(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: GCD2
public class GCD2 {
public static int mod(int a, int b) {
if (a == b) {
return 0;
}
while(a>b) {
a -= b;
}
return a;
}

public static int gcd(int a, int b) {
int tmp;
while(b != 0 && a >= 0 && b >= 0) {
tmp = b;
b = mod(a, b);
a = tmp;
}
return a;
}

public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
gcd(x, y);
}
}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
GCD2.main([Ljava/lang/String;)V: Graph of 197 nodes with 1 SCC.


(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Logs:


Log for SCC 0:

Generated 43 rules for P and 8 rules for R.


Combined rules. Obtained 4 rules for P and 1 rules for R.


Filtered ground terms:


1174_0_gcd_EQ(x1, x2, x3, x4) → 1174_0_gcd_EQ(x2, x3, x4)
1265_0_mod_LE(x1, x2, x3, x4, x5) → 1265_0_mod_LE(x2, x3, x4, x5)
1193_0_main_Return(x1) → 1193_0_main_Return

Filtered duplicate args:


1174_0_gcd_EQ(x1, x2, x3) → 1174_0_gcd_EQ(x1, x3)
1265_0_mod_LE(x1, x2, x3, x4) → 1265_0_mod_LE(x3, x4)
1265_1_gcd_InvokeMethod(x1, x2, x3) → 1265_1_gcd_InvokeMethod(x1, x3)

Combined rules. Obtained 4 rules for P and 1 rules for R.


Finished conversion. Obtained 4 rules for P and 1 rules for R. System has predefined symbols.


(4) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


The ITRS R consists of the following rules:
1174_1_main_InvokeMethod(1174_0_gcd_EQ(x0, 0)) → 1193_0_main_Return

The integer pair graph contains the following rules and edges:
(0): 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0])) → COND_1174_1_MAIN_INVOKEMETHOD(x1[0] > 0 && x0[0] >= 0 && !(x0[0] = x1[0]), 1174_0_gcd_EQ(x0[0], x1[0]))
(1): COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[1], x1[1])) → 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))
(2): 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])) → COND_1265_2_MAIN_INVOKEMETHOD(x1[2] >= x0[2], 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))
(3): COND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3])) → 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))
(4): 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4])) → COND_1265_2_MAIN_INVOKEMETHOD1(x1[4] > 0 && x1[4] < x0[4], 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]))
(5): COND_1265_2_MAIN_INVOKEMETHOD1(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[5], x1[5]), x1[5])) → 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[5] - x1[5], x1[5]), x1[5]))
(6): 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[6], x0[6])) → COND_1174_1_MAIN_INVOKEMETHOD1(x0[6] > 0, 1174_0_gcd_EQ(x0[6], x0[6]))
(7): COND_1174_1_MAIN_INVOKEMETHOD1(TRUE, 1174_0_gcd_EQ(x0[7], x0[7])) → 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[7], 0))

(0) -> (1), if ((x1[0] > 0 && x0[0] >= 0 && !(x0[0] = x1[0]) →* TRUE)∧(1174_0_gcd_EQ(x0[0], x1[0]) →* 1174_0_gcd_EQ(x0[1], x1[1])))


(1) -> (2), if ((1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]) →* 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])))


(1) -> (4), if ((1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]) →* 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4])))


(2) -> (3), if ((x1[2] >= x0[2]* TRUE)∧(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]) →* 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3])))


(3) -> (0), if ((1174_0_gcd_EQ(x1[3], x0[3]) →* 1174_0_gcd_EQ(x0[0], x1[0])))


(3) -> (6), if ((1174_0_gcd_EQ(x1[3], x0[3]) →* 1174_0_gcd_EQ(x0[6], x0[6])))


(4) -> (5), if ((x1[4] > 0 && x1[4] < x0[4]* TRUE)∧(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]) →* 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[5], x1[5]), x1[5])))


(5) -> (2), if ((1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[5] - x1[5], x1[5]), x1[5]) →* 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])))


(5) -> (4), if ((1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[5] - x1[5], x1[5]), x1[5]) →* 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4])))


(6) -> (7), if ((x0[6] > 0* TRUE)∧(1174_0_gcd_EQ(x0[6], x0[6]) →* 1174_0_gcd_EQ(x0[7], x0[7])))


(7) -> (0), if ((1174_0_gcd_EQ(x0[7], 0) →* 1174_0_gcd_EQ(x0[0], x1[0])))


(7) -> (6), if ((1174_0_gcd_EQ(x0[7], 0) →* 1174_0_gcd_EQ(x0[6], x0[6])))



The set Q consists of the following terms:
1174_1_main_InvokeMethod(1174_0_gcd_EQ(x0, 0))

(5) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0, x1)) → COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1, 0), >=(x0, 0)), !(=(x0, x1))), 1174_0_gcd_EQ(x0, x1)) the following chains were created:
  • We consider the chain 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0])) → COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0])), COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[1], x1[1])) → 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1])) which results in the following constraint:

    (1)    (&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0])))=TRUE1174_0_gcd_EQ(x0[0], x1[0])=1174_0_gcd_EQ(x0[1], x1[1]) ⇒ 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0]))≥NonInfC∧1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0]))≥COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))∧(UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥))



    We simplified constraint (1) using rules (I), (II), (IV), (IDP_BOOLEAN) which results in the following new constraints:

    (2)    (>(x1[0], 0)=TRUE>=(x0[0], 0)=TRUE<(x0[0], x1[0])=TRUE1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0]))≥NonInfC∧1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0]))≥COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))∧(UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥))


    (3)    (>(x1[0], 0)=TRUE>=(x0[0], 0)=TRUE>(x0[0], x1[0])=TRUE1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0]))≥NonInfC∧1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0]))≥COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))∧(UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (4)    (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[bni_37 + (-1)Bound*bni_37] + [bni_37]x1[0] + [bni_37]x0[0] ≥ 0∧[(-1)bso_38] ≥ 0)



    We simplified constraint (3) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (5)    (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[bni_37 + (-1)Bound*bni_37] + [bni_37]x1[0] + [bni_37]x0[0] ≥ 0∧[(-1)bso_38] ≥ 0)



    We simplified constraint (4) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (6)    (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[bni_37 + (-1)Bound*bni_37] + [bni_37]x1[0] + [bni_37]x0[0] ≥ 0∧[(-1)bso_38] ≥ 0)



    We simplified constraint (5) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (7)    (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[bni_37 + (-1)Bound*bni_37] + [bni_37]x1[0] + [bni_37]x0[0] ≥ 0∧[(-1)bso_38] ≥ 0)



    We simplified constraint (6) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (8)    (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[bni_37 + (-1)Bound*bni_37] + [bni_37]x1[0] + [bni_37]x0[0] ≥ 0∧[(-1)bso_38] ≥ 0)



    We simplified constraint (7) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (9)    (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[bni_37 + (-1)Bound*bni_37] + [bni_37]x1[0] + [bni_37]x0[0] ≥ 0∧[(-1)bso_38] ≥ 0)



    We simplified constraint (8) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (10)    (x1[0] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(2)bni_37 + (-1)Bound*bni_37] + [bni_37]x1[0] + [bni_37]x0[0] ≥ 0∧[(-1)bso_38] ≥ 0)



    We simplified constraint (9) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (11)    (x1[0] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-2] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(2)bni_37 + (-1)Bound*bni_37] + [bni_37]x1[0] + [bni_37]x0[0] ≥ 0∧[(-1)bso_38] ≥ 0)



    We simplified constraint (10) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (12)    (x0[0] + x1[0] ≥ 0∧x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(2)bni_37 + (-1)Bound*bni_37] + [(2)bni_37]x0[0] + [bni_37]x1[0] ≥ 0∧[(-1)bso_38] ≥ 0)



    We simplified constraint (11) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (13)    (x1[0] ≥ 0∧[2] + x1[0] + x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(4)bni_37 + (-1)Bound*bni_37] + [(2)bni_37]x1[0] + [bni_37]x0[0] ≥ 0∧[(-1)bso_38] ≥ 0)







For Pair COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0, x1)) → 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0, x1), x1)) the following chains were created:
  • We consider the chain 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0])) → COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0])), COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[1], x1[1])) → 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1])), 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])) → COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])) which results in the following constraint:

    (14)    (&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0])))=TRUE1174_0_gcd_EQ(x0[0], x1[0])=1174_0_gcd_EQ(x0[1], x1[1])∧1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1])=1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]) ⇒ COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[1], x1[1]))≥NonInfC∧COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[1], x1[1]))≥1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))∧(UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥))



    We simplified constraint (14) using rules (I), (II), (III), (IV), (IDP_BOOLEAN) which results in the following new constraints:

    (15)    (>(x1[0], 0)=TRUE>=(x0[0], 0)=TRUE<(x0[0], x1[0])=TRUECOND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[0], x1[0]))≥NonInfC∧COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[0], x1[0]))≥1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[0], x1[0]), x1[0]))∧(UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥))


    (16)    (>(x1[0], 0)=TRUE>=(x0[0], 0)=TRUE>(x0[0], x1[0])=TRUECOND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[0], x1[0]))≥NonInfC∧COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[0], x1[0]))≥1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[0], x1[0]), x1[0]))∧(UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥))



    We simplified constraint (15) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (17)    (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[bni_39 + (-1)Bound*bni_39] + [bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)



    We simplified constraint (16) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (18)    (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[bni_39 + (-1)Bound*bni_39] + [bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)



    We simplified constraint (17) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (19)    (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[bni_39 + (-1)Bound*bni_39] + [bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)



    We simplified constraint (18) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (20)    (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[bni_39 + (-1)Bound*bni_39] + [bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)



    We simplified constraint (19) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (21)    (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[bni_39 + (-1)Bound*bni_39] + [bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)



    We simplified constraint (20) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (22)    (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[bni_39 + (-1)Bound*bni_39] + [bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)



    We simplified constraint (21) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (23)    (x1[0] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[(2)bni_39 + (-1)Bound*bni_39] + [bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)



    We simplified constraint (22) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (24)    (x1[0] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-2] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[(2)bni_39 + (-1)Bound*bni_39] + [bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)



    We simplified constraint (23) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (25)    (x0[0] + x1[0] ≥ 0∧x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[(2)bni_39 + (-1)Bound*bni_39] + [(2)bni_39]x0[0] + [bni_39]x1[0] ≥ 0∧[(-1)bso_40] ≥ 0)



    We simplified constraint (24) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (26)    (x1[0] ≥ 0∧[2] + x1[0] + x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[(4)bni_39 + (-1)Bound*bni_39] + [(2)bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)



  • We consider the chain 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0])) → COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0])), COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[1], x1[1])) → 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1])), 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4])) → COND_1265_2_MAIN_INVOKEMETHOD1(&&(>(x1[4], 0), <(x1[4], x0[4])), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4])) which results in the following constraint:

    (27)    (&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0])))=TRUE1174_0_gcd_EQ(x0[0], x1[0])=1174_0_gcd_EQ(x0[1], x1[1])∧1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1])=1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]) ⇒ COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[1], x1[1]))≥NonInfC∧COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[1], x1[1]))≥1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))∧(UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥))



    We simplified constraint (27) using rules (I), (II), (III), (IV), (IDP_BOOLEAN) which results in the following new constraints:

    (28)    (>(x1[0], 0)=TRUE>=(x0[0], 0)=TRUE<(x0[0], x1[0])=TRUECOND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[0], x1[0]))≥NonInfC∧COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[0], x1[0]))≥1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[0], x1[0]), x1[0]))∧(UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥))


    (29)    (>(x1[0], 0)=TRUE>=(x0[0], 0)=TRUE>(x0[0], x1[0])=TRUECOND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[0], x1[0]))≥NonInfC∧COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[0], x1[0]))≥1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[0], x1[0]), x1[0]))∧(UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥))



    We simplified constraint (28) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (30)    (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[bni_39 + (-1)Bound*bni_39] + [bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)



    We simplified constraint (29) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (31)    (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[bni_39 + (-1)Bound*bni_39] + [bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)



    We simplified constraint (30) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (32)    (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[bni_39 + (-1)Bound*bni_39] + [bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)



    We simplified constraint (31) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (33)    (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[bni_39 + (-1)Bound*bni_39] + [bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)



    We simplified constraint (32) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (34)    (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[bni_39 + (-1)Bound*bni_39] + [bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)



    We simplified constraint (33) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (35)    (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[bni_39 + (-1)Bound*bni_39] + [bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)



    We simplified constraint (34) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (36)    (x1[0] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[(2)bni_39 + (-1)Bound*bni_39] + [bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)



    We simplified constraint (35) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (37)    (x1[0] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-2] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[(2)bni_39 + (-1)Bound*bni_39] + [bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)



    We simplified constraint (36) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (38)    (x0[0] + x1[0] ≥ 0∧x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[(2)bni_39 + (-1)Bound*bni_39] + [(2)bni_39]x0[0] + [bni_39]x1[0] ≥ 0∧[(-1)bso_40] ≥ 0)



    We simplified constraint (37) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (39)    (x1[0] ≥ 0∧[2] + x1[0] + x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[(4)bni_39 + (-1)Bound*bni_39] + [(2)bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)







For Pair 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0, x1), x1)) → COND_1265_2_MAIN_INVOKEMETHOD(>=(x1, x0), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0, x1), x1)) the following chains were created:
  • We consider the chain 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])) → COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])), COND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3])) → 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3])) which results in the following constraint:

    (40)    (>=(x1[2], x0[2])=TRUE1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])=1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3]) ⇒ 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))≥NonInfC∧1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))≥COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))∧(UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))), ≥))



    We simplified constraint (40) using rules (I), (II), (IV) which results in the following new constraint:

    (41)    (>=(x1[2], x0[2])=TRUE1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))≥NonInfC∧1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))≥COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))∧(UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))), ≥))



    We simplified constraint (41) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (42)    (x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))), ≥)∧[bni_41 + (-1)Bound*bni_41] + [bni_41]x1[2] + [bni_41]x0[2] ≥ 0∧[(-1)bso_42] ≥ 0)



    We simplified constraint (42) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (43)    (x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))), ≥)∧[bni_41 + (-1)Bound*bni_41] + [bni_41]x1[2] + [bni_41]x0[2] ≥ 0∧[(-1)bso_42] ≥ 0)



    We simplified constraint (43) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (44)    (x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))), ≥)∧[bni_41 + (-1)Bound*bni_41] + [bni_41]x1[2] + [bni_41]x0[2] ≥ 0∧[(-1)bso_42] ≥ 0)



    We simplified constraint (44) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (45)    (x1[2] ≥ 0 ⇒ (UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))), ≥)∧[bni_41 + (-1)Bound*bni_41] + [(2)bni_41]x0[2] + [bni_41]x1[2] ≥ 0∧[(-1)bso_42] ≥ 0)



    We simplified constraint (45) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (46)    (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))), ≥)∧[bni_41 + (-1)Bound*bni_41] + [(-2)bni_41]x0[2] + [bni_41]x1[2] ≥ 0∧[(-1)bso_42] ≥ 0)


    (47)    (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))), ≥)∧[bni_41 + (-1)Bound*bni_41] + [(2)bni_41]x0[2] + [bni_41]x1[2] ≥ 0∧[(-1)bso_42] ≥ 0)







For Pair COND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0, x1), x1)) → 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1, x0)) the following chains were created:
  • We consider the chain 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])) → COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])), COND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3])) → 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3])), 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0])) → COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0])) which results in the following constraint:

    (48)    (>=(x1[2], x0[2])=TRUE1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])=1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3])∧1174_0_gcd_EQ(x1[3], x0[3])=1174_0_gcd_EQ(x0[0], x1[0]) ⇒ COND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3]))≥NonInfC∧COND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3]))≥1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))∧(UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥))



    We simplified constraint (48) using rules (I), (II), (III), (IV) which results in the following new constraint:

    (49)    (>=(x1[2], x0[2])=TRUECOND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))≥NonInfC∧COND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))≥1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[2], x0[2]))∧(UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥))



    We simplified constraint (49) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (50)    (x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[bni_43 + (-1)Bound*bni_43] + [bni_43]x1[2] + [bni_43]x0[2] ≥ 0∧[(-1)bso_44] ≥ 0)



    We simplified constraint (50) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (51)    (x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[bni_43 + (-1)Bound*bni_43] + [bni_43]x1[2] + [bni_43]x0[2] ≥ 0∧[(-1)bso_44] ≥ 0)



    We simplified constraint (51) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (52)    (x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[bni_43 + (-1)Bound*bni_43] + [bni_43]x1[2] + [bni_43]x0[2] ≥ 0∧[(-1)bso_44] ≥ 0)



    We simplified constraint (52) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (53)    (x1[2] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[bni_43 + (-1)Bound*bni_43] + [(2)bni_43]x0[2] + [bni_43]x1[2] ≥ 0∧[(-1)bso_44] ≥ 0)



    We simplified constraint (53) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (54)    (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[bni_43 + (-1)Bound*bni_43] + [(2)bni_43]x0[2] + [bni_43]x1[2] ≥ 0∧[(-1)bso_44] ≥ 0)


    (55)    (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[bni_43 + (-1)Bound*bni_43] + [(-2)bni_43]x0[2] + [bni_43]x1[2] ≥ 0∧[(-1)bso_44] ≥ 0)



  • We consider the chain 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])) → COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])), COND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3])) → 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3])), 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[6], x0[6])) → COND_1174_1_MAIN_INVOKEMETHOD1(>(x0[6], 0), 1174_0_gcd_EQ(x0[6], x0[6])) which results in the following constraint:

    (56)    (>=(x1[2], x0[2])=TRUE1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])=1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3])∧1174_0_gcd_EQ(x1[3], x0[3])=1174_0_gcd_EQ(x0[6], x0[6]) ⇒ COND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3]))≥NonInfC∧COND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3]))≥1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))∧(UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥))



    We simplified constraint (56) using rules (I), (II), (III) which results in the following new constraint:

    (57)    (>=(x0[2], x0[2])=TRUECOND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x0[2]), x0[2]))≥NonInfC∧COND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x0[2]), x0[2]))≥1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[2], x0[2]))∧(UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥))



    We simplified constraint (57) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (58)    (0 ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[bni_43 + (-1)Bound*bni_43] + [(2)bni_43]x0[2] ≥ 0∧[(-1)bso_44] ≥ 0)



    We simplified constraint (58) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (59)    (0 ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[bni_43 + (-1)Bound*bni_43] + [(2)bni_43]x0[2] ≥ 0∧[(-1)bso_44] ≥ 0)



    We simplified constraint (59) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (60)    (0 ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[bni_43 + (-1)Bound*bni_43] + [(2)bni_43]x0[2] ≥ 0∧[(-1)bso_44] ≥ 0)



    We simplified constraint (60) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (61)    (0 ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[(2)bni_43] = 0∧[bni_43 + (-1)Bound*bni_43] ≥ 0∧0 = 0∧[(-1)bso_44] ≥ 0)







For Pair 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0, x1), x1)) → COND_1265_2_MAIN_INVOKEMETHOD1(&&(>(x1, 0), <(x1, x0)), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0, x1), x1)) the following chains were created:
  • We consider the chain 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4])) → COND_1265_2_MAIN_INVOKEMETHOD1(&&(>(x1[4], 0), <(x1[4], x0[4])), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4])), COND_1265_2_MAIN_INVOKEMETHOD1(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[5], x1[5]), x1[5])) → 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5])) which results in the following constraint:

    (62)    (&&(>(x1[4], 0), <(x1[4], x0[4]))=TRUE1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4])=1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[5], x1[5]), x1[5]) ⇒ 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]))≥NonInfC∧1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]))≥COND_1265_2_MAIN_INVOKEMETHOD1(&&(>(x1[4], 0), <(x1[4], x0[4])), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]))∧(UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD1(&&(>(x1[4], 0), <(x1[4], x0[4])), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]))), ≥))



    We simplified constraint (62) using rules (I), (II), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (63)    (>(x1[4], 0)=TRUE<(x1[4], x0[4])=TRUE1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]))≥NonInfC∧1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]))≥COND_1265_2_MAIN_INVOKEMETHOD1(&&(>(x1[4], 0), <(x1[4], x0[4])), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]))∧(UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD1(&&(>(x1[4], 0), <(x1[4], x0[4])), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]))), ≥))



    We simplified constraint (63) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (64)    (x1[4] + [-1] ≥ 0∧x0[4] + [-1] + [-1]x1[4] ≥ 0 ⇒ (UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD1(&&(>(x1[4], 0), <(x1[4], x0[4])), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]))), ≥)∧[bni_45 + (-1)Bound*bni_45] + [bni_45]x1[4] + [bni_45]x0[4] ≥ 0∧[1 + (-1)bso_46] ≥ 0)



    We simplified constraint (64) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (65)    (x1[4] + [-1] ≥ 0∧x0[4] + [-1] + [-1]x1[4] ≥ 0 ⇒ (UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD1(&&(>(x1[4], 0), <(x1[4], x0[4])), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]))), ≥)∧[bni_45 + (-1)Bound*bni_45] + [bni_45]x1[4] + [bni_45]x0[4] ≥ 0∧[1 + (-1)bso_46] ≥ 0)



    We simplified constraint (65) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (66)    (x1[4] + [-1] ≥ 0∧x0[4] + [-1] + [-1]x1[4] ≥ 0 ⇒ (UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD1(&&(>(x1[4], 0), <(x1[4], x0[4])), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]))), ≥)∧[bni_45 + (-1)Bound*bni_45] + [bni_45]x1[4] + [bni_45]x0[4] ≥ 0∧[1 + (-1)bso_46] ≥ 0)



    We simplified constraint (66) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (67)    (x1[4] ≥ 0∧x0[4] + [-2] + [-1]x1[4] ≥ 0 ⇒ (UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD1(&&(>(x1[4], 0), <(x1[4], x0[4])), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]))), ≥)∧[(2)bni_45 + (-1)Bound*bni_45] + [bni_45]x1[4] + [bni_45]x0[4] ≥ 0∧[1 + (-1)bso_46] ≥ 0)



    We simplified constraint (67) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (68)    (x1[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD1(&&(>(x1[4], 0), <(x1[4], x0[4])), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]))), ≥)∧[(4)bni_45 + (-1)Bound*bni_45] + [(2)bni_45]x1[4] + [bni_45]x0[4] ≥ 0∧[1 + (-1)bso_46] ≥ 0)







For Pair COND_1265_2_MAIN_INVOKEMETHOD1(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0, x1), x1)) → 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0, x1), x1), x1)) the following chains were created:
  • We consider the chain 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4])) → COND_1265_2_MAIN_INVOKEMETHOD1(&&(>(x1[4], 0), <(x1[4], x0[4])), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4])), COND_1265_2_MAIN_INVOKEMETHOD1(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[5], x1[5]), x1[5])) → 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5])), 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])) → COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])) which results in the following constraint:

    (69)    (&&(>(x1[4], 0), <(x1[4], x0[4]))=TRUE1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4])=1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[5], x1[5]), x1[5])∧1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5])=1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]) ⇒ COND_1265_2_MAIN_INVOKEMETHOD1(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[5], x1[5]), x1[5]))≥NonInfC∧COND_1265_2_MAIN_INVOKEMETHOD1(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[5], x1[5]), x1[5]))≥1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5]))∧(UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5]))), ≥))



    We simplified constraint (69) using rules (I), (II), (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (70)    (>(x1[4], 0)=TRUE<(x1[4], x0[4])=TRUECOND_1265_2_MAIN_INVOKEMETHOD1(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]))≥NonInfC∧COND_1265_2_MAIN_INVOKEMETHOD1(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]))≥1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[4], x1[4]), x1[4]), x1[4]))∧(UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5]))), ≥))



    We simplified constraint (70) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (71)    (x1[4] + [-1] ≥ 0∧x0[4] + [-1] + [-1]x1[4] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5]))), ≥)∧[(-1)Bound*bni_47] + [bni_47]x1[4] + [bni_47]x0[4] ≥ 0∧[-1 + (-1)bso_48] + x1[4] ≥ 0)



    We simplified constraint (71) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (72)    (x1[4] + [-1] ≥ 0∧x0[4] + [-1] + [-1]x1[4] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5]))), ≥)∧[(-1)Bound*bni_47] + [bni_47]x1[4] + [bni_47]x0[4] ≥ 0∧[-1 + (-1)bso_48] + x1[4] ≥ 0)



    We simplified constraint (72) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (73)    (x1[4] + [-1] ≥ 0∧x0[4] + [-1] + [-1]x1[4] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5]))), ≥)∧[(-1)Bound*bni_47] + [bni_47]x1[4] + [bni_47]x0[4] ≥ 0∧[-1 + (-1)bso_48] + x1[4] ≥ 0)



    We simplified constraint (73) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (74)    (x1[4] ≥ 0∧x0[4] + [-2] + [-1]x1[4] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5]))), ≥)∧[(-1)Bound*bni_47 + bni_47] + [bni_47]x1[4] + [bni_47]x0[4] ≥ 0∧[(-1)bso_48] + x1[4] ≥ 0)



    We simplified constraint (74) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (75)    (x1[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5]))), ≥)∧[(-1)Bound*bni_47 + (3)bni_47] + [(2)bni_47]x1[4] + [bni_47]x0[4] ≥ 0∧[(-1)bso_48] + x1[4] ≥ 0)



  • We consider the chain 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4])) → COND_1265_2_MAIN_INVOKEMETHOD1(&&(>(x1[4], 0), <(x1[4], x0[4])), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4])), COND_1265_2_MAIN_INVOKEMETHOD1(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[5], x1[5]), x1[5])) → 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5])), 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4])) → COND_1265_2_MAIN_INVOKEMETHOD1(&&(>(x1[4], 0), <(x1[4], x0[4])), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4])) which results in the following constraint:

    (76)    (&&(>(x1[4], 0), <(x1[4], x0[4]))=TRUE1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4])=1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[5], x1[5]), x1[5])∧1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5])=1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4]1, x1[4]1), x1[4]1) ⇒ COND_1265_2_MAIN_INVOKEMETHOD1(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[5], x1[5]), x1[5]))≥NonInfC∧COND_1265_2_MAIN_INVOKEMETHOD1(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[5], x1[5]), x1[5]))≥1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5]))∧(UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5]))), ≥))



    We simplified constraint (76) using rules (I), (II), (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (77)    (>(x1[4], 0)=TRUE<(x1[4], x0[4])=TRUECOND_1265_2_MAIN_INVOKEMETHOD1(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]))≥NonInfC∧COND_1265_2_MAIN_INVOKEMETHOD1(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]))≥1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[4], x1[4]), x1[4]), x1[4]))∧(UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5]))), ≥))



    We simplified constraint (77) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (78)    (x1[4] + [-1] ≥ 0∧x0[4] + [-1] + [-1]x1[4] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5]))), ≥)∧[(-1)Bound*bni_47] + [bni_47]x1[4] + [bni_47]x0[4] ≥ 0∧[-1 + (-1)bso_48] + x1[4] ≥ 0)



    We simplified constraint (78) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (79)    (x1[4] + [-1] ≥ 0∧x0[4] + [-1] + [-1]x1[4] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5]))), ≥)∧[(-1)Bound*bni_47] + [bni_47]x1[4] + [bni_47]x0[4] ≥ 0∧[-1 + (-1)bso_48] + x1[4] ≥ 0)



    We simplified constraint (79) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (80)    (x1[4] + [-1] ≥ 0∧x0[4] + [-1] + [-1]x1[4] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5]))), ≥)∧[(-1)Bound*bni_47] + [bni_47]x1[4] + [bni_47]x0[4] ≥ 0∧[-1 + (-1)bso_48] + x1[4] ≥ 0)



    We simplified constraint (80) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (81)    (x1[4] ≥ 0∧x0[4] + [-2] + [-1]x1[4] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5]))), ≥)∧[(-1)Bound*bni_47 + bni_47] + [bni_47]x1[4] + [bni_47]x0[4] ≥ 0∧[(-1)bso_48] + x1[4] ≥ 0)



    We simplified constraint (81) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (82)    (x1[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5]))), ≥)∧[(-1)Bound*bni_47 + (3)bni_47] + [(2)bni_47]x1[4] + [bni_47]x0[4] ≥ 0∧[(-1)bso_48] + x1[4] ≥ 0)







For Pair 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0, x0)) → COND_1174_1_MAIN_INVOKEMETHOD1(>(x0, 0), 1174_0_gcd_EQ(x0, x0)) the following chains were created:
  • We consider the chain 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[6], x0[6])) → COND_1174_1_MAIN_INVOKEMETHOD1(>(x0[6], 0), 1174_0_gcd_EQ(x0[6], x0[6])), COND_1174_1_MAIN_INVOKEMETHOD1(TRUE, 1174_0_gcd_EQ(x0[7], x0[7])) → 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[7], 0)) which results in the following constraint:

    (83)    (>(x0[6], 0)=TRUE1174_0_gcd_EQ(x0[6], x0[6])=1174_0_gcd_EQ(x0[7], x0[7]) ⇒ 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[6], x0[6]))≥NonInfC∧1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[6], x0[6]))≥COND_1174_1_MAIN_INVOKEMETHOD1(>(x0[6], 0), 1174_0_gcd_EQ(x0[6], x0[6]))∧(UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD1(>(x0[6], 0), 1174_0_gcd_EQ(x0[6], x0[6]))), ≥))



    We simplified constraint (83) using rules (I), (II), (IV) which results in the following new constraint:

    (84)    (>(x0[6], 0)=TRUE1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[6], x0[6]))≥NonInfC∧1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[6], x0[6]))≥COND_1174_1_MAIN_INVOKEMETHOD1(>(x0[6], 0), 1174_0_gcd_EQ(x0[6], x0[6]))∧(UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD1(>(x0[6], 0), 1174_0_gcd_EQ(x0[6], x0[6]))), ≥))



    We simplified constraint (84) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (85)    (x0[6] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD1(>(x0[6], 0), 1174_0_gcd_EQ(x0[6], x0[6]))), ≥)∧[bni_49 + (-1)Bound*bni_49] + [(2)bni_49]x0[6] ≥ 0∧[(-1)bso_50] ≥ 0)



    We simplified constraint (85) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (86)    (x0[6] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD1(>(x0[6], 0), 1174_0_gcd_EQ(x0[6], x0[6]))), ≥)∧[bni_49 + (-1)Bound*bni_49] + [(2)bni_49]x0[6] ≥ 0∧[(-1)bso_50] ≥ 0)



    We simplified constraint (86) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (87)    (x0[6] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD1(>(x0[6], 0), 1174_0_gcd_EQ(x0[6], x0[6]))), ≥)∧[bni_49 + (-1)Bound*bni_49] + [(2)bni_49]x0[6] ≥ 0∧[(-1)bso_50] ≥ 0)



    We simplified constraint (87) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (88)    (x0[6] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD1(>(x0[6], 0), 1174_0_gcd_EQ(x0[6], x0[6]))), ≥)∧[(3)bni_49 + (-1)Bound*bni_49] + [(2)bni_49]x0[6] ≥ 0∧[(-1)bso_50] ≥ 0)







For Pair COND_1174_1_MAIN_INVOKEMETHOD1(TRUE, 1174_0_gcd_EQ(x0, x0)) → 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0, 0)) the following chains were created:
  • We consider the chain 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[6], x0[6])) → COND_1174_1_MAIN_INVOKEMETHOD1(>(x0[6], 0), 1174_0_gcd_EQ(x0[6], x0[6])), COND_1174_1_MAIN_INVOKEMETHOD1(TRUE, 1174_0_gcd_EQ(x0[7], x0[7])) → 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[7], 0)), 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0])) → COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0])) which results in the following constraint:

    (89)    (>(x0[6], 0)=TRUE1174_0_gcd_EQ(x0[6], x0[6])=1174_0_gcd_EQ(x0[7], x0[7])∧1174_0_gcd_EQ(x0[7], 0)=1174_0_gcd_EQ(x0[0], x1[0]) ⇒ COND_1174_1_MAIN_INVOKEMETHOD1(TRUE, 1174_0_gcd_EQ(x0[7], x0[7]))≥NonInfC∧COND_1174_1_MAIN_INVOKEMETHOD1(TRUE, 1174_0_gcd_EQ(x0[7], x0[7]))≥1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[7], 0))∧(UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[7], 0))), ≥))



    We simplified constraint (89) using rules (I), (II), (III), (IV) which results in the following new constraint:

    (90)    (>(x0[6], 0)=TRUECOND_1174_1_MAIN_INVOKEMETHOD1(TRUE, 1174_0_gcd_EQ(x0[6], x0[6]))≥NonInfC∧COND_1174_1_MAIN_INVOKEMETHOD1(TRUE, 1174_0_gcd_EQ(x0[6], x0[6]))≥1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[6], 0))∧(UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[7], 0))), ≥))



    We simplified constraint (90) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (91)    (x0[6] + [-1] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[7], 0))), ≥)∧[bni_51 + (-1)Bound*bni_51] + [(2)bni_51]x0[6] ≥ 0∧[(-1)bso_52] + x0[6] ≥ 0)



    We simplified constraint (91) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (92)    (x0[6] + [-1] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[7], 0))), ≥)∧[bni_51 + (-1)Bound*bni_51] + [(2)bni_51]x0[6] ≥ 0∧[(-1)bso_52] + x0[6] ≥ 0)



    We simplified constraint (92) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (93)    (x0[6] + [-1] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[7], 0))), ≥)∧[bni_51 + (-1)Bound*bni_51] + [(2)bni_51]x0[6] ≥ 0∧[(-1)bso_52] + x0[6] ≥ 0)



    We simplified constraint (93) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (94)    (x0[6] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[7], 0))), ≥)∧[(3)bni_51 + (-1)Bound*bni_51] + [(2)bni_51]x0[6] ≥ 0∧[1 + (-1)bso_52] + x0[6] ≥ 0)



  • We consider the chain 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[6], x0[6])) → COND_1174_1_MAIN_INVOKEMETHOD1(>(x0[6], 0), 1174_0_gcd_EQ(x0[6], x0[6])), COND_1174_1_MAIN_INVOKEMETHOD1(TRUE, 1174_0_gcd_EQ(x0[7], x0[7])) → 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[7], 0)), 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[6], x0[6])) → COND_1174_1_MAIN_INVOKEMETHOD1(>(x0[6], 0), 1174_0_gcd_EQ(x0[6], x0[6])) which results in the following constraint:

    (95)    (>(x0[6], 0)=TRUE1174_0_gcd_EQ(x0[6], x0[6])=1174_0_gcd_EQ(x0[7], x0[7])∧1174_0_gcd_EQ(x0[7], 0)=1174_0_gcd_EQ(x0[6]1, x0[6]1) ⇒ COND_1174_1_MAIN_INVOKEMETHOD1(TRUE, 1174_0_gcd_EQ(x0[7], x0[7]))≥NonInfC∧COND_1174_1_MAIN_INVOKEMETHOD1(TRUE, 1174_0_gcd_EQ(x0[7], x0[7]))≥1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[7], 0))∧(UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[7], 0))), ≥))



    We solved constraint (95) using rules (I), (II), (III), (IDP_CONSTANT_FOLD).




To summarize, we get the following constraints P for the following pairs.
  • 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0, x1)) → COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1, 0), >=(x0, 0)), !(=(x0, x1))), 1174_0_gcd_EQ(x0, x1))
    • (x0[0] + x1[0] ≥ 0∧x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(2)bni_37 + (-1)Bound*bni_37] + [(2)bni_37]x0[0] + [bni_37]x1[0] ≥ 0∧[(-1)bso_38] ≥ 0)
    • (x1[0] ≥ 0∧[2] + x1[0] + x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(4)bni_37 + (-1)Bound*bni_37] + [(2)bni_37]x1[0] + [bni_37]x0[0] ≥ 0∧[(-1)bso_38] ≥ 0)

  • COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0, x1)) → 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0, x1), x1))
    • (x0[0] + x1[0] ≥ 0∧x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[(2)bni_39 + (-1)Bound*bni_39] + [(2)bni_39]x0[0] + [bni_39]x1[0] ≥ 0∧[(-1)bso_40] ≥ 0)
    • (x1[0] ≥ 0∧[2] + x1[0] + x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[(4)bni_39 + (-1)Bound*bni_39] + [(2)bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)
    • (x0[0] + x1[0] ≥ 0∧x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[(2)bni_39 + (-1)Bound*bni_39] + [(2)bni_39]x0[0] + [bni_39]x1[0] ≥ 0∧[(-1)bso_40] ≥ 0)
    • (x1[0] ≥ 0∧[2] + x1[0] + x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[(4)bni_39 + (-1)Bound*bni_39] + [(2)bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)

  • 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0, x1), x1)) → COND_1265_2_MAIN_INVOKEMETHOD(>=(x1, x0), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0, x1), x1))
    • (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))), ≥)∧[bni_41 + (-1)Bound*bni_41] + [(-2)bni_41]x0[2] + [bni_41]x1[2] ≥ 0∧[(-1)bso_42] ≥ 0)
    • (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))), ≥)∧[bni_41 + (-1)Bound*bni_41] + [(2)bni_41]x0[2] + [bni_41]x1[2] ≥ 0∧[(-1)bso_42] ≥ 0)

  • COND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0, x1), x1)) → 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1, x0))
    • (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[bni_43 + (-1)Bound*bni_43] + [(2)bni_43]x0[2] + [bni_43]x1[2] ≥ 0∧[(-1)bso_44] ≥ 0)
    • (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[bni_43 + (-1)Bound*bni_43] + [(-2)bni_43]x0[2] + [bni_43]x1[2] ≥ 0∧[(-1)bso_44] ≥ 0)
    • (0 ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[(2)bni_43] = 0∧[bni_43 + (-1)Bound*bni_43] ≥ 0∧0 = 0∧[(-1)bso_44] ≥ 0)

  • 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0, x1), x1)) → COND_1265_2_MAIN_INVOKEMETHOD1(&&(>(x1, 0), <(x1, x0)), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0, x1), x1))
    • (x1[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD1(&&(>(x1[4], 0), <(x1[4], x0[4])), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]))), ≥)∧[(4)bni_45 + (-1)Bound*bni_45] + [(2)bni_45]x1[4] + [bni_45]x0[4] ≥ 0∧[1 + (-1)bso_46] ≥ 0)

  • COND_1265_2_MAIN_INVOKEMETHOD1(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0, x1), x1)) → 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0, x1), x1), x1))
    • (x1[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5]))), ≥)∧[(-1)Bound*bni_47 + (3)bni_47] + [(2)bni_47]x1[4] + [bni_47]x0[4] ≥ 0∧[(-1)bso_48] + x1[4] ≥ 0)
    • (x1[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5]))), ≥)∧[(-1)Bound*bni_47 + (3)bni_47] + [(2)bni_47]x1[4] + [bni_47]x0[4] ≥ 0∧[(-1)bso_48] + x1[4] ≥ 0)

  • 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0, x0)) → COND_1174_1_MAIN_INVOKEMETHOD1(>(x0, 0), 1174_0_gcd_EQ(x0, x0))
    • (x0[6] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD1(>(x0[6], 0), 1174_0_gcd_EQ(x0[6], x0[6]))), ≥)∧[(3)bni_49 + (-1)Bound*bni_49] + [(2)bni_49]x0[6] ≥ 0∧[(-1)bso_50] ≥ 0)

  • COND_1174_1_MAIN_INVOKEMETHOD1(TRUE, 1174_0_gcd_EQ(x0, x0)) → 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0, 0))
    • (x0[6] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[7], 0))), ≥)∧[(3)bni_51 + (-1)Bound*bni_51] + [(2)bni_51]x0[6] ≥ 0∧[1 + (-1)bso_52] + x0[6] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = [1]   
POL(FALSE) = 0   
POL(1174_1_main_InvokeMethod(x1)) = [-1] + [-1]x1   
POL(1174_0_gcd_EQ(x1, x2)) = [1] + [-1]x2 + [-1]x1   
POL(0) = 0   
POL(1193_0_main_Return) = [-1]   
POL(1174_1_MAIN_INVOKEMETHOD(x1)) = [2] + [-1]x1   
POL(COND_1174_1_MAIN_INVOKEMETHOD(x1, x2)) = [2] + [-1]x2   
POL(&&(x1, x2)) = [-1]   
POL(>(x1, x2)) = [-1]   
POL(>=(x1, x2)) = [-1]   
POL(!(x1)) = [-1]   
POL(=(x1, x2)) = [-1]   
POL(1265_2_MAIN_INVOKEMETHOD(x1)) = [-1]x1   
POL(1265_1_gcd_InvokeMethod(x1, x2)) = [-1]x2 + x1   
POL(1265_0_mod_LE(x1, x2)) = [-1] + [-1]x1   
POL(COND_1265_2_MAIN_INVOKEMETHOD(x1, x2)) = [-1]x2   
POL(COND_1265_2_MAIN_INVOKEMETHOD1(x1, x2)) = [-1] + [-1]x2   
POL(<(x1, x2)) = [-1]   
POL(-(x1, x2)) = x1 + [-1]x2   
POL(COND_1174_1_MAIN_INVOKEMETHOD1(x1, x2)) = [2] + [-1]x2   

The following pairs are in P>:

1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4])) → COND_1265_2_MAIN_INVOKEMETHOD1(&&(>(x1[4], 0), <(x1[4], x0[4])), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]))
COND_1174_1_MAIN_INVOKEMETHOD1(TRUE, 1174_0_gcd_EQ(x0[7], x0[7])) → 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[7], 0))

The following pairs are in Pbound:

1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0])) → COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))
COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[1], x1[1])) → 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))
1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4])) → COND_1265_2_MAIN_INVOKEMETHOD1(&&(>(x1[4], 0), <(x1[4], x0[4])), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]))
COND_1265_2_MAIN_INVOKEMETHOD1(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[5], x1[5]), x1[5])) → 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5]))
1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[6], x0[6])) → COND_1174_1_MAIN_INVOKEMETHOD1(>(x0[6], 0), 1174_0_gcd_EQ(x0[6], x0[6]))
COND_1174_1_MAIN_INVOKEMETHOD1(TRUE, 1174_0_gcd_EQ(x0[7], x0[7])) → 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[7], 0))

The following pairs are in P:

1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0])) → COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))
COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[1], x1[1])) → 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))
1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])) → COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))
COND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3])) → 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))
COND_1265_2_MAIN_INVOKEMETHOD1(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[5], x1[5]), x1[5])) → 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5]))
1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[6], x0[6])) → COND_1174_1_MAIN_INVOKEMETHOD1(>(x0[6], 0), 1174_0_gcd_EQ(x0[6], x0[6]))

At least the following rules have been oriented under context sensitive arithmetic replacement:

TRUE1&&(TRUE, TRUE)1
FALSE1&&(TRUE, FALSE)1
FALSE1&&(FALSE, TRUE)1
FALSE1&&(FALSE, FALSE)1

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


The ITRS R consists of the following rules:
1174_1_main_InvokeMethod(1174_0_gcd_EQ(x0, 0)) → 1193_0_main_Return

The integer pair graph contains the following rules and edges:
(0): 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0])) → COND_1174_1_MAIN_INVOKEMETHOD(x1[0] > 0 && x0[0] >= 0 && !(x0[0] = x1[0]), 1174_0_gcd_EQ(x0[0], x1[0]))
(1): COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[1], x1[1])) → 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))
(2): 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])) → COND_1265_2_MAIN_INVOKEMETHOD(x1[2] >= x0[2], 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))
(3): COND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3])) → 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))
(5): COND_1265_2_MAIN_INVOKEMETHOD1(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[5], x1[5]), x1[5])) → 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[5] - x1[5], x1[5]), x1[5]))
(6): 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[6], x0[6])) → COND_1174_1_MAIN_INVOKEMETHOD1(x0[6] > 0, 1174_0_gcd_EQ(x0[6], x0[6]))

(3) -> (0), if ((1174_0_gcd_EQ(x1[3], x0[3]) →* 1174_0_gcd_EQ(x0[0], x1[0])))


(0) -> (1), if ((x1[0] > 0 && x0[0] >= 0 && !(x0[0] = x1[0]) →* TRUE)∧(1174_0_gcd_EQ(x0[0], x1[0]) →* 1174_0_gcd_EQ(x0[1], x1[1])))


(1) -> (2), if ((1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]) →* 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])))


(5) -> (2), if ((1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[5] - x1[5], x1[5]), x1[5]) →* 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])))


(2) -> (3), if ((x1[2] >= x0[2]* TRUE)∧(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]) →* 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3])))


(3) -> (6), if ((1174_0_gcd_EQ(x1[3], x0[3]) →* 1174_0_gcd_EQ(x0[6], x0[6])))



The set Q consists of the following terms:
1174_1_main_InvokeMethod(1174_0_gcd_EQ(x0, 0))

(7) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

(8) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


The ITRS R consists of the following rules:
1174_1_main_InvokeMethod(1174_0_gcd_EQ(x0, 0)) → 1193_0_main_Return

The integer pair graph contains the following rules and edges:
(3): COND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3])) → 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))
(2): 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])) → COND_1265_2_MAIN_INVOKEMETHOD(x1[2] >= x0[2], 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))
(1): COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[1], x1[1])) → 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))
(0): 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0])) → COND_1174_1_MAIN_INVOKEMETHOD(x1[0] > 0 && x0[0] >= 0 && !(x0[0] = x1[0]), 1174_0_gcd_EQ(x0[0], x1[0]))

(3) -> (0), if ((1174_0_gcd_EQ(x1[3], x0[3]) →* 1174_0_gcd_EQ(x0[0], x1[0])))


(0) -> (1), if ((x1[0] > 0 && x0[0] >= 0 && !(x0[0] = x1[0]) →* TRUE)∧(1174_0_gcd_EQ(x0[0], x1[0]) →* 1174_0_gcd_EQ(x0[1], x1[1])))


(1) -> (2), if ((1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]) →* 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])))


(2) -> (3), if ((x1[2] >= x0[2]* TRUE)∧(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]) →* 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3])))



The set Q consists of the following terms:
1174_1_main_InvokeMethod(1174_0_gcd_EQ(x0, 0))

(9) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(10) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


R is empty.

The integer pair graph contains the following rules and edges:
(3): COND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3])) → 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))
(2): 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])) → COND_1265_2_MAIN_INVOKEMETHOD(x1[2] >= x0[2], 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))
(1): COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[1], x1[1])) → 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))
(0): 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0])) → COND_1174_1_MAIN_INVOKEMETHOD(x1[0] > 0 && x0[0] >= 0 && !(x0[0] = x1[0]), 1174_0_gcd_EQ(x0[0], x1[0]))

(3) -> (0), if ((1174_0_gcd_EQ(x1[3], x0[3]) →* 1174_0_gcd_EQ(x0[0], x1[0])))


(0) -> (1), if ((x1[0] > 0 && x0[0] >= 0 && !(x0[0] = x1[0]) →* TRUE)∧(1174_0_gcd_EQ(x0[0], x1[0]) →* 1174_0_gcd_EQ(x0[1], x1[1])))


(1) -> (2), if ((1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]) →* 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])))


(2) -> (3), if ((x1[2] >= x0[2]* TRUE)∧(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]) →* 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3])))



The set Q consists of the following terms:
1174_1_main_InvokeMethod(1174_0_gcd_EQ(x0, 0))

(11) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair COND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3])) → 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3])) the following chains were created:
  • We consider the chain 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0])) → COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0])), COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[1], x1[1])) → 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1])), 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])) → COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])), COND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3])) → 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3])), 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0])) → COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0])), COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[1], x1[1])) → 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1])) which results in the following constraint:

    (1)    (&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0])))=TRUE1174_0_gcd_EQ(x0[0], x1[0])=1174_0_gcd_EQ(x0[1], x1[1])∧1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1])=1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])∧>=(x1[2], x0[2])=TRUE1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])=1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3])∧1174_0_gcd_EQ(x1[3], x0[3])=1174_0_gcd_EQ(x0[0]1, x1[0]1)∧&&(&&(>(x1[0]1, 0), >=(x0[0]1, 0)), !(=(x0[0]1, x1[0]1)))=TRUE1174_0_gcd_EQ(x0[0]1, x1[0]1)=1174_0_gcd_EQ(x0[1]1, x1[1]1) ⇒ COND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3]))≥NonInfC∧COND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3]))≥1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))∧(UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥))



    We simplified constraint (1) using rules (I), (II), (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>=(x1[0], x0[0])=TRUE>(x1[0], 0)=TRUE>=(x0[0], 0)=TRUE>(x0[0], 0)=TRUE>=(x1[0], 0)=TRUE<(x0[0], x1[0])=TRUE<(x1[0], x0[0])=TRUECOND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[0], x1[0]), x1[0]))≥NonInfC∧COND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[0], x1[0]), x1[0]))≥1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[0], x0[0]))∧(UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[(-5)bni_27 + (-1)Bound*bni_27] + [(4)bni_27]x1[0] + [(2)bni_27]x0[0] ≥ 0∧[-5 + (-1)bso_28] + [4]x1[0] + x0[0] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[(-5)bni_27 + (-1)Bound*bni_27] + [(4)bni_27]x1[0] + [(2)bni_27]x0[0] ≥ 0∧[-5 + (-1)bso_28] + [4]x1[0] + x0[0] ≥ 0)



    We simplified constraint (5) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (6)    (x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[(-5)bni_27 + (-1)Bound*bni_27] + [(4)bni_27]x1[0] + [(2)bni_27]x0[0] ≥ 0∧[-5 + (-1)bso_28] + [4]x1[0] + x0[0] ≥ 0)



    We simplified constraint (7) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (8)    (x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[(-5)bni_27 + (-1)Bound*bni_27] + [(4)bni_27]x1[0] + [(2)bni_27]x0[0] ≥ 0∧[-5 + (-1)bso_28] + [4]x1[0] + x0[0] ≥ 0)



    We simplified constraint (9) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (10)    (x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[(-5)bni_27 + (-1)Bound*bni_27] + [(4)bni_27]x1[0] + [(2)bni_27]x0[0] ≥ 0∧[-5 + (-1)bso_28] + [4]x1[0] + x0[0] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (11)    (x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[(-5)bni_27 + (-1)Bound*bni_27] + [(4)bni_27]x1[0] + [(2)bni_27]x0[0] ≥ 0∧[-5 + (-1)bso_28] + [4]x1[0] + x0[0] ≥ 0)



    We simplified constraint (6) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (12)    (x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[(-5)bni_27 + (-1)Bound*bni_27] + [(4)bni_27]x1[0] + [(2)bni_27]x0[0] ≥ 0∧[-5 + (-1)bso_28] + [4]x1[0] + x0[0] ≥ 0)



    We simplified constraint (8) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (13)    (x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[(-5)bni_27 + (-1)Bound*bni_27] + [(4)bni_27]x1[0] + [(2)bni_27]x0[0] ≥ 0∧[-5 + (-1)bso_28] + [4]x1[0] + x0[0] ≥ 0)



    We simplified constraint (10) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (14)    (x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[(-5)bni_27 + (-1)Bound*bni_27] + [(4)bni_27]x1[0] + [(2)bni_27]x0[0] ≥ 0∧[-5 + (-1)bso_28] + [4]x1[0] + x0[0] ≥ 0)



    We solved constraint (11) using rule (IDP_SMT_SPLIT).We simplified constraint (12) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (15)    (x1[0] ≥ 0∧x0[0] + [-1] + x1[0] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] ≥ 0∧x0[0] + x1[0] ≥ 0∧[-1] + x1[0] ≥ 0∧[-1] + x1[0] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[(-5)bni_27 + (-1)Bound*bni_27] + [(6)bni_27]x0[0] + [(4)bni_27]x1[0] ≥ 0∧[-5 + (-1)bso_28] + [5]x0[0] + [4]x1[0] ≥ 0)



    We solved constraint (13) using rule (IDP_SMT_SPLIT).We solved constraint (14) using rule (IDP_SMT_SPLIT).We simplified constraint (15) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (16)    (x1[0] ≥ 0∧x0[0] + x1[0] ≥ 0∧[1] + x0[0] ≥ 0∧x0[0] ≥ 0∧[1] + x0[0] + x1[0] ≥ 0∧[-1] + x1[0] ≥ 0∧[-1] + x1[0] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[bni_27 + (-1)Bound*bni_27] + [(6)bni_27]x0[0] + [(4)bni_27]x1[0] ≥ 0∧[(-1)bso_28] + [5]x0[0] + [4]x1[0] ≥ 0)



    We simplified constraint (16) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (17)    ([1] + x1[0] ≥ 0∧[1] + x0[0] + x1[0] ≥ 0∧[1] + x0[0] ≥ 0∧x0[0] ≥ 0∧[2] + x0[0] + x1[0] ≥ 0∧x1[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[(5)bni_27 + (-1)Bound*bni_27] + [(6)bni_27]x0[0] + [(4)bni_27]x1[0] ≥ 0∧[4 + (-1)bso_28] + [5]x0[0] + [4]x1[0] ≥ 0)







For Pair 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])) → COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])) the following chains were created:
  • We consider the chain 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])) → COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])), COND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3])) → 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3])) which results in the following constraint:

    (18)    (>=(x1[2], x0[2])=TRUE1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])=1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3]) ⇒ 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))≥NonInfC∧1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))≥COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))∧(UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))), ≥))



    We simplified constraint (18) using rules (I), (II), (IV) which results in the following new constraint:

    (19)    (>=(x1[2], x0[2])=TRUE1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))≥NonInfC∧1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))≥COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))∧(UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))), ≥))



    We simplified constraint (19) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (20)    (x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))), ≥)∧[(-3)bni_29 + (-1)Bound*bni_29] + [(4)bni_29]x1[2] + [(2)bni_29]x0[2] ≥ 0∧[2 + (-1)bso_30] ≥ 0)



    We simplified constraint (20) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (21)    (x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))), ≥)∧[(-3)bni_29 + (-1)Bound*bni_29] + [(4)bni_29]x1[2] + [(2)bni_29]x0[2] ≥ 0∧[2 + (-1)bso_30] ≥ 0)



    We simplified constraint (21) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (22)    (x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))), ≥)∧[(-3)bni_29 + (-1)Bound*bni_29] + [(4)bni_29]x1[2] + [(2)bni_29]x0[2] ≥ 0∧[2 + (-1)bso_30] ≥ 0)



    We simplified constraint (22) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (23)    (x1[2] ≥ 0 ⇒ (UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))), ≥)∧[(-3)bni_29 + (-1)Bound*bni_29] + [(6)bni_29]x0[2] + [(4)bni_29]x1[2] ≥ 0∧[2 + (-1)bso_30] ≥ 0)



    We simplified constraint (23) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (24)    (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))), ≥)∧[(-3)bni_29 + (-1)Bound*bni_29] + [(6)bni_29]x0[2] + [(4)bni_29]x1[2] ≥ 0∧[2 + (-1)bso_30] ≥ 0)


    (25)    (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))), ≥)∧[(-3)bni_29 + (-1)Bound*bni_29] + [(-6)bni_29]x0[2] + [(4)bni_29]x1[2] ≥ 0∧[2 + (-1)bso_30] ≥ 0)







For Pair COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[1], x1[1])) → 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1])) the following chains were created:
  • We consider the chain 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])) → COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])), COND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3])) → 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3])), 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0])) → COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0])), COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[1], x1[1])) → 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1])), 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])) → COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])), COND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3])) → 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3])) which results in the following constraint:

    (26)    (>=(x1[2], x0[2])=TRUE1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])=1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3])∧1174_0_gcd_EQ(x1[3], x0[3])=1174_0_gcd_EQ(x0[0], x1[0])∧&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0])))=TRUE1174_0_gcd_EQ(x0[0], x1[0])=1174_0_gcd_EQ(x0[1], x1[1])∧1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1])=1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2]1, x1[2]1), x1[2]1)∧>=(x1[2]1, x0[2]1)=TRUE1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2]1, x1[2]1), x1[2]1)=1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3]1, x1[3]1), x1[3]1) ⇒ COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[1], x1[1]))≥NonInfC∧COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[1], x1[1]))≥1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))∧(UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥))



    We simplified constraint (26) using rules (I), (II), (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (27)    (>=(x1[2], x0[2])=TRUE>=(x0[2], x1[2])=TRUE>(x0[2], 0)=TRUE>=(x1[2], 0)=TRUE<(x1[2], x0[2])=TRUECOND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x1[2], x0[2]))≥NonInfC∧COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x1[2], x0[2]))≥1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x1[2], x0[2]), x0[2]))∧(UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥))



    We simplified constraint (27) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (28)    (x1[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0∧x0[2] + [-1] ≥ 0∧x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[(-1)bni_31 + (-1)Bound*bni_31] + [(-2)bni_31]x0[2] ≥ 0∧[2 + (-1)bso_32] + [-6]x0[2] + [-2]x1[2] ≥ 0)



    We simplified constraint (28) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (29)    (x1[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0∧x0[2] + [-1] ≥ 0∧x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[(-1)bni_31 + (-1)Bound*bni_31] + [(-2)bni_31]x0[2] ≥ 0∧[2 + (-1)bso_32] + [-6]x0[2] + [-2]x1[2] ≥ 0)



    We simplified constraint (30) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (31)    (x1[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0∧x0[2] + [-1] ≥ 0∧x1[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[(-1)bni_31 + (-1)Bound*bni_31] + [(-2)bni_31]x0[2] ≥ 0∧[2 + (-1)bso_32] + [-6]x0[2] + [-2]x1[2] ≥ 0)



    We simplified constraint (29) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (32)    (x1[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0∧x0[2] + [-1] ≥ 0∧x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[(-1)bni_31 + (-1)Bound*bni_31] + [(-2)bni_31]x0[2] ≥ 0∧[2 + (-1)bso_32] + [-6]x0[2] + [-2]x1[2] ≥ 0)



    We simplified constraint (31) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (33)    (x1[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0∧x0[2] + [-1] ≥ 0∧x1[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[(-1)bni_31 + (-1)Bound*bni_31] + [(-2)bni_31]x0[2] ≥ 0∧[2 + (-1)bso_32] + [-6]x0[2] + [-2]x1[2] ≥ 0)



    We solved constraint (32) using rule (IDP_SMT_SPLIT).We solved constraint (33) using rule (IDP_SMT_SPLIT).




For Pair 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0])) → COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0])) the following chains were created:
  • We consider the chain 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0])) → COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0])), COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[1], x1[1])) → 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1])) which results in the following constraint:

    (34)    (&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0])))=TRUE1174_0_gcd_EQ(x0[0], x1[0])=1174_0_gcd_EQ(x0[1], x1[1]) ⇒ 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0]))≥NonInfC∧1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0]))≥COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))∧(UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥))



    We simplified constraint (34) using rules (I), (II), (IV), (IDP_BOOLEAN) which results in the following new constraints:

    (35)    (>(x1[0], 0)=TRUE>=(x0[0], 0)=TRUE<(x0[0], x1[0])=TRUE1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0]))≥NonInfC∧1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0]))≥COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))∧(UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥))


    (36)    (>(x1[0], 0)=TRUE>=(x0[0], 0)=TRUE>(x0[0], x1[0])=TRUE1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0]))≥NonInfC∧1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0]))≥COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))∧(UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥))



    We simplified constraint (35) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (37)    (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(-1)Bound*bni_33] + [bni_33]x1[0] ≥ 0∧[-3 + (-1)bso_34] + [3]x1[0] ≥ 0)



    We simplified constraint (36) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (38)    (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(-1)Bound*bni_33] + [bni_33]x1[0] ≥ 0∧[-3 + (-1)bso_34] + [3]x1[0] ≥ 0)



    We simplified constraint (37) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (39)    (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(-1)Bound*bni_33] + [bni_33]x1[0] ≥ 0∧[-3 + (-1)bso_34] + [3]x1[0] ≥ 0)



    We simplified constraint (38) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (40)    (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(-1)Bound*bni_33] + [bni_33]x1[0] ≥ 0∧[-3 + (-1)bso_34] + [3]x1[0] ≥ 0)



    We simplified constraint (39) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (41)    (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(-1)Bound*bni_33] + [bni_33]x1[0] ≥ 0∧[-3 + (-1)bso_34] + [3]x1[0] ≥ 0)



    We simplified constraint (40) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (42)    (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(-1)Bound*bni_33] + [bni_33]x1[0] ≥ 0∧[-3 + (-1)bso_34] + [3]x1[0] ≥ 0)



    We simplified constraint (41) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (43)    (x1[0] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(-1)Bound*bni_33 + bni_33] + [bni_33]x1[0] ≥ 0∧[(-1)bso_34] + [3]x1[0] ≥ 0)



    We simplified constraint (42) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (44)    (x1[0] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-2] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(-1)Bound*bni_33 + bni_33] + [bni_33]x1[0] ≥ 0∧[(-1)bso_34] + [3]x1[0] ≥ 0)



    We simplified constraint (43) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (45)    (x0[0] + x1[0] ≥ 0∧x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(-1)Bound*bni_33 + bni_33] + [bni_33]x0[0] + [bni_33]x1[0] ≥ 0∧[(-1)bso_34] + [3]x0[0] + [3]x1[0] ≥ 0)



    We simplified constraint (44) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (46)    (x1[0] ≥ 0∧[2] + x1[0] + x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(-1)Bound*bni_33 + bni_33] + [bni_33]x1[0] ≥ 0∧[(-1)bso_34] + [3]x1[0] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • COND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3])) → 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))
    • ([1] + x1[0] ≥ 0∧[1] + x0[0] + x1[0] ≥ 0∧[1] + x0[0] ≥ 0∧x0[0] ≥ 0∧[2] + x0[0] + x1[0] ≥ 0∧x1[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[(5)bni_27 + (-1)Bound*bni_27] + [(6)bni_27]x0[0] + [(4)bni_27]x1[0] ≥ 0∧[4 + (-1)bso_28] + [5]x0[0] + [4]x1[0] ≥ 0)

  • 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])) → COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))
    • (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))), ≥)∧[(-3)bni_29 + (-1)Bound*bni_29] + [(6)bni_29]x0[2] + [(4)bni_29]x1[2] ≥ 0∧[2 + (-1)bso_30] ≥ 0)
    • (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))), ≥)∧[(-3)bni_29 + (-1)Bound*bni_29] + [(-6)bni_29]x0[2] + [(4)bni_29]x1[2] ≥ 0∧[2 + (-1)bso_30] ≥ 0)

  • COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[1], x1[1])) → 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))

  • 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0])) → COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))
    • (x0[0] + x1[0] ≥ 0∧x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(-1)Bound*bni_33 + bni_33] + [bni_33]x0[0] + [bni_33]x1[0] ≥ 0∧[(-1)bso_34] + [3]x0[0] + [3]x1[0] ≥ 0)
    • (x1[0] ≥ 0∧[2] + x1[0] + x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(-1)Bound*bni_33 + bni_33] + [bni_33]x1[0] ≥ 0∧[(-1)bso_34] + [3]x1[0] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = [3]   
POL(FALSE) = 0   
POL(COND_1265_2_MAIN_INVOKEMETHOD(x1, x2)) = [-1] + [2]x2   
POL(1265_1_gcd_InvokeMethod(x1, x2)) = [-1] + [2]x2 + [-1]x1   
POL(1265_0_mod_LE(x1, x2)) = [1] + [-1]x1   
POL(1174_1_MAIN_INVOKEMETHOD(x1)) = [1] + [-1]x1   
POL(1174_0_gcd_EQ(x1, x2)) = [1] + [-1]x2   
POL(1265_2_MAIN_INVOKEMETHOD(x1)) = [1] + [2]x1   
POL(>=(x1, x2)) = [-1]   
POL(COND_1174_1_MAIN_INVOKEMETHOD(x1, x2)) = [2]x2 + [-1]x1   
POL(&&(x1, x2)) = [-1]   
POL(>(x1, x2)) = [-1]   
POL(0) = 0   
POL(!(x1)) = [-1]   
POL(=(x1, x2)) = [-1]   

The following pairs are in P>:

COND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3])) → 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))
1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])) → COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))
COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[1], x1[1])) → 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))

The following pairs are in Pbound:

COND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3])) → 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))
COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[1], x1[1])) → 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))
1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0])) → COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))

The following pairs are in P:

1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0])) → COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))

At least the following rules have been oriented under context sensitive arithmetic replacement:

TRUE1&&(TRUE, TRUE)1
FALSE1&&(TRUE, FALSE)1
FALSE1&&(FALSE, TRUE)1
FALSE1&&(FALSE, FALSE)1

(12) Complex Obligation (AND)

(13) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0])) → COND_1174_1_MAIN_INVOKEMETHOD(x1[0] > 0 && x0[0] >= 0 && !(x0[0] = x1[0]), 1174_0_gcd_EQ(x0[0], x1[0]))


The set Q consists of the following terms:
1174_1_main_InvokeMethod(1174_0_gcd_EQ(x0, 0))

(14) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(15) TRUE

(16) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(2): 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])) → COND_1265_2_MAIN_INVOKEMETHOD(x1[2] >= x0[2], 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))


The set Q consists of the following terms:
1174_1_main_InvokeMethod(1174_0_gcd_EQ(x0, 0))

(17) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(18) TRUE