 →* x1[4])∧(0 →* x0[4]))
(2) -> (3), if ((x1[2] > 0 && 0 < 0 + x1[2] →* TRUE)∧(x1[2] →* x1[3]))
(3) -> (0), if (x1[3] + -1 →* 0)
(3) -> (2), if (x1[3] + -1 →* x1[2])
(3) -> (4), if ((x1[3] + -1 →* x1[4])∧(0 →* x0[4]))
(4) -> (5), if ((x1[4] >= 0 && x0[4] > 0 && 0 < x0[4] + x1[4] →* TRUE)∧(x1[4] →* x1[5])∧(x0[4] →* x0[5]))
(5) -> (0), if ((x1[5] →* 0)∧(x0[5] + -1 →* 0))
(5) -> (2), if ((x1[5] →* x1[2])∧(x0[5] + -1 →* 0))
(5) -> (4), if ((x1[5] →* x1[4])∧(x0[5] + -1 →* x0[4]))
(1) (<(0, +(0, 0))=TRUE ⇒ 579_0_MAIN_LOAD(0, 0)≥NonInfC∧579_0_MAIN_LOAD(0, 0)≥COND_579_0_MAIN_LOAD(<(0, +(0, 0)), 0, 0)∧(UIncreasing(COND_579_0_MAIN_LOAD(<(0, +(0, 0)), 0, 0)), ≥))
(2) (COND_579_0_MAIN_LOAD(TRUE, 0, 0)≥NonInfC∧COND_579_0_MAIN_LOAD(TRUE, 0, 0)≥579_0_MAIN_LOAD(0, 0)∧(UIncreasing(579_0_MAIN_LOAD(0, 0)), ≥))
(3) ((UIncreasing(579_0_MAIN_LOAD(0, 0)), ≥)∧[2 + (-1)bso_15] ≥ 0)
(4) ((UIncreasing(579_0_MAIN_LOAD(0, 0)), ≥)∧[2 + (-1)bso_15] ≥ 0)
(5) ((UIncreasing(579_0_MAIN_LOAD(0, 0)), ≥)∧[2 + (-1)bso_15] ≥ 0)
(6) (0=x1[2] ⇒ COND_579_0_MAIN_LOAD(TRUE, 0, 0)≥NonInfC∧COND_579_0_MAIN_LOAD(TRUE, 0, 0)≥579_0_MAIN_LOAD(0, 0)∧(UIncreasing(579_0_MAIN_LOAD(0, 0)), ≥))
(7) (COND_579_0_MAIN_LOAD(TRUE, 0, 0)≥NonInfC∧COND_579_0_MAIN_LOAD(TRUE, 0, 0)≥579_0_MAIN_LOAD(0, 0)∧(UIncreasing(579_0_MAIN_LOAD(0, 0)), ≥))
(8) ((UIncreasing(579_0_MAIN_LOAD(0, 0)), ≥)∧[2 + (-1)bso_15] ≥ 0)
(9) ((UIncreasing(579_0_MAIN_LOAD(0, 0)), ≥)∧[2 + (-1)bso_15] ≥ 0)
(10) ((UIncreasing(579_0_MAIN_LOAD(0, 0)), ≥)∧[2 + (-1)bso_15] ≥ 0)
(11) (0=x1[4]∧0=x0[4] ⇒ COND_579_0_MAIN_LOAD(TRUE, 0, 0)≥NonInfC∧COND_579_0_MAIN_LOAD(TRUE, 0, 0)≥579_0_MAIN_LOAD(0, 0)∧(UIncreasing(579_0_MAIN_LOAD(0, 0)), ≥))
(12) (COND_579_0_MAIN_LOAD(TRUE, 0, 0)≥NonInfC∧COND_579_0_MAIN_LOAD(TRUE, 0, 0)≥579_0_MAIN_LOAD(0, 0)∧(UIncreasing(579_0_MAIN_LOAD(0, 0)), ≥))
(13) ((UIncreasing(579_0_MAIN_LOAD(0, 0)), ≥)∧[2 + (-1)bso_15] ≥ 0)
(14) ((UIncreasing(579_0_MAIN_LOAD(0, 0)), ≥)∧[2 + (-1)bso_15] ≥ 0)
(15) ((UIncreasing(579_0_MAIN_LOAD(0, 0)), ≥)∧[2 + (-1)bso_15] ≥ 0)
(16) (&&(>(x1[2], 0), <(0, +(0, x1[2])))=TRUE∧x1[2]=x1[3] ⇒ 579_0_MAIN_LOAD(x1[2], 0)≥NonInfC∧579_0_MAIN_LOAD(x1[2], 0)≥COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)∧(UIncreasing(COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)), ≥))
(17) (>(x1[2], 0)=TRUE∧<(0, +(0, x1[2]))=TRUE ⇒ 579_0_MAIN_LOAD(x1[2], 0)≥NonInfC∧579_0_MAIN_LOAD(x1[2], 0)≥COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)∧(UIncreasing(COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)), ≥))
(18) (x1[2] + [-1] ≥ 0∧[-1] + x1[2] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] ≥ 0∧[(-1)bso_17] ≥ 0)
(19) (x1[2] + [-1] ≥ 0∧[-1] + x1[2] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] ≥ 0∧[(-1)bso_17] ≥ 0)
(20) (x1[2] + [-1] ≥ 0∧[-1] + x1[2] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] ≥ 0∧[(-1)bso_17] ≥ 0)
(21) (x1[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] ≥ 0∧[(-1)bso_17] ≥ 0)
(22) (COND_579_0_MAIN_LOAD1(TRUE, x1[3], 0)≥NonInfC∧COND_579_0_MAIN_LOAD1(TRUE, x1[3], 0)≥579_0_MAIN_LOAD(+(x1[3], -1), 0)∧(UIncreasing(579_0_MAIN_LOAD(+(x1[3], -1), 0)), ≥))
(23) ((UIncreasing(579_0_MAIN_LOAD(+(x1[3], -1), 0)), ≥)∧[(-1)bso_19] ≥ 0)
(24) ((UIncreasing(579_0_MAIN_LOAD(+(x1[3], -1), 0)), ≥)∧[(-1)bso_19] ≥ 0)
(25) ((UIncreasing(579_0_MAIN_LOAD(+(x1[3], -1), 0)), ≥)∧[(-1)bso_19] ≥ 0)
(26) ((UIncreasing(579_0_MAIN_LOAD(+(x1[3], -1), 0)), ≥)∧0 = 0∧[(-1)bso_19] ≥ 0)
(27) (&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4])))=TRUE∧x1[4]=x1[5]∧x0[4]=x0[5] ⇒ 579_0_MAIN_LOAD(x1[4], x0[4])≥NonInfC∧579_0_MAIN_LOAD(x1[4], x0[4])≥COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])∧(UIncreasing(COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])), ≥))
(28) (<(0, +(x0[4], x1[4]))=TRUE∧>=(x1[4], 0)=TRUE∧>(x0[4], 0)=TRUE ⇒ 579_0_MAIN_LOAD(x1[4], x0[4])≥NonInfC∧579_0_MAIN_LOAD(x1[4], x0[4])≥COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])∧(UIncreasing(COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])), ≥))
(29) (x0[4] + [-1] + x1[4] ≥ 0∧x1[4] ≥ 0∧x0[4] + [-1] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] ≥ 0∧[(-1)bso_21] ≥ 0)
(30) (x0[4] + [-1] + x1[4] ≥ 0∧x1[4] ≥ 0∧x0[4] + [-1] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] ≥ 0∧[(-1)bso_21] ≥ 0)
(31) (x0[4] + [-1] + x1[4] ≥ 0∧x1[4] ≥ 0∧x0[4] + [-1] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] ≥ 0∧[(-1)bso_21] ≥ 0)
(32) (x0[4] + x1[4] ≥ 0∧x1[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] ≥ 0∧[(-1)bso_21] ≥ 0)
(33) (COND_579_0_MAIN_LOAD2(TRUE, x1[5], x0[5])≥NonInfC∧COND_579_0_MAIN_LOAD2(TRUE, x1[5], x0[5])≥579_0_MAIN_LOAD(x1[5], +(x0[5], -1))∧(UIncreasing(579_0_MAIN_LOAD(x1[5], +(x0[5], -1))), ≥))
(34) ((UIncreasing(579_0_MAIN_LOAD(x1[5], +(x0[5], -1))), ≥)∧[(-1)bso_23] ≥ 0)
(35) ((UIncreasing(579_0_MAIN_LOAD(x1[5], +(x0[5], -1))), ≥)∧[(-1)bso_23] ≥ 0)
(36) ((UIncreasing(579_0_MAIN_LOAD(x1[5], +(x0[5], -1))), ≥)∧[(-1)bso_23] ≥ 0)
(37) ((UIncreasing(579_0_MAIN_LOAD(x1[5], +(x0[5], -1))), ≥)∧0 = 0∧0 = 0∧[(-1)bso_23] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(579_0_MAIN_LOAD(x1, x2)) = [-1]
POL(0) = 0
POL(COND_579_0_MAIN_LOAD(x1, x2, x3)) = [1]
POL(<(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(COND_579_0_MAIN_LOAD1(x1, x2, x3)) = [-1]
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(-1) = [-1]
POL(COND_579_0_MAIN_LOAD2(x1, x2, x3)) = [-1]
POL(>=(x1, x2)) = [-1]
579_0_MAIN_LOAD(0, 0) → COND_579_0_MAIN_LOAD(<(0, +(0, 0)), 0, 0)
COND_579_0_MAIN_LOAD(TRUE, 0, 0) → 579_0_MAIN_LOAD(0, 0)
579_0_MAIN_LOAD(0, 0) → COND_579_0_MAIN_LOAD(<(0, +(0, 0)), 0, 0)
579_0_MAIN_LOAD(x1[2], 0) → COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)
579_0_MAIN_LOAD(x1[4], x0[4]) → COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])
579_0_MAIN_LOAD(x1[2], 0) → COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)
COND_579_0_MAIN_LOAD1(TRUE, x1[3], 0) → 579_0_MAIN_LOAD(+(x1[3], -1), 0)
579_0_MAIN_LOAD(x1[4], x0[4]) → COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])
COND_579_0_MAIN_LOAD2(TRUE, x1[5], x0[5]) → 579_0_MAIN_LOAD(x1[5], +(x0[5], -1))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(3) -> (2), if (x1[3] + -1 →* x1[2])
(5) -> (2), if ((x1[5] →* x1[2])∧(x0[5] + -1 →* 0))
(2) -> (3), if ((x1[2] > 0 && 0 < 0 + x1[2] →* TRUE)∧(x1[2] →* x1[3]))
(3) -> (4), if ((x1[3] + -1 →* x1[4])∧(0 →* x0[4]))
(5) -> (4), if ((x1[5] →* x1[4])∧(x0[5] + -1 →* x0[4]))
(4) -> (5), if ((x1[4] >= 0 && x0[4] > 0 && 0 < x0[4] + x1[4] →* TRUE)∧(x1[4] →* x1[5])∧(x0[4] →* x0[5]))
(1) (&&(>(x1[2], 0), <(0, +(0, x1[2])))=TRUE∧x1[2]=x1[3] ⇒ 579_0_MAIN_LOAD(x1[2], 0)≥NonInfC∧579_0_MAIN_LOAD(x1[2], 0)≥COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)∧(UIncreasing(COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)), ≥))
(2) (>(x1[2], 0)=TRUE∧<(0, +(0, x1[2]))=TRUE ⇒ 579_0_MAIN_LOAD(x1[2], 0)≥NonInfC∧579_0_MAIN_LOAD(x1[2], 0)≥COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)∧(UIncreasing(COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)), ≥))
(3) (x1[2] + [-1] ≥ 0∧[-1] + x1[2] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)), ≥)∧[bni_10 + (-1)Bound*bni_10] ≥ 0∧[(-1)bso_11] ≥ 0)
(4) (x1[2] + [-1] ≥ 0∧[-1] + x1[2] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)), ≥)∧[bni_10 + (-1)Bound*bni_10] ≥ 0∧[(-1)bso_11] ≥ 0)
(5) (x1[2] + [-1] ≥ 0∧[-1] + x1[2] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)), ≥)∧[bni_10 + (-1)Bound*bni_10] ≥ 0∧[(-1)bso_11] ≥ 0)
(6) (x1[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)), ≥)∧[bni_10 + (-1)Bound*bni_10] ≥ 0∧[(-1)bso_11] ≥ 0)
(7) (COND_579_0_MAIN_LOAD1(TRUE, x1[3], 0)≥NonInfC∧COND_579_0_MAIN_LOAD1(TRUE, x1[3], 0)≥579_0_MAIN_LOAD(+(x1[3], -1), 0)∧(UIncreasing(579_0_MAIN_LOAD(+(x1[3], -1), 0)), ≥))
(8) ((UIncreasing(579_0_MAIN_LOAD(+(x1[3], -1), 0)), ≥)∧[(-1)bso_13] ≥ 0)
(9) ((UIncreasing(579_0_MAIN_LOAD(+(x1[3], -1), 0)), ≥)∧[(-1)bso_13] ≥ 0)
(10) ((UIncreasing(579_0_MAIN_LOAD(+(x1[3], -1), 0)), ≥)∧[(-1)bso_13] ≥ 0)
(11) ((UIncreasing(579_0_MAIN_LOAD(+(x1[3], -1), 0)), ≥)∧0 = 0∧[(-1)bso_13] ≥ 0)
(12) (&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4])))=TRUE∧x1[4]=x1[5]∧x0[4]=x0[5] ⇒ 579_0_MAIN_LOAD(x1[4], x0[4])≥NonInfC∧579_0_MAIN_LOAD(x1[4], x0[4])≥COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])∧(UIncreasing(COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])), ≥))
(13) (<(0, +(x0[4], x1[4]))=TRUE∧>=(x1[4], 0)=TRUE∧>(x0[4], 0)=TRUE ⇒ 579_0_MAIN_LOAD(x1[4], x0[4])≥NonInfC∧579_0_MAIN_LOAD(x1[4], x0[4])≥COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])∧(UIncreasing(COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])), ≥))
(14) (x0[4] + [-1] + x1[4] ≥ 0∧x1[4] ≥ 0∧x0[4] + [-1] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])), ≥)∧[bni_14 + (-1)Bound*bni_14] + [bni_14]x0[4] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(15) (x0[4] + [-1] + x1[4] ≥ 0∧x1[4] ≥ 0∧x0[4] + [-1] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])), ≥)∧[bni_14 + (-1)Bound*bni_14] + [bni_14]x0[4] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(16) (x0[4] + [-1] + x1[4] ≥ 0∧x1[4] ≥ 0∧x0[4] + [-1] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])), ≥)∧[bni_14 + (-1)Bound*bni_14] + [bni_14]x0[4] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(17) (x0[4] + x1[4] ≥ 0∧x1[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])), ≥)∧[(2)bni_14 + (-1)Bound*bni_14] + [bni_14]x0[4] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(18) (COND_579_0_MAIN_LOAD2(TRUE, x1[5], x0[5])≥NonInfC∧COND_579_0_MAIN_LOAD2(TRUE, x1[5], x0[5])≥579_0_MAIN_LOAD(x1[5], +(x0[5], -1))∧(UIncreasing(579_0_MAIN_LOAD(x1[5], +(x0[5], -1))), ≥))
(19) ((UIncreasing(579_0_MAIN_LOAD(x1[5], +(x0[5], -1))), ≥)∧[(-1)bso_17] ≥ 0)
(20) ((UIncreasing(579_0_MAIN_LOAD(x1[5], +(x0[5], -1))), ≥)∧[(-1)bso_17] ≥ 0)
(21) ((UIncreasing(579_0_MAIN_LOAD(x1[5], +(x0[5], -1))), ≥)∧[(-1)bso_17] ≥ 0)
(22) ((UIncreasing(579_0_MAIN_LOAD(x1[5], +(x0[5], -1))), ≥)∧0 = 0∧0 = 0∧[(-1)bso_17] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(579_0_MAIN_LOAD(x1, x2)) = [1] + x2
POL(0) = 0
POL(COND_579_0_MAIN_LOAD1(x1, x2, x3)) = [1]
POL(&&(x1, x2)) = 0
POL(>(x1, x2)) = [-1]
POL(<(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(COND_579_0_MAIN_LOAD2(x1, x2, x3)) = x3
POL(>=(x1, x2)) = 0
579_0_MAIN_LOAD(x1[4], x0[4]) → COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])
579_0_MAIN_LOAD(x1[2], 0) → COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)
579_0_MAIN_LOAD(x1[4], x0[4]) → COND_579_0_MAIN_LOAD2(&&(&&(>=(x1[4], 0), >(x0[4], 0)), <(0, +(x0[4], x1[4]))), x1[4], x0[4])
579_0_MAIN_LOAD(x1[2], 0) → COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)
COND_579_0_MAIN_LOAD1(TRUE, x1[3], 0) → 579_0_MAIN_LOAD(+(x1[3], -1), 0)
COND_579_0_MAIN_LOAD2(TRUE, x1[5], x0[5]) → 579_0_MAIN_LOAD(x1[5], +(x0[5], -1))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(3) -> (2), if (x1[3] + -1 →* x1[2])
(5) -> (2), if ((x1[5] →* x1[2])∧(x0[5] + -1 →* 0))
(2) -> (3), if ((x1[2] > 0 && 0 < 0 + x1[2] →* TRUE)∧(x1[2] →* x1[3]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(3) -> (2), if (x1[3] + -1 →* x1[2])
(2) -> (3), if ((x1[2] > 0 && 0 < 0 + x1[2] →* TRUE)∧(x1[2] →* x1[3]))
(1) (COND_579_0_MAIN_LOAD1(TRUE, x1[3], 0)≥NonInfC∧COND_579_0_MAIN_LOAD1(TRUE, x1[3], 0)≥579_0_MAIN_LOAD(+(x1[3], -1), 0)∧(UIncreasing(579_0_MAIN_LOAD(+(x1[3], -1), 0)), ≥))
(2) ((UIncreasing(579_0_MAIN_LOAD(+(x1[3], -1), 0)), ≥)∧[1 + (-1)bso_9] ≥ 0)
(3) ((UIncreasing(579_0_MAIN_LOAD(+(x1[3], -1), 0)), ≥)∧[1 + (-1)bso_9] ≥ 0)
(4) ((UIncreasing(579_0_MAIN_LOAD(+(x1[3], -1), 0)), ≥)∧[1 + (-1)bso_9] ≥ 0)
(5) ((UIncreasing(579_0_MAIN_LOAD(+(x1[3], -1), 0)), ≥)∧0 = 0∧[1 + (-1)bso_9] ≥ 0)
(6) (&&(>(x1[2], 0), <(0, +(0, x1[2])))=TRUE∧x1[2]=x1[3] ⇒ 579_0_MAIN_LOAD(x1[2], 0)≥NonInfC∧579_0_MAIN_LOAD(x1[2], 0)≥COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)∧(UIncreasing(COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)), ≥))
(7) (>(x1[2], 0)=TRUE∧<(0, +(0, x1[2]))=TRUE ⇒ 579_0_MAIN_LOAD(x1[2], 0)≥NonInfC∧579_0_MAIN_LOAD(x1[2], 0)≥COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)∧(UIncreasing(COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)), ≥))
(8) (x1[2] + [-1] ≥ 0∧[-1] + x1[2] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] + [bni_10]x1[2] ≥ 0∧[(-1)bso_11] ≥ 0)
(9) (x1[2] + [-1] ≥ 0∧[-1] + x1[2] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] + [bni_10]x1[2] ≥ 0∧[(-1)bso_11] ≥ 0)
(10) (x1[2] + [-1] ≥ 0∧[-1] + x1[2] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] + [bni_10]x1[2] ≥ 0∧[(-1)bso_11] ≥ 0)
(11) (x1[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)), ≥)∧[(-1)Bound*bni_10] + [bni_10]x1[2] ≥ 0∧[(-1)bso_11] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_579_0_MAIN_LOAD1(x1, x2, x3)) = [-1] + x2
POL(0) = 0
POL(579_0_MAIN_LOAD(x1, x2)) = [-1] + x1
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(&&(x1, x2)) = [1]
POL(>(x1, x2)) = [-1]
POL(<(x1, x2)) = [-1]
COND_579_0_MAIN_LOAD1(TRUE, x1[3], 0) → 579_0_MAIN_LOAD(+(x1[3], -1), 0)
579_0_MAIN_LOAD(x1[2], 0) → COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)
579_0_MAIN_LOAD(x1[2], 0) → COND_579_0_MAIN_LOAD1(&&(>(x1[2], 0), <(0, +(0, x1[2]))), x1[2], 0)
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer