0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 ITRStoIDPProof (⇔)
↳6 IDP
↳7 UsableRulesProof (⇔)
↳8 IDP
↳9 IDPNonInfProof (⇐)
↳10 AND
↳11 IDP
↳12 IDependencyGraphProof (⇔)
↳13 TRUE
↳14 IDP
↳15 IDependencyGraphProof (⇔)
↳16 TRUE
No human-readable program information known.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i130[0] →* i130[1])∧(i36[0] + i130[0] >= 0 && i12[0] > i36[0] + i130[0] →* TRUE)∧(i36[0] →* i36[1])∧(i12[0] →* i12[1]))
(1) -> (0), if ((i12[1] →* i12[0])∧(i130[1] + 1 →* i130[0])∧(i36[1] + 1 →* i36[0]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i130[0] →* i130[1])∧(i36[0] + i130[0] >= 0 && i12[0] > i36[0] + i130[0] →* TRUE)∧(i36[0] →* i36[1])∧(i12[0] →* i12[1]))
(1) -> (0), if ((i12[1] →* i12[0])∧(i130[1] + 1 →* i130[0])∧(i36[1] + 1 →* i36[0]))
(1) (i130[0]=i130[1]∧&&(>=(+(i36[0], i130[0]), 0), >(i12[0], +(i36[0], i130[0])))=TRUE∧i36[0]=i36[1]∧i12[0]=i12[1] ⇒ LOAD817(i12[0], i36[0], i130[0])≥NonInfC∧LOAD817(i12[0], i36[0], i130[0])≥COND_LOAD817(&&(>=(+(i36[0], i130[0]), 0), >(i12[0], +(i36[0], i130[0]))), i12[0], i36[0], i130[0])∧(UIncreasing(COND_LOAD817(&&(>=(+(i36[0], i130[0]), 0), >(i12[0], +(i36[0], i130[0]))), i12[0], i36[0], i130[0])), ≥))
(2) (>=(+(i36[0], i130[0]), 0)=TRUE∧>(i12[0], +(i36[0], i130[0]))=TRUE ⇒ LOAD817(i12[0], i36[0], i130[0])≥NonInfC∧LOAD817(i12[0], i36[0], i130[0])≥COND_LOAD817(&&(>=(+(i36[0], i130[0]), 0), >(i12[0], +(i36[0], i130[0]))), i12[0], i36[0], i130[0])∧(UIncreasing(COND_LOAD817(&&(>=(+(i36[0], i130[0]), 0), >(i12[0], +(i36[0], i130[0]))), i12[0], i36[0], i130[0])), ≥))
(3) (i36[0] + i130[0] ≥ 0∧i12[0] + [-1] + [-1]i36[0] + [-1]i130[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD817(&&(>=(+(i36[0], i130[0]), 0), >(i12[0], +(i36[0], i130[0]))), i12[0], i36[0], i130[0])), ≥)∧[bni_11 + (-1)Bound*bni_11] + [(-1)bni_11]i130[0] + [(-1)bni_11]i36[0] + [(2)bni_11]i12[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(4) (i36[0] + i130[0] ≥ 0∧i12[0] + [-1] + [-1]i36[0] + [-1]i130[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD817(&&(>=(+(i36[0], i130[0]), 0), >(i12[0], +(i36[0], i130[0]))), i12[0], i36[0], i130[0])), ≥)∧[bni_11 + (-1)Bound*bni_11] + [(-1)bni_11]i130[0] + [(-1)bni_11]i36[0] + [(2)bni_11]i12[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(5) (i36[0] + i130[0] ≥ 0∧i12[0] + [-1] + [-1]i36[0] + [-1]i130[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD817(&&(>=(+(i36[0], i130[0]), 0), >(i12[0], +(i36[0], i130[0]))), i12[0], i36[0], i130[0])), ≥)∧[bni_11 + (-1)Bound*bni_11] + [(-1)bni_11]i130[0] + [(-1)bni_11]i36[0] + [(2)bni_11]i12[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(6) (i36[0] ≥ 0∧i12[0] + [-1] + [-1]i36[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD817(&&(>=(+(i36[0], i130[0]), 0), >(i12[0], +(i36[0], i130[0]))), i12[0], i36[0], i130[0])), ≥)∧[bni_11 + (-1)Bound*bni_11] + [(-1)bni_11]i36[0] + [(2)bni_11]i12[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(7) (i36[0] ≥ 0∧i12[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD817(&&(>=(+(i36[0], i130[0]), 0), >(i12[0], +(i36[0], i130[0]))), i12[0], i36[0], i130[0])), ≥)∧[(3)bni_11 + (-1)Bound*bni_11] + [bni_11]i36[0] + [(2)bni_11]i12[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(8) (i36[0] ≥ 0∧i12[0] ≥ 0∧i130[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD817(&&(>=(+(i36[0], i130[0]), 0), >(i12[0], +(i36[0], i130[0]))), i12[0], i36[0], i130[0])), ≥)∧[(3)bni_11 + (-1)Bound*bni_11] + [bni_11]i36[0] + [(2)bni_11]i12[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(9) (i36[0] ≥ 0∧i12[0] ≥ 0∧i130[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD817(&&(>=(+(i36[0], i130[0]), 0), >(i12[0], +(i36[0], i130[0]))), i12[0], i36[0], i130[0])), ≥)∧[(3)bni_11 + (-1)Bound*bni_11] + [bni_11]i36[0] + [(2)bni_11]i12[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(10) (COND_LOAD817(TRUE, i12[1], i36[1], i130[1])≥NonInfC∧COND_LOAD817(TRUE, i12[1], i36[1], i130[1])≥LOAD817(i12[1], +(i36[1], 1), +(i130[1], 1))∧(UIncreasing(LOAD817(i12[1], +(i36[1], 1), +(i130[1], 1))), ≥))
(11) ((UIncreasing(LOAD817(i12[1], +(i36[1], 1), +(i130[1], 1))), ≥)∧[2 + (-1)bso_14] ≥ 0)
(12) ((UIncreasing(LOAD817(i12[1], +(i36[1], 1), +(i130[1], 1))), ≥)∧[2 + (-1)bso_14] ≥ 0)
(13) ((UIncreasing(LOAD817(i12[1], +(i36[1], 1), +(i130[1], 1))), ≥)∧[2 + (-1)bso_14] ≥ 0)
(14) ((UIncreasing(LOAD817(i12[1], +(i36[1], 1), +(i130[1], 1))), ≥)∧0 = 0∧0 = 0∧0 = 0∧[2 + (-1)bso_14] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD817(x1, x2, x3)) = [1] + [-1]x3 + [-1]x2 + [2]x1
POL(COND_LOAD817(x1, x2, x3, x4)) = [1] + [-1]x4 + [-1]x3 + [2]x2
POL(&&(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(0) = 0
POL(>(x1, x2)) = [-1]
POL(1) = [1]
COND_LOAD817(TRUE, i12[1], i36[1], i130[1]) → LOAD817(i12[1], +(i36[1], 1), +(i130[1], 1))
LOAD817(i12[0], i36[0], i130[0]) → COND_LOAD817(&&(>=(+(i36[0], i130[0]), 0), >(i12[0], +(i36[0], i130[0]))), i12[0], i36[0], i130[0])
LOAD817(i12[0], i36[0], i130[0]) → COND_LOAD817(&&(>=(+(i36[0], i130[0]), 0), >(i12[0], +(i36[0], i130[0]))), i12[0], i36[0], i130[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer