0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 IDP
↳7 IDependencyGraphProof (⇔)
↳8 IDP
↳9 UsableRulesProof (⇔)
↳10 IDP
↳11 IDPNonInfProof (⇒)
↳12 AND
↳13 IDP
↳14 IDependencyGraphProof (⇔)
↳15 TRUE
↳16 IDP
↳17 IDependencyGraphProof (⇔)
↳18 TRUE
public class GCD2 {
public static int mod(int a, int b) {
if (a == b) {
return 0;
}
while(a>b) {
a -= b;
}
return a;
}
public static int gcd(int a, int b) {
int tmp;
while(b != 0 && a >= 0 && b >= 0) {
tmp = b;
b = mod(a, b);
a = tmp;
}
return a;
}
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
gcd(x, y);
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 43 rules for P and 8 rules for R.
Combined rules. Obtained 4 rules for P and 1 rules for R.
Filtered ground terms:
1174_0_gcd_EQ(x1, x2, x3, x4) → 1174_0_gcd_EQ(x2, x3, x4)
1265_0_mod_LE(x1, x2, x3, x4, x5) → 1265_0_mod_LE(x2, x3, x4, x5)
1193_0_main_Return(x1) → 1193_0_main_Return
Filtered duplicate args:
1174_0_gcd_EQ(x1, x2, x3) → 1174_0_gcd_EQ(x1, x3)
1265_0_mod_LE(x1, x2, x3, x4) → 1265_0_mod_LE(x3, x4)
1265_1_gcd_InvokeMethod(x1, x2, x3) → 1265_1_gcd_InvokeMethod(x1, x3)
Combined rules. Obtained 4 rules for P and 1 rules for R.
Finished conversion. Obtained 4 rules for P and 1 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((x1[0] > 0 && x0[0] >= 0 && !(x0[0] = x1[0]) →* TRUE)∧(1174_0_gcd_EQ(x0[0], x1[0]) →* 1174_0_gcd_EQ(x0[1], x1[1])))
(1) -> (2), if ((1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]) →* 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])))
(1) -> (4), if ((1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]) →* 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4])))
(2) -> (3), if ((x1[2] >= x0[2] →* TRUE)∧(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]) →* 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3])))
(3) -> (0), if ((1174_0_gcd_EQ(x1[3], x0[3]) →* 1174_0_gcd_EQ(x0[0], x1[0])))
(3) -> (6), if ((1174_0_gcd_EQ(x1[3], x0[3]) →* 1174_0_gcd_EQ(x0[6], x0[6])))
(4) -> (5), if ((x1[4] > 0 && x1[4] < x0[4] →* TRUE)∧(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]) →* 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[5], x1[5]), x1[5])))
(5) -> (2), if ((1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[5] - x1[5], x1[5]), x1[5]) →* 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])))
(5) -> (4), if ((1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[5] - x1[5], x1[5]), x1[5]) →* 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4])))
(6) -> (7), if ((x0[6] > 0 →* TRUE)∧(1174_0_gcd_EQ(x0[6], x0[6]) →* 1174_0_gcd_EQ(x0[7], x0[7])))
(7) -> (0), if ((1174_0_gcd_EQ(x0[7], 0) →* 1174_0_gcd_EQ(x0[0], x1[0])))
(7) -> (6), if ((1174_0_gcd_EQ(x0[7], 0) →* 1174_0_gcd_EQ(x0[6], x0[6])))
(1) (&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0])))=TRUE∧1174_0_gcd_EQ(x0[0], x1[0])=1174_0_gcd_EQ(x0[1], x1[1]) ⇒ 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0]))≥NonInfC∧1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0]))≥COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))∧(UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥))
(2) (>(x1[0], 0)=TRUE∧>=(x0[0], 0)=TRUE∧<(x0[0], x1[0])=TRUE ⇒ 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0]))≥NonInfC∧1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0]))≥COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))∧(UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥))
(3) (>(x1[0], 0)=TRUE∧>=(x0[0], 0)=TRUE∧>(x0[0], x1[0])=TRUE ⇒ 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0]))≥NonInfC∧1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0]))≥COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))∧(UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥))
(4) (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[bni_37 + (-1)Bound*bni_37] + [bni_37]x1[0] + [bni_37]x0[0] ≥ 0∧[(-1)bso_38] ≥ 0)
(5) (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[bni_37 + (-1)Bound*bni_37] + [bni_37]x1[0] + [bni_37]x0[0] ≥ 0∧[(-1)bso_38] ≥ 0)
(6) (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[bni_37 + (-1)Bound*bni_37] + [bni_37]x1[0] + [bni_37]x0[0] ≥ 0∧[(-1)bso_38] ≥ 0)
(7) (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[bni_37 + (-1)Bound*bni_37] + [bni_37]x1[0] + [bni_37]x0[0] ≥ 0∧[(-1)bso_38] ≥ 0)
(8) (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[bni_37 + (-1)Bound*bni_37] + [bni_37]x1[0] + [bni_37]x0[0] ≥ 0∧[(-1)bso_38] ≥ 0)
(9) (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[bni_37 + (-1)Bound*bni_37] + [bni_37]x1[0] + [bni_37]x0[0] ≥ 0∧[(-1)bso_38] ≥ 0)
(10) (x1[0] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(2)bni_37 + (-1)Bound*bni_37] + [bni_37]x1[0] + [bni_37]x0[0] ≥ 0∧[(-1)bso_38] ≥ 0)
(11) (x1[0] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-2] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(2)bni_37 + (-1)Bound*bni_37] + [bni_37]x1[0] + [bni_37]x0[0] ≥ 0∧[(-1)bso_38] ≥ 0)
(12) (x0[0] + x1[0] ≥ 0∧x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(2)bni_37 + (-1)Bound*bni_37] + [(2)bni_37]x0[0] + [bni_37]x1[0] ≥ 0∧[(-1)bso_38] ≥ 0)
(13) (x1[0] ≥ 0∧[2] + x1[0] + x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(4)bni_37 + (-1)Bound*bni_37] + [(2)bni_37]x1[0] + [bni_37]x0[0] ≥ 0∧[(-1)bso_38] ≥ 0)
(14) (&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0])))=TRUE∧1174_0_gcd_EQ(x0[0], x1[0])=1174_0_gcd_EQ(x0[1], x1[1])∧1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1])=1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]) ⇒ COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[1], x1[1]))≥NonInfC∧COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[1], x1[1]))≥1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))∧(UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥))
(15) (>(x1[0], 0)=TRUE∧>=(x0[0], 0)=TRUE∧<(x0[0], x1[0])=TRUE ⇒ COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[0], x1[0]))≥NonInfC∧COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[0], x1[0]))≥1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[0], x1[0]), x1[0]))∧(UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥))
(16) (>(x1[0], 0)=TRUE∧>=(x0[0], 0)=TRUE∧>(x0[0], x1[0])=TRUE ⇒ COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[0], x1[0]))≥NonInfC∧COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[0], x1[0]))≥1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[0], x1[0]), x1[0]))∧(UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥))
(17) (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[bni_39 + (-1)Bound*bni_39] + [bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)
(18) (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[bni_39 + (-1)Bound*bni_39] + [bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)
(19) (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[bni_39 + (-1)Bound*bni_39] + [bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)
(20) (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[bni_39 + (-1)Bound*bni_39] + [bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)
(21) (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[bni_39 + (-1)Bound*bni_39] + [bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)
(22) (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[bni_39 + (-1)Bound*bni_39] + [bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)
(23) (x1[0] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[(2)bni_39 + (-1)Bound*bni_39] + [bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)
(24) (x1[0] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-2] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[(2)bni_39 + (-1)Bound*bni_39] + [bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)
(25) (x0[0] + x1[0] ≥ 0∧x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[(2)bni_39 + (-1)Bound*bni_39] + [(2)bni_39]x0[0] + [bni_39]x1[0] ≥ 0∧[(-1)bso_40] ≥ 0)
(26) (x1[0] ≥ 0∧[2] + x1[0] + x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[(4)bni_39 + (-1)Bound*bni_39] + [(2)bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)
(27) (&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0])))=TRUE∧1174_0_gcd_EQ(x0[0], x1[0])=1174_0_gcd_EQ(x0[1], x1[1])∧1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1])=1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]) ⇒ COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[1], x1[1]))≥NonInfC∧COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[1], x1[1]))≥1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))∧(UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥))
(28) (>(x1[0], 0)=TRUE∧>=(x0[0], 0)=TRUE∧<(x0[0], x1[0])=TRUE ⇒ COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[0], x1[0]))≥NonInfC∧COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[0], x1[0]))≥1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[0], x1[0]), x1[0]))∧(UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥))
(29) (>(x1[0], 0)=TRUE∧>=(x0[0], 0)=TRUE∧>(x0[0], x1[0])=TRUE ⇒ COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[0], x1[0]))≥NonInfC∧COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[0], x1[0]))≥1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[0], x1[0]), x1[0]))∧(UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥))
(30) (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[bni_39 + (-1)Bound*bni_39] + [bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)
(31) (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[bni_39 + (-1)Bound*bni_39] + [bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)
(32) (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[bni_39 + (-1)Bound*bni_39] + [bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)
(33) (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[bni_39 + (-1)Bound*bni_39] + [bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)
(34) (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[bni_39 + (-1)Bound*bni_39] + [bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)
(35) (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[bni_39 + (-1)Bound*bni_39] + [bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)
(36) (x1[0] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[(2)bni_39 + (-1)Bound*bni_39] + [bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)
(37) (x1[0] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-2] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[(2)bni_39 + (-1)Bound*bni_39] + [bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)
(38) (x0[0] + x1[0] ≥ 0∧x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[(2)bni_39 + (-1)Bound*bni_39] + [(2)bni_39]x0[0] + [bni_39]x1[0] ≥ 0∧[(-1)bso_40] ≥ 0)
(39) (x1[0] ≥ 0∧[2] + x1[0] + x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[(4)bni_39 + (-1)Bound*bni_39] + [(2)bni_39]x1[0] + [bni_39]x0[0] ≥ 0∧[(-1)bso_40] ≥ 0)
(40) (>=(x1[2], x0[2])=TRUE∧1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])=1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3]) ⇒ 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))≥NonInfC∧1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))≥COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))∧(UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))), ≥))
(41) (>=(x1[2], x0[2])=TRUE ⇒ 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))≥NonInfC∧1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))≥COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))∧(UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))), ≥))
(42) (x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))), ≥)∧[bni_41 + (-1)Bound*bni_41] + [bni_41]x1[2] + [bni_41]x0[2] ≥ 0∧[(-1)bso_42] ≥ 0)
(43) (x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))), ≥)∧[bni_41 + (-1)Bound*bni_41] + [bni_41]x1[2] + [bni_41]x0[2] ≥ 0∧[(-1)bso_42] ≥ 0)
(44) (x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))), ≥)∧[bni_41 + (-1)Bound*bni_41] + [bni_41]x1[2] + [bni_41]x0[2] ≥ 0∧[(-1)bso_42] ≥ 0)
(45) (x1[2] ≥ 0 ⇒ (UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))), ≥)∧[bni_41 + (-1)Bound*bni_41] + [(2)bni_41]x0[2] + [bni_41]x1[2] ≥ 0∧[(-1)bso_42] ≥ 0)
(46) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))), ≥)∧[bni_41 + (-1)Bound*bni_41] + [(-2)bni_41]x0[2] + [bni_41]x1[2] ≥ 0∧[(-1)bso_42] ≥ 0)
(47) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))), ≥)∧[bni_41 + (-1)Bound*bni_41] + [(2)bni_41]x0[2] + [bni_41]x1[2] ≥ 0∧[(-1)bso_42] ≥ 0)
(48) (>=(x1[2], x0[2])=TRUE∧1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])=1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3])∧1174_0_gcd_EQ(x1[3], x0[3])=1174_0_gcd_EQ(x0[0], x1[0]) ⇒ COND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3]))≥NonInfC∧COND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3]))≥1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))∧(UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥))
(49) (>=(x1[2], x0[2])=TRUE ⇒ COND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))≥NonInfC∧COND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))≥1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[2], x0[2]))∧(UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥))
(50) (x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[bni_43 + (-1)Bound*bni_43] + [bni_43]x1[2] + [bni_43]x0[2] ≥ 0∧[(-1)bso_44] ≥ 0)
(51) (x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[bni_43 + (-1)Bound*bni_43] + [bni_43]x1[2] + [bni_43]x0[2] ≥ 0∧[(-1)bso_44] ≥ 0)
(52) (x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[bni_43 + (-1)Bound*bni_43] + [bni_43]x1[2] + [bni_43]x0[2] ≥ 0∧[(-1)bso_44] ≥ 0)
(53) (x1[2] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[bni_43 + (-1)Bound*bni_43] + [(2)bni_43]x0[2] + [bni_43]x1[2] ≥ 0∧[(-1)bso_44] ≥ 0)
(54) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[bni_43 + (-1)Bound*bni_43] + [(2)bni_43]x0[2] + [bni_43]x1[2] ≥ 0∧[(-1)bso_44] ≥ 0)
(55) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[bni_43 + (-1)Bound*bni_43] + [(-2)bni_43]x0[2] + [bni_43]x1[2] ≥ 0∧[(-1)bso_44] ≥ 0)
(56) (>=(x1[2], x0[2])=TRUE∧1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])=1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3])∧1174_0_gcd_EQ(x1[3], x0[3])=1174_0_gcd_EQ(x0[6], x0[6]) ⇒ COND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3]))≥NonInfC∧COND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3]))≥1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))∧(UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥))
(57) (>=(x0[2], x0[2])=TRUE ⇒ COND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x0[2]), x0[2]))≥NonInfC∧COND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x0[2]), x0[2]))≥1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[2], x0[2]))∧(UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥))
(58) (0 ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[bni_43 + (-1)Bound*bni_43] + [(2)bni_43]x0[2] ≥ 0∧[(-1)bso_44] ≥ 0)
(59) (0 ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[bni_43 + (-1)Bound*bni_43] + [(2)bni_43]x0[2] ≥ 0∧[(-1)bso_44] ≥ 0)
(60) (0 ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[bni_43 + (-1)Bound*bni_43] + [(2)bni_43]x0[2] ≥ 0∧[(-1)bso_44] ≥ 0)
(61) (0 ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[(2)bni_43] = 0∧[bni_43 + (-1)Bound*bni_43] ≥ 0∧0 = 0∧[(-1)bso_44] ≥ 0)
(62) (&&(>(x1[4], 0), <(x1[4], x0[4]))=TRUE∧1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4])=1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[5], x1[5]), x1[5]) ⇒ 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]))≥NonInfC∧1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]))≥COND_1265_2_MAIN_INVOKEMETHOD1(&&(>(x1[4], 0), <(x1[4], x0[4])), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]))∧(UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD1(&&(>(x1[4], 0), <(x1[4], x0[4])), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]))), ≥))
(63) (>(x1[4], 0)=TRUE∧<(x1[4], x0[4])=TRUE ⇒ 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]))≥NonInfC∧1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]))≥COND_1265_2_MAIN_INVOKEMETHOD1(&&(>(x1[4], 0), <(x1[4], x0[4])), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]))∧(UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD1(&&(>(x1[4], 0), <(x1[4], x0[4])), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]))), ≥))
(64) (x1[4] + [-1] ≥ 0∧x0[4] + [-1] + [-1]x1[4] ≥ 0 ⇒ (UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD1(&&(>(x1[4], 0), <(x1[4], x0[4])), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]))), ≥)∧[bni_45 + (-1)Bound*bni_45] + [bni_45]x1[4] + [bni_45]x0[4] ≥ 0∧[1 + (-1)bso_46] ≥ 0)
(65) (x1[4] + [-1] ≥ 0∧x0[4] + [-1] + [-1]x1[4] ≥ 0 ⇒ (UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD1(&&(>(x1[4], 0), <(x1[4], x0[4])), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]))), ≥)∧[bni_45 + (-1)Bound*bni_45] + [bni_45]x1[4] + [bni_45]x0[4] ≥ 0∧[1 + (-1)bso_46] ≥ 0)
(66) (x1[4] + [-1] ≥ 0∧x0[4] + [-1] + [-1]x1[4] ≥ 0 ⇒ (UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD1(&&(>(x1[4], 0), <(x1[4], x0[4])), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]))), ≥)∧[bni_45 + (-1)Bound*bni_45] + [bni_45]x1[4] + [bni_45]x0[4] ≥ 0∧[1 + (-1)bso_46] ≥ 0)
(67) (x1[4] ≥ 0∧x0[4] + [-2] + [-1]x1[4] ≥ 0 ⇒ (UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD1(&&(>(x1[4], 0), <(x1[4], x0[4])), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]))), ≥)∧[(2)bni_45 + (-1)Bound*bni_45] + [bni_45]x1[4] + [bni_45]x0[4] ≥ 0∧[1 + (-1)bso_46] ≥ 0)
(68) (x1[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD1(&&(>(x1[4], 0), <(x1[4], x0[4])), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]))), ≥)∧[(4)bni_45 + (-1)Bound*bni_45] + [(2)bni_45]x1[4] + [bni_45]x0[4] ≥ 0∧[1 + (-1)bso_46] ≥ 0)
(69) (&&(>(x1[4], 0), <(x1[4], x0[4]))=TRUE∧1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4])=1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[5], x1[5]), x1[5])∧1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5])=1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]) ⇒ COND_1265_2_MAIN_INVOKEMETHOD1(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[5], x1[5]), x1[5]))≥NonInfC∧COND_1265_2_MAIN_INVOKEMETHOD1(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[5], x1[5]), x1[5]))≥1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5]))∧(UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5]))), ≥))
(70) (>(x1[4], 0)=TRUE∧<(x1[4], x0[4])=TRUE ⇒ COND_1265_2_MAIN_INVOKEMETHOD1(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]))≥NonInfC∧COND_1265_2_MAIN_INVOKEMETHOD1(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]))≥1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[4], x1[4]), x1[4]), x1[4]))∧(UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5]))), ≥))
(71) (x1[4] + [-1] ≥ 0∧x0[4] + [-1] + [-1]x1[4] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5]))), ≥)∧[(-1)Bound*bni_47] + [bni_47]x1[4] + [bni_47]x0[4] ≥ 0∧[-1 + (-1)bso_48] + x1[4] ≥ 0)
(72) (x1[4] + [-1] ≥ 0∧x0[4] + [-1] + [-1]x1[4] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5]))), ≥)∧[(-1)Bound*bni_47] + [bni_47]x1[4] + [bni_47]x0[4] ≥ 0∧[-1 + (-1)bso_48] + x1[4] ≥ 0)
(73) (x1[4] + [-1] ≥ 0∧x0[4] + [-1] + [-1]x1[4] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5]))), ≥)∧[(-1)Bound*bni_47] + [bni_47]x1[4] + [bni_47]x0[4] ≥ 0∧[-1 + (-1)bso_48] + x1[4] ≥ 0)
(74) (x1[4] ≥ 0∧x0[4] + [-2] + [-1]x1[4] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5]))), ≥)∧[(-1)Bound*bni_47 + bni_47] + [bni_47]x1[4] + [bni_47]x0[4] ≥ 0∧[(-1)bso_48] + x1[4] ≥ 0)
(75) (x1[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5]))), ≥)∧[(-1)Bound*bni_47 + (3)bni_47] + [(2)bni_47]x1[4] + [bni_47]x0[4] ≥ 0∧[(-1)bso_48] + x1[4] ≥ 0)
(76) (&&(>(x1[4], 0), <(x1[4], x0[4]))=TRUE∧1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4])=1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[5], x1[5]), x1[5])∧1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5])=1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4]1, x1[4]1), x1[4]1) ⇒ COND_1265_2_MAIN_INVOKEMETHOD1(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[5], x1[5]), x1[5]))≥NonInfC∧COND_1265_2_MAIN_INVOKEMETHOD1(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[5], x1[5]), x1[5]))≥1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5]))∧(UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5]))), ≥))
(77) (>(x1[4], 0)=TRUE∧<(x1[4], x0[4])=TRUE ⇒ COND_1265_2_MAIN_INVOKEMETHOD1(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]))≥NonInfC∧COND_1265_2_MAIN_INVOKEMETHOD1(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]))≥1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[4], x1[4]), x1[4]), x1[4]))∧(UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5]))), ≥))
(78) (x1[4] + [-1] ≥ 0∧x0[4] + [-1] + [-1]x1[4] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5]))), ≥)∧[(-1)Bound*bni_47] + [bni_47]x1[4] + [bni_47]x0[4] ≥ 0∧[-1 + (-1)bso_48] + x1[4] ≥ 0)
(79) (x1[4] + [-1] ≥ 0∧x0[4] + [-1] + [-1]x1[4] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5]))), ≥)∧[(-1)Bound*bni_47] + [bni_47]x1[4] + [bni_47]x0[4] ≥ 0∧[-1 + (-1)bso_48] + x1[4] ≥ 0)
(80) (x1[4] + [-1] ≥ 0∧x0[4] + [-1] + [-1]x1[4] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5]))), ≥)∧[(-1)Bound*bni_47] + [bni_47]x1[4] + [bni_47]x0[4] ≥ 0∧[-1 + (-1)bso_48] + x1[4] ≥ 0)
(81) (x1[4] ≥ 0∧x0[4] + [-2] + [-1]x1[4] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5]))), ≥)∧[(-1)Bound*bni_47 + bni_47] + [bni_47]x1[4] + [bni_47]x0[4] ≥ 0∧[(-1)bso_48] + x1[4] ≥ 0)
(82) (x1[4] ≥ 0∧x0[4] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5]))), ≥)∧[(-1)Bound*bni_47 + (3)bni_47] + [(2)bni_47]x1[4] + [bni_47]x0[4] ≥ 0∧[(-1)bso_48] + x1[4] ≥ 0)
(83) (>(x0[6], 0)=TRUE∧1174_0_gcd_EQ(x0[6], x0[6])=1174_0_gcd_EQ(x0[7], x0[7]) ⇒ 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[6], x0[6]))≥NonInfC∧1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[6], x0[6]))≥COND_1174_1_MAIN_INVOKEMETHOD1(>(x0[6], 0), 1174_0_gcd_EQ(x0[6], x0[6]))∧(UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD1(>(x0[6], 0), 1174_0_gcd_EQ(x0[6], x0[6]))), ≥))
(84) (>(x0[6], 0)=TRUE ⇒ 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[6], x0[6]))≥NonInfC∧1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[6], x0[6]))≥COND_1174_1_MAIN_INVOKEMETHOD1(>(x0[6], 0), 1174_0_gcd_EQ(x0[6], x0[6]))∧(UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD1(>(x0[6], 0), 1174_0_gcd_EQ(x0[6], x0[6]))), ≥))
(85) (x0[6] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD1(>(x0[6], 0), 1174_0_gcd_EQ(x0[6], x0[6]))), ≥)∧[bni_49 + (-1)Bound*bni_49] + [(2)bni_49]x0[6] ≥ 0∧[(-1)bso_50] ≥ 0)
(86) (x0[6] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD1(>(x0[6], 0), 1174_0_gcd_EQ(x0[6], x0[6]))), ≥)∧[bni_49 + (-1)Bound*bni_49] + [(2)bni_49]x0[6] ≥ 0∧[(-1)bso_50] ≥ 0)
(87) (x0[6] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD1(>(x0[6], 0), 1174_0_gcd_EQ(x0[6], x0[6]))), ≥)∧[bni_49 + (-1)Bound*bni_49] + [(2)bni_49]x0[6] ≥ 0∧[(-1)bso_50] ≥ 0)
(88) (x0[6] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD1(>(x0[6], 0), 1174_0_gcd_EQ(x0[6], x0[6]))), ≥)∧[(3)bni_49 + (-1)Bound*bni_49] + [(2)bni_49]x0[6] ≥ 0∧[(-1)bso_50] ≥ 0)
(89) (>(x0[6], 0)=TRUE∧1174_0_gcd_EQ(x0[6], x0[6])=1174_0_gcd_EQ(x0[7], x0[7])∧1174_0_gcd_EQ(x0[7], 0)=1174_0_gcd_EQ(x0[0], x1[0]) ⇒ COND_1174_1_MAIN_INVOKEMETHOD1(TRUE, 1174_0_gcd_EQ(x0[7], x0[7]))≥NonInfC∧COND_1174_1_MAIN_INVOKEMETHOD1(TRUE, 1174_0_gcd_EQ(x0[7], x0[7]))≥1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[7], 0))∧(UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[7], 0))), ≥))
(90) (>(x0[6], 0)=TRUE ⇒ COND_1174_1_MAIN_INVOKEMETHOD1(TRUE, 1174_0_gcd_EQ(x0[6], x0[6]))≥NonInfC∧COND_1174_1_MAIN_INVOKEMETHOD1(TRUE, 1174_0_gcd_EQ(x0[6], x0[6]))≥1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[6], 0))∧(UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[7], 0))), ≥))
(91) (x0[6] + [-1] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[7], 0))), ≥)∧[bni_51 + (-1)Bound*bni_51] + [(2)bni_51]x0[6] ≥ 0∧[(-1)bso_52] + x0[6] ≥ 0)
(92) (x0[6] + [-1] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[7], 0))), ≥)∧[bni_51 + (-1)Bound*bni_51] + [(2)bni_51]x0[6] ≥ 0∧[(-1)bso_52] + x0[6] ≥ 0)
(93) (x0[6] + [-1] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[7], 0))), ≥)∧[bni_51 + (-1)Bound*bni_51] + [(2)bni_51]x0[6] ≥ 0∧[(-1)bso_52] + x0[6] ≥ 0)
(94) (x0[6] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[7], 0))), ≥)∧[(3)bni_51 + (-1)Bound*bni_51] + [(2)bni_51]x0[6] ≥ 0∧[1 + (-1)bso_52] + x0[6] ≥ 0)
(95) (>(x0[6], 0)=TRUE∧1174_0_gcd_EQ(x0[6], x0[6])=1174_0_gcd_EQ(x0[7], x0[7])∧1174_0_gcd_EQ(x0[7], 0)=1174_0_gcd_EQ(x0[6]1, x0[6]1) ⇒ COND_1174_1_MAIN_INVOKEMETHOD1(TRUE, 1174_0_gcd_EQ(x0[7], x0[7]))≥NonInfC∧COND_1174_1_MAIN_INVOKEMETHOD1(TRUE, 1174_0_gcd_EQ(x0[7], x0[7]))≥1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[7], 0))∧(UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[7], 0))), ≥))
POL(TRUE) = [1]
POL(FALSE) = 0
POL(1174_1_main_InvokeMethod(x1)) = [-1] + [-1]x1
POL(1174_0_gcd_EQ(x1, x2)) = [1] + [-1]x2 + [-1]x1
POL(0) = 0
POL(1193_0_main_Return) = [-1]
POL(1174_1_MAIN_INVOKEMETHOD(x1)) = [2] + [-1]x1
POL(COND_1174_1_MAIN_INVOKEMETHOD(x1, x2)) = [2] + [-1]x2
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(!(x1)) = [-1]
POL(=(x1, x2)) = [-1]
POL(1265_2_MAIN_INVOKEMETHOD(x1)) = [-1]x1
POL(1265_1_gcd_InvokeMethod(x1, x2)) = [-1]x2 + x1
POL(1265_0_mod_LE(x1, x2)) = [-1] + [-1]x1
POL(COND_1265_2_MAIN_INVOKEMETHOD(x1, x2)) = [-1]x2
POL(COND_1265_2_MAIN_INVOKEMETHOD1(x1, x2)) = [-1] + [-1]x2
POL(<(x1, x2)) = [-1]
POL(-(x1, x2)) = x1 + [-1]x2
POL(COND_1174_1_MAIN_INVOKEMETHOD1(x1, x2)) = [2] + [-1]x2
1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4])) → COND_1265_2_MAIN_INVOKEMETHOD1(&&(>(x1[4], 0), <(x1[4], x0[4])), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]))
COND_1174_1_MAIN_INVOKEMETHOD1(TRUE, 1174_0_gcd_EQ(x0[7], x0[7])) → 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[7], 0))
1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0])) → COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))
COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[1], x1[1])) → 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))
1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4])) → COND_1265_2_MAIN_INVOKEMETHOD1(&&(>(x1[4], 0), <(x1[4], x0[4])), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[4], x1[4]), x1[4]))
COND_1265_2_MAIN_INVOKEMETHOD1(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[5], x1[5]), x1[5])) → 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5]))
1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[6], x0[6])) → COND_1174_1_MAIN_INVOKEMETHOD1(>(x0[6], 0), 1174_0_gcd_EQ(x0[6], x0[6]))
COND_1174_1_MAIN_INVOKEMETHOD1(TRUE, 1174_0_gcd_EQ(x0[7], x0[7])) → 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[7], 0))
1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0])) → COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))
COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[1], x1[1])) → 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))
1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])) → COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))
COND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3])) → 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))
COND_1265_2_MAIN_INVOKEMETHOD1(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[5], x1[5]), x1[5])) → 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(-(x0[5], x1[5]), x1[5]), x1[5]))
1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[6], x0[6])) → COND_1174_1_MAIN_INVOKEMETHOD1(>(x0[6], 0), 1174_0_gcd_EQ(x0[6], x0[6]))
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(3) -> (0), if ((1174_0_gcd_EQ(x1[3], x0[3]) →* 1174_0_gcd_EQ(x0[0], x1[0])))
(0) -> (1), if ((x1[0] > 0 && x0[0] >= 0 && !(x0[0] = x1[0]) →* TRUE)∧(1174_0_gcd_EQ(x0[0], x1[0]) →* 1174_0_gcd_EQ(x0[1], x1[1])))
(1) -> (2), if ((1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]) →* 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])))
(5) -> (2), if ((1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[5] - x1[5], x1[5]), x1[5]) →* 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])))
(2) -> (3), if ((x1[2] >= x0[2] →* TRUE)∧(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]) →* 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3])))
(3) -> (6), if ((1174_0_gcd_EQ(x1[3], x0[3]) →* 1174_0_gcd_EQ(x0[6], x0[6])))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(3) -> (0), if ((1174_0_gcd_EQ(x1[3], x0[3]) →* 1174_0_gcd_EQ(x0[0], x1[0])))
(0) -> (1), if ((x1[0] > 0 && x0[0] >= 0 && !(x0[0] = x1[0]) →* TRUE)∧(1174_0_gcd_EQ(x0[0], x1[0]) →* 1174_0_gcd_EQ(x0[1], x1[1])))
(1) -> (2), if ((1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]) →* 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])))
(2) -> (3), if ((x1[2] >= x0[2] →* TRUE)∧(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]) →* 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3])))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(3) -> (0), if ((1174_0_gcd_EQ(x1[3], x0[3]) →* 1174_0_gcd_EQ(x0[0], x1[0])))
(0) -> (1), if ((x1[0] > 0 && x0[0] >= 0 && !(x0[0] = x1[0]) →* TRUE)∧(1174_0_gcd_EQ(x0[0], x1[0]) →* 1174_0_gcd_EQ(x0[1], x1[1])))
(1) -> (2), if ((1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]) →* 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])))
(2) -> (3), if ((x1[2] >= x0[2] →* TRUE)∧(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]) →* 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3])))
(1) (&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0])))=TRUE∧1174_0_gcd_EQ(x0[0], x1[0])=1174_0_gcd_EQ(x0[1], x1[1])∧1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1])=1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])∧>=(x1[2], x0[2])=TRUE∧1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])=1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3])∧1174_0_gcd_EQ(x1[3], x0[3])=1174_0_gcd_EQ(x0[0]1, x1[0]1)∧&&(&&(>(x1[0]1, 0), >=(x0[0]1, 0)), !(=(x0[0]1, x1[0]1)))=TRUE∧1174_0_gcd_EQ(x0[0]1, x1[0]1)=1174_0_gcd_EQ(x0[1]1, x1[1]1) ⇒ COND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3]))≥NonInfC∧COND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3]))≥1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))∧(UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥))
(2) (>=(x1[0], x0[0])=TRUE∧>(x1[0], 0)=TRUE∧>=(x0[0], 0)=TRUE∧>(x0[0], 0)=TRUE∧>=(x1[0], 0)=TRUE∧<(x0[0], x1[0])=TRUE∧<(x1[0], x0[0])=TRUE ⇒ COND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[0], x1[0]), x1[0]))≥NonInfC∧COND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[0], x1[0]), x1[0]))≥1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[0], x0[0]))∧(UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥))
(3) (x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[(-5)bni_27 + (-1)Bound*bni_27] + [(4)bni_27]x1[0] + [(2)bni_27]x0[0] ≥ 0∧[-5 + (-1)bso_28] + [4]x1[0] + x0[0] ≥ 0)
(4) (x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[(-5)bni_27 + (-1)Bound*bni_27] + [(4)bni_27]x1[0] + [(2)bni_27]x0[0] ≥ 0∧[-5 + (-1)bso_28] + [4]x1[0] + x0[0] ≥ 0)
(6) (x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[(-5)bni_27 + (-1)Bound*bni_27] + [(4)bni_27]x1[0] + [(2)bni_27]x0[0] ≥ 0∧[-5 + (-1)bso_28] + [4]x1[0] + x0[0] ≥ 0)
(8) (x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[(-5)bni_27 + (-1)Bound*bni_27] + [(4)bni_27]x1[0] + [(2)bni_27]x0[0] ≥ 0∧[-5 + (-1)bso_28] + [4]x1[0] + x0[0] ≥ 0)
(10) (x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[(-5)bni_27 + (-1)Bound*bni_27] + [(4)bni_27]x1[0] + [(2)bni_27]x0[0] ≥ 0∧[-5 + (-1)bso_28] + [4]x1[0] + x0[0] ≥ 0)
(11) (x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[(-5)bni_27 + (-1)Bound*bni_27] + [(4)bni_27]x1[0] + [(2)bni_27]x0[0] ≥ 0∧[-5 + (-1)bso_28] + [4]x1[0] + x0[0] ≥ 0)
(12) (x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[(-5)bni_27 + (-1)Bound*bni_27] + [(4)bni_27]x1[0] + [(2)bni_27]x0[0] ≥ 0∧[-5 + (-1)bso_28] + [4]x1[0] + x0[0] ≥ 0)
(13) (x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[(-5)bni_27 + (-1)Bound*bni_27] + [(4)bni_27]x1[0] + [(2)bni_27]x0[0] ≥ 0∧[-5 + (-1)bso_28] + [4]x1[0] + x0[0] ≥ 0)
(14) (x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[(-5)bni_27 + (-1)Bound*bni_27] + [(4)bni_27]x1[0] + [(2)bni_27]x0[0] ≥ 0∧[-5 + (-1)bso_28] + [4]x1[0] + x0[0] ≥ 0)
(15) (x1[0] ≥ 0∧x0[0] + [-1] + x1[0] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] ≥ 0∧x0[0] + x1[0] ≥ 0∧[-1] + x1[0] ≥ 0∧[-1] + x1[0] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[(-5)bni_27 + (-1)Bound*bni_27] + [(6)bni_27]x0[0] + [(4)bni_27]x1[0] ≥ 0∧[-5 + (-1)bso_28] + [5]x0[0] + [4]x1[0] ≥ 0)
(16) (x1[0] ≥ 0∧x0[0] + x1[0] ≥ 0∧[1] + x0[0] ≥ 0∧x0[0] ≥ 0∧[1] + x0[0] + x1[0] ≥ 0∧[-1] + x1[0] ≥ 0∧[-1] + x1[0] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[bni_27 + (-1)Bound*bni_27] + [(6)bni_27]x0[0] + [(4)bni_27]x1[0] ≥ 0∧[(-1)bso_28] + [5]x0[0] + [4]x1[0] ≥ 0)
(17) ([1] + x1[0] ≥ 0∧[1] + x0[0] + x1[0] ≥ 0∧[1] + x0[0] ≥ 0∧x0[0] ≥ 0∧[2] + x0[0] + x1[0] ≥ 0∧x1[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))), ≥)∧[(5)bni_27 + (-1)Bound*bni_27] + [(6)bni_27]x0[0] + [(4)bni_27]x1[0] ≥ 0∧[4 + (-1)bso_28] + [5]x0[0] + [4]x1[0] ≥ 0)
(18) (>=(x1[2], x0[2])=TRUE∧1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])=1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3]) ⇒ 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))≥NonInfC∧1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))≥COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))∧(UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))), ≥))
(19) (>=(x1[2], x0[2])=TRUE ⇒ 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))≥NonInfC∧1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))≥COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))∧(UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))), ≥))
(20) (x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))), ≥)∧[(-3)bni_29 + (-1)Bound*bni_29] + [(4)bni_29]x1[2] + [(2)bni_29]x0[2] ≥ 0∧[2 + (-1)bso_30] ≥ 0)
(21) (x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))), ≥)∧[(-3)bni_29 + (-1)Bound*bni_29] + [(4)bni_29]x1[2] + [(2)bni_29]x0[2] ≥ 0∧[2 + (-1)bso_30] ≥ 0)
(22) (x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))), ≥)∧[(-3)bni_29 + (-1)Bound*bni_29] + [(4)bni_29]x1[2] + [(2)bni_29]x0[2] ≥ 0∧[2 + (-1)bso_30] ≥ 0)
(23) (x1[2] ≥ 0 ⇒ (UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))), ≥)∧[(-3)bni_29 + (-1)Bound*bni_29] + [(6)bni_29]x0[2] + [(4)bni_29]x1[2] ≥ 0∧[2 + (-1)bso_30] ≥ 0)
(24) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))), ≥)∧[(-3)bni_29 + (-1)Bound*bni_29] + [(6)bni_29]x0[2] + [(4)bni_29]x1[2] ≥ 0∧[2 + (-1)bso_30] ≥ 0)
(25) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))), ≥)∧[(-3)bni_29 + (-1)Bound*bni_29] + [(-6)bni_29]x0[2] + [(4)bni_29]x1[2] ≥ 0∧[2 + (-1)bso_30] ≥ 0)
(26) (>=(x1[2], x0[2])=TRUE∧1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])=1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3])∧1174_0_gcd_EQ(x1[3], x0[3])=1174_0_gcd_EQ(x0[0], x1[0])∧&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0])))=TRUE∧1174_0_gcd_EQ(x0[0], x1[0])=1174_0_gcd_EQ(x0[1], x1[1])∧1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1])=1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2]1, x1[2]1), x1[2]1)∧>=(x1[2]1, x0[2]1)=TRUE∧1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2]1, x1[2]1), x1[2]1)=1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3]1, x1[3]1), x1[3]1) ⇒ COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[1], x1[1]))≥NonInfC∧COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[1], x1[1]))≥1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))∧(UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥))
(27) (>=(x1[2], x0[2])=TRUE∧>=(x0[2], x1[2])=TRUE∧>(x0[2], 0)=TRUE∧>=(x1[2], 0)=TRUE∧<(x1[2], x0[2])=TRUE ⇒ COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x1[2], x0[2]))≥NonInfC∧COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x1[2], x0[2]))≥1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x1[2], x0[2]), x0[2]))∧(UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥))
(28) (x1[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0∧x0[2] + [-1] ≥ 0∧x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[(-1)bni_31 + (-1)Bound*bni_31] + [(-2)bni_31]x0[2] ≥ 0∧[2 + (-1)bso_32] + [-6]x0[2] + [-2]x1[2] ≥ 0)
(29) (x1[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0∧x0[2] + [-1] ≥ 0∧x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[(-1)bni_31 + (-1)Bound*bni_31] + [(-2)bni_31]x0[2] ≥ 0∧[2 + (-1)bso_32] + [-6]x0[2] + [-2]x1[2] ≥ 0)
(31) (x1[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0∧x0[2] + [-1] ≥ 0∧x1[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[(-1)bni_31 + (-1)Bound*bni_31] + [(-2)bni_31]x0[2] ≥ 0∧[2 + (-1)bso_32] + [-6]x0[2] + [-2]x1[2] ≥ 0)
(32) (x1[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0∧x0[2] + [-1] ≥ 0∧x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[(-1)bni_31 + (-1)Bound*bni_31] + [(-2)bni_31]x0[2] ≥ 0∧[2 + (-1)bso_32] + [-6]x0[2] + [-2]x1[2] ≥ 0)
(33) (x1[2] + [-1]x0[2] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0∧x0[2] + [-1] ≥ 0∧x1[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))), ≥)∧[(-1)bni_31 + (-1)Bound*bni_31] + [(-2)bni_31]x0[2] ≥ 0∧[2 + (-1)bso_32] + [-6]x0[2] + [-2]x1[2] ≥ 0)
(34) (&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0])))=TRUE∧1174_0_gcd_EQ(x0[0], x1[0])=1174_0_gcd_EQ(x0[1], x1[1]) ⇒ 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0]))≥NonInfC∧1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0]))≥COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))∧(UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥))
(35) (>(x1[0], 0)=TRUE∧>=(x0[0], 0)=TRUE∧<(x0[0], x1[0])=TRUE ⇒ 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0]))≥NonInfC∧1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0]))≥COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))∧(UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥))
(36) (>(x1[0], 0)=TRUE∧>=(x0[0], 0)=TRUE∧>(x0[0], x1[0])=TRUE ⇒ 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0]))≥NonInfC∧1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0]))≥COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))∧(UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥))
(37) (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(-1)Bound*bni_33] + [bni_33]x1[0] ≥ 0∧[-3 + (-1)bso_34] + [3]x1[0] ≥ 0)
(38) (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(-1)Bound*bni_33] + [bni_33]x1[0] ≥ 0∧[-3 + (-1)bso_34] + [3]x1[0] ≥ 0)
(39) (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(-1)Bound*bni_33] + [bni_33]x1[0] ≥ 0∧[-3 + (-1)bso_34] + [3]x1[0] ≥ 0)
(40) (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(-1)Bound*bni_33] + [bni_33]x1[0] ≥ 0∧[-3 + (-1)bso_34] + [3]x1[0] ≥ 0)
(41) (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(-1)Bound*bni_33] + [bni_33]x1[0] ≥ 0∧[-3 + (-1)bso_34] + [3]x1[0] ≥ 0)
(42) (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(-1)Bound*bni_33] + [bni_33]x1[0] ≥ 0∧[-3 + (-1)bso_34] + [3]x1[0] ≥ 0)
(43) (x1[0] ≥ 0∧x0[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(-1)Bound*bni_33 + bni_33] + [bni_33]x1[0] ≥ 0∧[(-1)bso_34] + [3]x1[0] ≥ 0)
(44) (x1[0] ≥ 0∧x0[0] ≥ 0∧x0[0] + [-2] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(-1)Bound*bni_33 + bni_33] + [bni_33]x1[0] ≥ 0∧[(-1)bso_34] + [3]x1[0] ≥ 0)
(45) (x0[0] + x1[0] ≥ 0∧x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(-1)Bound*bni_33 + bni_33] + [bni_33]x0[0] + [bni_33]x1[0] ≥ 0∧[(-1)bso_34] + [3]x0[0] + [3]x1[0] ≥ 0)
(46) (x1[0] ≥ 0∧[2] + x1[0] + x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(-1)Bound*bni_33 + bni_33] + [bni_33]x1[0] ≥ 0∧[(-1)bso_34] + [3]x1[0] ≥ 0)
POL(TRUE) = [3]
POL(FALSE) = 0
POL(COND_1265_2_MAIN_INVOKEMETHOD(x1, x2)) = [-1] + [2]x2
POL(1265_1_gcd_InvokeMethod(x1, x2)) = [-1] + [2]x2 + [-1]x1
POL(1265_0_mod_LE(x1, x2)) = [1] + [-1]x1
POL(1174_1_MAIN_INVOKEMETHOD(x1)) = [1] + [-1]x1
POL(1174_0_gcd_EQ(x1, x2)) = [1] + [-1]x2
POL(1265_2_MAIN_INVOKEMETHOD(x1)) = [1] + [2]x1
POL(>=(x1, x2)) = [-1]
POL(COND_1174_1_MAIN_INVOKEMETHOD(x1, x2)) = [2]x2 + [-1]x1
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(!(x1)) = [-1]
POL(=(x1, x2)) = [-1]
COND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3])) → 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))
1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2])) → COND_1265_2_MAIN_INVOKEMETHOD(>=(x1[2], x0[2]), 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[2], x1[2]), x1[2]))
COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[1], x1[1])) → 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))
COND_1265_2_MAIN_INVOKEMETHOD(TRUE, 1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[3], x1[3]), x1[3])) → 1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x1[3], x0[3]))
COND_1174_1_MAIN_INVOKEMETHOD(TRUE, 1174_0_gcd_EQ(x0[1], x1[1])) → 1265_2_MAIN_INVOKEMETHOD(1265_1_gcd_InvokeMethod(1265_0_mod_LE(x0[1], x1[1]), x1[1]))
1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0])) → COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))
1174_1_MAIN_INVOKEMETHOD(1174_0_gcd_EQ(x0[0], x1[0])) → COND_1174_1_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], 0), >=(x0[0], 0)), !(=(x0[0], x1[0]))), 1174_0_gcd_EQ(x0[0], x1[0]))
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer