0 JBC
↳1 JBC2FIG (⇐)
↳2 FIGraph
↳3 FIGtoITRSProof (⇐)
↳4 ITRS
↳5 ITRStoIDPProof (⇔)
↳6 IDP
↳7 UsableRulesProof (⇔)
↳8 IDP
↳9 IDPNonInfProof (⇐)
↳10 AND
↳11 IDP
↳12 IDependencyGraphProof (⇔)
↳13 TRUE
↳14 IDP
↳15 IDependencyGraphProof (⇔)
↳16 TRUE
No human-readable program information known.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i12[0] →* i12[1])∧(i59[0] →* i59[1])∧(i58[0] →* i58[1])∧(i58[0] >= 0 && i12[0] > i58[0] →* TRUE))
(1) -> (0), if ((i59[1] + 1 →* i59[0])∧(i12[1] →* i12[0])∧(i58[1] + 1 →* i58[0]))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((i12[0] →* i12[1])∧(i59[0] →* i59[1])∧(i58[0] →* i58[1])∧(i58[0] >= 0 && i12[0] > i58[0] →* TRUE))
(1) -> (0), if ((i59[1] + 1 →* i59[0])∧(i12[1] →* i12[0])∧(i58[1] + 1 →* i58[0]))
(1) (i12[0]=i12[1]∧i59[0]=i59[1]∧i58[0]=i58[1]∧&&(>=(i58[0], 0), >(i12[0], i58[0]))=TRUE ⇒ LOAD612(i12[0], i58[0], i59[0])≥NonInfC∧LOAD612(i12[0], i58[0], i59[0])≥COND_LOAD612(&&(>=(i58[0], 0), >(i12[0], i58[0])), i12[0], i58[0], i59[0])∧(UIncreasing(COND_LOAD612(&&(>=(i58[0], 0), >(i12[0], i58[0])), i12[0], i58[0], i59[0])), ≥))
(2) (>=(i58[0], 0)=TRUE∧>(i12[0], i58[0])=TRUE ⇒ LOAD612(i12[0], i58[0], i59[0])≥NonInfC∧LOAD612(i12[0], i58[0], i59[0])≥COND_LOAD612(&&(>=(i58[0], 0), >(i12[0], i58[0])), i12[0], i58[0], i59[0])∧(UIncreasing(COND_LOAD612(&&(>=(i58[0], 0), >(i12[0], i58[0])), i12[0], i58[0], i59[0])), ≥))
(3) (i58[0] ≥ 0∧i12[0] + [-1] + [-1]i58[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD612(&&(>=(i58[0], 0), >(i12[0], i58[0])), i12[0], i58[0], i59[0])), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [(-1)bni_11]i58[0] + [bni_11]i12[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(4) (i58[0] ≥ 0∧i12[0] + [-1] + [-1]i58[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD612(&&(>=(i58[0], 0), >(i12[0], i58[0])), i12[0], i58[0], i59[0])), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [(-1)bni_11]i58[0] + [bni_11]i12[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(5) (i58[0] ≥ 0∧i12[0] + [-1] + [-1]i58[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD612(&&(>=(i58[0], 0), >(i12[0], i58[0])), i12[0], i58[0], i59[0])), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [(-1)bni_11]i58[0] + [bni_11]i12[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(6) (i58[0] ≥ 0∧i12[0] + [-1] + [-1]i58[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD612(&&(>=(i58[0], 0), >(i12[0], i58[0])), i12[0], i58[0], i59[0])), ≥)∧0 = 0∧[(-1)bni_11 + (-1)Bound*bni_11] + [(-1)bni_11]i58[0] + [bni_11]i12[0] ≥ 0∧0 = 0∧[(-1)bso_12] ≥ 0)
(7) (i58[0] ≥ 0∧i12[0] ≥ 0 ⇒ (UIncreasing(COND_LOAD612(&&(>=(i58[0], 0), >(i12[0], i58[0])), i12[0], i58[0], i59[0])), ≥)∧0 = 0∧[(-1)Bound*bni_11] + [bni_11]i12[0] ≥ 0∧0 = 0∧[(-1)bso_12] ≥ 0)
(8) (COND_LOAD612(TRUE, i12[1], i58[1], i59[1])≥NonInfC∧COND_LOAD612(TRUE, i12[1], i58[1], i59[1])≥LOAD612(i12[1], +(i58[1], 1), +(i59[1], 1))∧(UIncreasing(LOAD612(i12[1], +(i58[1], 1), +(i59[1], 1))), ≥))
(9) ((UIncreasing(LOAD612(i12[1], +(i58[1], 1), +(i59[1], 1))), ≥)∧[1 + (-1)bso_14] ≥ 0)
(10) ((UIncreasing(LOAD612(i12[1], +(i58[1], 1), +(i59[1], 1))), ≥)∧[1 + (-1)bso_14] ≥ 0)
(11) ((UIncreasing(LOAD612(i12[1], +(i58[1], 1), +(i59[1], 1))), ≥)∧[1 + (-1)bso_14] ≥ 0)
(12) ((UIncreasing(LOAD612(i12[1], +(i58[1], 1), +(i59[1], 1))), ≥)∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_14] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(LOAD612(x1, x2, x3)) = [-1] + [-1]x2 + x1
POL(COND_LOAD612(x1, x2, x3, x4)) = [-1] + [-1]x3 + x2
POL(&&(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(0) = 0
POL(>(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
COND_LOAD612(TRUE, i12[1], i58[1], i59[1]) → LOAD612(i12[1], +(i58[1], 1), +(i59[1], 1))
LOAD612(i12[0], i58[0], i59[0]) → COND_LOAD612(&&(>=(i58[0], 0), >(i12[0], i58[0])), i12[0], i58[0], i59[0])
LOAD612(i12[0], i58[0], i59[0]) → COND_LOAD612(&&(>=(i58[0], 0), >(i12[0], i58[0])), i12[0], i58[0], i59[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer