0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 IDP
↳7 IDependencyGraphProof (⇔)
↳8 IDP
↳9 IDPNonInfProof (⇒)
↳10 IDP
↳11 IDependencyGraphProof (⇔)
↳12 TRUE
public class GCD3 {
public static int mod(int a, int b) {
if(b == 0) {
return b;
}
if(b < 0) {
a = -a;
}
if(a > 0) {
while(a>=b) {
a -= b;
}
return a;
} else {
while(a < 0) {
a -= b;
}
return a;
}
}
public static int gcd(int a, int b) {
int tmp;
while(b > 0 && a > 0) {
tmp = b;
b = mod(a, b);
a = tmp;
}
return a;
}
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
gcd(x, y);
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 37 rules for P and 8 rules for R.
Combined rules. Obtained 2 rules for P and 0 rules for R.
Filtered ground terms:
1129_0_mod_LT(x1, x2, x3, x4, x5) → 1129_0_mod_LT(x2, x3, x4, x5)
Filtered duplicate args:
1129_0_mod_LT(x1, x2, x3, x4) → 1129_0_mod_LT(x3, x4)
1129_1_gcd_InvokeMethod(x1, x2, x3) → 1129_1_gcd_InvokeMethod(x1, x3)
Combined rules. Obtained 2 rules for P and 0 rules for R.
Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((x1[0] > x0[0] && x1[0] > 0 && x0[0] > 0 →* TRUE)∧(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0]) →* 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[1], x1[1]), x1[1])))
(1) -> (0), if ((1129_1_gcd_InvokeMethod(1129_0_mod_LT(x1[1], x0[1]), x0[1]) →* 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0])))
(1) -> (2), if ((1129_1_gcd_InvokeMethod(1129_0_mod_LT(x1[1], x0[1]), x0[1]) →* 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[2], x1[2]), x1[2])))
(2) -> (3), if ((x1[2] > 0 && x1[2] <= x0[2] →* TRUE)∧(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[2], x1[2]), x1[2]) →* 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[3], x1[3]), x1[3])))
(3) -> (0), if ((1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[3] - x1[3], x1[3]), x1[3]) →* 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0])))
(3) -> (2), if ((1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[3] - x1[3], x1[3]), x1[3]) →* 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[2], x1[2]), x1[2])))
(1) (&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0))=TRUE∧1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0])=1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[1], x1[1]), x1[1]) ⇒ 1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0]))≥NonInfC∧1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0]))≥COND_1129_2_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0]))∧(UIncreasing(COND_1129_2_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0]))), ≥))
(2) (>(x0[0], 0)=TRUE∧>(x1[0], x0[0])=TRUE∧>(x1[0], 0)=TRUE ⇒ 1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0]))≥NonInfC∧1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0]))≥COND_1129_2_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0]))∧(UIncreasing(COND_1129_2_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0]))), ≥))
(3) (x0[0] + [-1] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1129_2_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0]))), ≥)∧[(-1)Bound*bni_20] + [bni_20]x1[0] + [bni_20]x0[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(4) (x0[0] + [-1] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1129_2_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0]))), ≥)∧[(-1)Bound*bni_20] + [bni_20]x1[0] + [bni_20]x0[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(5) (x0[0] + [-1] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1129_2_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0]))), ≥)∧[(-1)Bound*bni_20] + [bni_20]x1[0] + [bni_20]x0[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(6) (x0[0] ≥ 0∧x1[0] + [-2] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1129_2_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0]))), ≥)∧[(-1)Bound*bni_20 + bni_20] + [bni_20]x1[0] + [bni_20]x0[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(7) (x0[0] ≥ 0∧x1[0] ≥ 0∧[1] + x0[0] + x1[0] ≥ 0 ⇒ (UIncreasing(COND_1129_2_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0]))), ≥)∧[(-1)Bound*bni_20 + (3)bni_20] + [(2)bni_20]x0[0] + [bni_20]x1[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(8) (&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0))=TRUE∧1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0])=1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[1], x1[1]), x1[1])∧1129_1_gcd_InvokeMethod(1129_0_mod_LT(x1[1], x0[1]), x0[1])=1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0]1, x1[0]1), x1[0]1) ⇒ COND_1129_2_MAIN_INVOKEMETHOD(TRUE, 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[1], x1[1]), x1[1]))≥NonInfC∧COND_1129_2_MAIN_INVOKEMETHOD(TRUE, 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[1], x1[1]), x1[1]))≥1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x1[1], x0[1]), x0[1]))∧(UIncreasing(1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x1[1], x0[1]), x0[1]))), ≥))
(9) (>(x0[0], 0)=TRUE∧>(x1[0], x0[0])=TRUE∧>(x1[0], 0)=TRUE ⇒ COND_1129_2_MAIN_INVOKEMETHOD(TRUE, 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0]))≥NonInfC∧COND_1129_2_MAIN_INVOKEMETHOD(TRUE, 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0]))≥1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x1[0], x0[0]), x0[0]))∧(UIncreasing(1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x1[1], x0[1]), x0[1]))), ≥))
(10) (x0[0] + [-1] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x1[1], x0[1]), x0[1]))), ≥)∧[(-1)Bound*bni_22] + [bni_22]x1[0] + [bni_22]x0[0] ≥ 0∧[(-1)bso_23] ≥ 0)
(11) (x0[0] + [-1] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x1[1], x0[1]), x0[1]))), ≥)∧[(-1)Bound*bni_22] + [bni_22]x1[0] + [bni_22]x0[0] ≥ 0∧[(-1)bso_23] ≥ 0)
(12) (x0[0] + [-1] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x1[1], x0[1]), x0[1]))), ≥)∧[(-1)Bound*bni_22] + [bni_22]x1[0] + [bni_22]x0[0] ≥ 0∧[(-1)bso_23] ≥ 0)
(13) (x0[0] ≥ 0∧x1[0] + [-2] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x1[1], x0[1]), x0[1]))), ≥)∧[(-1)Bound*bni_22 + bni_22] + [bni_22]x1[0] + [bni_22]x0[0] ≥ 0∧[(-1)bso_23] ≥ 0)
(14) (x0[0] ≥ 0∧x1[0] ≥ 0∧[1] + x0[0] + x1[0] ≥ 0 ⇒ (UIncreasing(1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x1[1], x0[1]), x0[1]))), ≥)∧[(-1)Bound*bni_22 + (3)bni_22] + [(2)bni_22]x0[0] + [bni_22]x1[0] ≥ 0∧[(-1)bso_23] ≥ 0)
(15) (&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0))=TRUE∧1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0])=1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[1], x1[1]), x1[1])∧1129_1_gcd_InvokeMethod(1129_0_mod_LT(x1[1], x0[1]), x0[1])=1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[2], x1[2]), x1[2]) ⇒ COND_1129_2_MAIN_INVOKEMETHOD(TRUE, 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[1], x1[1]), x1[1]))≥NonInfC∧COND_1129_2_MAIN_INVOKEMETHOD(TRUE, 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[1], x1[1]), x1[1]))≥1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x1[1], x0[1]), x0[1]))∧(UIncreasing(1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x1[1], x0[1]), x0[1]))), ≥))
(16) (>(x0[0], 0)=TRUE∧>(x1[0], x0[0])=TRUE∧>(x1[0], 0)=TRUE ⇒ COND_1129_2_MAIN_INVOKEMETHOD(TRUE, 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0]))≥NonInfC∧COND_1129_2_MAIN_INVOKEMETHOD(TRUE, 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0]))≥1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x1[0], x0[0]), x0[0]))∧(UIncreasing(1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x1[1], x0[1]), x0[1]))), ≥))
(17) (x0[0] + [-1] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x1[1], x0[1]), x0[1]))), ≥)∧[(-1)Bound*bni_22] + [bni_22]x1[0] + [bni_22]x0[0] ≥ 0∧[(-1)bso_23] ≥ 0)
(18) (x0[0] + [-1] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x1[1], x0[1]), x0[1]))), ≥)∧[(-1)Bound*bni_22] + [bni_22]x1[0] + [bni_22]x0[0] ≥ 0∧[(-1)bso_23] ≥ 0)
(19) (x0[0] + [-1] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x1[1], x0[1]), x0[1]))), ≥)∧[(-1)Bound*bni_22] + [bni_22]x1[0] + [bni_22]x0[0] ≥ 0∧[(-1)bso_23] ≥ 0)
(20) (x0[0] ≥ 0∧x1[0] + [-2] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x1[1], x0[1]), x0[1]))), ≥)∧[(-1)Bound*bni_22 + bni_22] + [bni_22]x1[0] + [bni_22]x0[0] ≥ 0∧[(-1)bso_23] ≥ 0)
(21) (x0[0] ≥ 0∧x1[0] ≥ 0∧[1] + x0[0] + x1[0] ≥ 0 ⇒ (UIncreasing(1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x1[1], x0[1]), x0[1]))), ≥)∧[(-1)Bound*bni_22 + (3)bni_22] + [(2)bni_22]x0[0] + [bni_22]x1[0] ≥ 0∧[(-1)bso_23] ≥ 0)
(22) (&&(>(x1[2], 0), <=(x1[2], x0[2]))=TRUE∧1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[2], x1[2]), x1[2])=1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[3], x1[3]), x1[3]) ⇒ 1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[2], x1[2]), x1[2]))≥NonInfC∧1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[2], x1[2]), x1[2]))≥COND_1129_2_MAIN_INVOKEMETHOD1(&&(>(x1[2], 0), <=(x1[2], x0[2])), 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[2], x1[2]), x1[2]))∧(UIncreasing(COND_1129_2_MAIN_INVOKEMETHOD1(&&(>(x1[2], 0), <=(x1[2], x0[2])), 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[2], x1[2]), x1[2]))), ≥))
(23) (>(x1[2], 0)=TRUE∧<=(x1[2], x0[2])=TRUE ⇒ 1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[2], x1[2]), x1[2]))≥NonInfC∧1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[2], x1[2]), x1[2]))≥COND_1129_2_MAIN_INVOKEMETHOD1(&&(>(x1[2], 0), <=(x1[2], x0[2])), 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[2], x1[2]), x1[2]))∧(UIncreasing(COND_1129_2_MAIN_INVOKEMETHOD1(&&(>(x1[2], 0), <=(x1[2], x0[2])), 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[2], x1[2]), x1[2]))), ≥))
(24) (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_1129_2_MAIN_INVOKEMETHOD1(&&(>(x1[2], 0), <=(x1[2], x0[2])), 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[2], x1[2]), x1[2]))), ≥)∧[(-1)Bound*bni_24] + [bni_24]x1[2] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(25) (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_1129_2_MAIN_INVOKEMETHOD1(&&(>(x1[2], 0), <=(x1[2], x0[2])), 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[2], x1[2]), x1[2]))), ≥)∧[(-1)Bound*bni_24] + [bni_24]x1[2] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(26) (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_1129_2_MAIN_INVOKEMETHOD1(&&(>(x1[2], 0), <=(x1[2], x0[2])), 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[2], x1[2]), x1[2]))), ≥)∧[(-1)Bound*bni_24] + [bni_24]x1[2] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(27) (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_1129_2_MAIN_INVOKEMETHOD1(&&(>(x1[2], 0), <=(x1[2], x0[2])), 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[2], x1[2]), x1[2]))), ≥)∧[(-1)Bound*bni_24 + bni_24] + [bni_24]x1[2] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(28) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_1129_2_MAIN_INVOKEMETHOD1(&&(>(x1[2], 0), <=(x1[2], x0[2])), 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[2], x1[2]), x1[2]))), ≥)∧[(-1)Bound*bni_24 + (2)bni_24] + [(2)bni_24]x1[2] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(29) (&&(>(x1[2], 0), <=(x1[2], x0[2]))=TRUE∧1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[2], x1[2]), x1[2])=1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[3], x1[3]), x1[3])∧1129_1_gcd_InvokeMethod(1129_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3])=1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0]) ⇒ COND_1129_2_MAIN_INVOKEMETHOD1(TRUE, 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[3], x1[3]), x1[3]))≥NonInfC∧COND_1129_2_MAIN_INVOKEMETHOD1(TRUE, 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[3], x1[3]), x1[3]))≥1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3]))∧(UIncreasing(1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3]))), ≥))
(30) (>(x1[2], 0)=TRUE∧<=(x1[2], x0[2])=TRUE ⇒ COND_1129_2_MAIN_INVOKEMETHOD1(TRUE, 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[2], x1[2]), x1[2]))≥NonInfC∧COND_1129_2_MAIN_INVOKEMETHOD1(TRUE, 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[2], x1[2]), x1[2]))≥1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(-(x0[2], x1[2]), x1[2]), x1[2]))∧(UIncreasing(1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3]))), ≥))
(31) (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3]))), ≥)∧[(-1)Bound*bni_26] + [bni_26]x1[2] + [bni_26]x0[2] ≥ 0∧[(-1)bso_27] + x1[2] ≥ 0)
(32) (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3]))), ≥)∧[(-1)Bound*bni_26] + [bni_26]x1[2] + [bni_26]x0[2] ≥ 0∧[(-1)bso_27] + x1[2] ≥ 0)
(33) (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3]))), ≥)∧[(-1)Bound*bni_26] + [bni_26]x1[2] + [bni_26]x0[2] ≥ 0∧[(-1)bso_27] + x1[2] ≥ 0)
(34) (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3]))), ≥)∧[(-1)Bound*bni_26 + bni_26] + [bni_26]x1[2] + [bni_26]x0[2] ≥ 0∧[1 + (-1)bso_27] + x1[2] ≥ 0)
(35) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3]))), ≥)∧[(-1)Bound*bni_26 + (2)bni_26] + [(2)bni_26]x1[2] + [bni_26]x0[2] ≥ 0∧[1 + (-1)bso_27] + x1[2] ≥ 0)
(36) (&&(>(x1[2], 0), <=(x1[2], x0[2]))=TRUE∧1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[2], x1[2]), x1[2])=1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[3], x1[3]), x1[3])∧1129_1_gcd_InvokeMethod(1129_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3])=1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[2]1, x1[2]1), x1[2]1) ⇒ COND_1129_2_MAIN_INVOKEMETHOD1(TRUE, 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[3], x1[3]), x1[3]))≥NonInfC∧COND_1129_2_MAIN_INVOKEMETHOD1(TRUE, 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[3], x1[3]), x1[3]))≥1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3]))∧(UIncreasing(1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3]))), ≥))
(37) (>(x1[2], 0)=TRUE∧<=(x1[2], x0[2])=TRUE ⇒ COND_1129_2_MAIN_INVOKEMETHOD1(TRUE, 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[2], x1[2]), x1[2]))≥NonInfC∧COND_1129_2_MAIN_INVOKEMETHOD1(TRUE, 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[2], x1[2]), x1[2]))≥1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(-(x0[2], x1[2]), x1[2]), x1[2]))∧(UIncreasing(1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3]))), ≥))
(38) (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3]))), ≥)∧[(-1)Bound*bni_26] + [bni_26]x1[2] + [bni_26]x0[2] ≥ 0∧[(-1)bso_27] + x1[2] ≥ 0)
(39) (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3]))), ≥)∧[(-1)Bound*bni_26] + [bni_26]x1[2] + [bni_26]x0[2] ≥ 0∧[(-1)bso_27] + x1[2] ≥ 0)
(40) (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3]))), ≥)∧[(-1)Bound*bni_26] + [bni_26]x1[2] + [bni_26]x0[2] ≥ 0∧[(-1)bso_27] + x1[2] ≥ 0)
(41) (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3]))), ≥)∧[(-1)Bound*bni_26 + bni_26] + [bni_26]x1[2] + [bni_26]x0[2] ≥ 0∧[1 + (-1)bso_27] + x1[2] ≥ 0)
(42) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3]))), ≥)∧[(-1)Bound*bni_26 + (2)bni_26] + [(2)bni_26]x1[2] + [bni_26]x0[2] ≥ 0∧[1 + (-1)bso_27] + x1[2] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = [2]
POL(1129_2_MAIN_INVOKEMETHOD(x1)) = [-1] + [-1]x1
POL(1129_1_gcd_InvokeMethod(x1, x2)) = x1
POL(1129_0_mod_LT(x1, x2)) = [-1] + [-1]x2 + [-1]x1
POL(COND_1129_2_MAIN_INVOKEMETHOD(x1, x2)) = [-1] + [-1]x2
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(COND_1129_2_MAIN_INVOKEMETHOD1(x1, x2)) = [-1] + [-1]x2
POL(<=(x1, x2)) = [-1]
POL(-(x1, x2)) = x1 + [-1]x2
COND_1129_2_MAIN_INVOKEMETHOD1(TRUE, 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[3], x1[3]), x1[3])) → 1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3]))
1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0])) → COND_1129_2_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0]))
COND_1129_2_MAIN_INVOKEMETHOD(TRUE, 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[1], x1[1]), x1[1])) → 1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x1[1], x0[1]), x0[1]))
1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[2], x1[2]), x1[2])) → COND_1129_2_MAIN_INVOKEMETHOD1(&&(>(x1[2], 0), <=(x1[2], x0[2])), 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[2], x1[2]), x1[2]))
COND_1129_2_MAIN_INVOKEMETHOD1(TRUE, 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[3], x1[3]), x1[3])) → 1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3]))
1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0])) → COND_1129_2_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0]))
COND_1129_2_MAIN_INVOKEMETHOD(TRUE, 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[1], x1[1]), x1[1])) → 1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x1[1], x0[1]), x0[1]))
1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[2], x1[2]), x1[2])) → COND_1129_2_MAIN_INVOKEMETHOD1(&&(>(x1[2], 0), <=(x1[2], x0[2])), 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[2], x1[2]), x1[2]))
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(1) -> (0), if ((1129_1_gcd_InvokeMethod(1129_0_mod_LT(x1[1], x0[1]), x0[1]) →* 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0])))
(0) -> (1), if ((x1[0] > x0[0] && x1[0] > 0 && x0[0] > 0 →* TRUE)∧(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0]) →* 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[1], x1[1]), x1[1])))
(1) -> (2), if ((1129_1_gcd_InvokeMethod(1129_0_mod_LT(x1[1], x0[1]), x0[1]) →* 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[2], x1[2]), x1[2])))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(1) -> (0), if ((1129_1_gcd_InvokeMethod(1129_0_mod_LT(x1[1], x0[1]), x0[1]) →* 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0])))
(0) -> (1), if ((x1[0] > x0[0] && x1[0] > 0 && x0[0] > 0 →* TRUE)∧(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0]) →* 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[1], x1[1]), x1[1])))
(1) (&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0))=TRUE∧1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0])=1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[1], x1[1]), x1[1])∧1129_1_gcd_InvokeMethod(1129_0_mod_LT(x1[1], x0[1]), x0[1])=1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0]1, x1[0]1), x1[0]1) ⇒ COND_1129_2_MAIN_INVOKEMETHOD(TRUE, 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[1], x1[1]), x1[1]))≥NonInfC∧COND_1129_2_MAIN_INVOKEMETHOD(TRUE, 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[1], x1[1]), x1[1]))≥1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x1[1], x0[1]), x0[1]))∧(UIncreasing(1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x1[1], x0[1]), x0[1]))), ≥))
(2) (>(x0[0], 0)=TRUE∧>(x1[0], x0[0])=TRUE∧>(x1[0], 0)=TRUE ⇒ COND_1129_2_MAIN_INVOKEMETHOD(TRUE, 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0]))≥NonInfC∧COND_1129_2_MAIN_INVOKEMETHOD(TRUE, 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0]))≥1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x1[0], x0[0]), x0[0]))∧(UIncreasing(1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x1[1], x0[1]), x0[1]))), ≥))
(3) (x0[0] + [-1] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x1[1], x0[1]), x0[1]))), ≥)∧[(-2)bni_16 + (-1)Bound*bni_16] + [(2)bni_16]x1[0] + [bni_16]x0[0] ≥ 0∧[-1 + (-1)bso_17] + x1[0] + [-1]x0[0] ≥ 0)
(4) (x0[0] + [-1] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x1[1], x0[1]), x0[1]))), ≥)∧[(-2)bni_16 + (-1)Bound*bni_16] + [(2)bni_16]x1[0] + [bni_16]x0[0] ≥ 0∧[-1 + (-1)bso_17] + x1[0] + [-1]x0[0] ≥ 0)
(5) (x0[0] + [-1] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x1[1], x0[1]), x0[1]))), ≥)∧[(-2)bni_16 + (-1)Bound*bni_16] + [(2)bni_16]x1[0] + [bni_16]x0[0] ≥ 0∧[-1 + (-1)bso_17] + x1[0] + [-1]x0[0] ≥ 0)
(6) (x0[0] ≥ 0∧x1[0] + [-2] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x1[1], x0[1]), x0[1]))), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [(2)bni_16]x1[0] + [bni_16]x0[0] ≥ 0∧[-2 + (-1)bso_17] + x1[0] + [-1]x0[0] ≥ 0)
(7) (x0[0] ≥ 0∧x1[0] ≥ 0∧[1] + x0[0] + x1[0] ≥ 0 ⇒ (UIncreasing(1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x1[1], x0[1]), x0[1]))), ≥)∧[(3)bni_16 + (-1)Bound*bni_16] + [(3)bni_16]x0[0] + [(2)bni_16]x1[0] ≥ 0∧[(-1)bso_17] + x1[0] ≥ 0)
(8) (&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0))=TRUE∧1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0])=1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[1], x1[1]), x1[1]) ⇒ 1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0]))≥NonInfC∧1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0]))≥COND_1129_2_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0]))∧(UIncreasing(COND_1129_2_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0]))), ≥))
(9) (>(x0[0], 0)=TRUE∧>(x1[0], x0[0])=TRUE∧>(x1[0], 0)=TRUE ⇒ 1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0]))≥NonInfC∧1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0]))≥COND_1129_2_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0]))∧(UIncreasing(COND_1129_2_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0]))), ≥))
(10) (x0[0] + [-1] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1129_2_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0]))), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [(2)bni_18]x1[0] + [bni_18]x0[0] ≥ 0∧[1 + (-1)bso_19] ≥ 0)
(11) (x0[0] + [-1] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1129_2_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0]))), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [(2)bni_18]x1[0] + [bni_18]x0[0] ≥ 0∧[1 + (-1)bso_19] ≥ 0)
(12) (x0[0] + [-1] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1129_2_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0]))), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [(2)bni_18]x1[0] + [bni_18]x0[0] ≥ 0∧[1 + (-1)bso_19] ≥ 0)
(13) (x0[0] ≥ 0∧x1[0] + [-2] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1129_2_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0]))), ≥)∧[(-1)Bound*bni_18] + [(2)bni_18]x1[0] + [bni_18]x0[0] ≥ 0∧[1 + (-1)bso_19] ≥ 0)
(14) (x0[0] ≥ 0∧x1[0] ≥ 0∧[1] + x0[0] + x1[0] ≥ 0 ⇒ (UIncreasing(COND_1129_2_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0]))), ≥)∧[(4)bni_18 + (-1)Bound*bni_18] + [(3)bni_18]x0[0] + [(2)bni_18]x1[0] ≥ 0∧[1 + (-1)bso_19] ≥ 0)
POL(TRUE) = [1]
POL(FALSE) = [1]
POL(COND_1129_2_MAIN_INVOKEMETHOD(x1, x2)) = [-1] + [-1]x2 + [-1]x1
POL(1129_1_gcd_InvokeMethod(x1, x2)) = [1] + [-1]x2 + x1
POL(1129_0_mod_LT(x1, x2)) = [-1] + [-1]x2 + [-1]x1
POL(1129_2_MAIN_INVOKEMETHOD(x1)) = [-1] + [-1]x1
POL(&&(x1, x2)) = [1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0])) → COND_1129_2_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0]))
COND_1129_2_MAIN_INVOKEMETHOD(TRUE, 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[1], x1[1]), x1[1])) → 1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x1[1], x0[1]), x0[1]))
1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0])) → COND_1129_2_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[0], x1[0]), x1[0]))
COND_1129_2_MAIN_INVOKEMETHOD(TRUE, 1129_1_gcd_InvokeMethod(1129_0_mod_LT(x0[1], x1[1]), x1[1])) → 1129_2_MAIN_INVOKEMETHOD(1129_1_gcd_InvokeMethod(1129_0_mod_LT(x1[1], x0[1]), x0[1]))
&&(TRUE, TRUE)1 ↔ TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(FALSE, FALSE)1 ↔ FALSE1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |