(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: GCD
public class GCD {
public static int mod(int a, int b) {
if(a <= 0 || b <= 0)
return 0;
if (a == b) {
return 0;
}
while(a>b) {
a -= b;
}
return a;
}

public static int gcd(int a, int b) {
int tmp;
while(b != 0) {
tmp = b;
b = mod(a, b);
a = tmp;
}
return a;
}

public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
gcd(x, y);
}
}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
GCD.main([Ljava/lang/String;)V: Graph of 208 nodes with 1 SCC.


(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Logs:


Log for SCC 0:

Generated 57 rules for P and 5 rules for R.


Combined rules. Obtained 6 rules for P and 1 rules for R.


Filtered ground terms:


1337_0_gcd_EQ(x1, x2, x3, x4) → 1337_0_gcd_EQ(x2, x3, x4)
1429_0_mod_LE(x1, x2, x3, x4, x5) → 1429_0_mod_LE(x2, x3, x4, x5)
1351_0_main_Return(x1) → 1351_0_main_Return

Filtered duplicate args:


1337_0_gcd_EQ(x1, x2, x3) → 1337_0_gcd_EQ(x1, x3)
1429_0_mod_LE(x1, x2, x3, x4) → 1429_0_mod_LE(x3, x4)
1429_1_gcd_InvokeMethod(x1, x2, x3) → 1429_1_gcd_InvokeMethod(x1, x3)

Combined rules. Obtained 6 rules for P and 1 rules for R.


Finished conversion. Obtained 6 rules for P and 1 rules for R. System has predefined symbols.


(4) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


The ITRS R consists of the following rules:
1337_1_main_InvokeMethod(1337_0_gcd_EQ(x0, 0)) → 1351_0_main_Return

The integer pair graph contains the following rules and edges:
(0): 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[0], x1[0])) → COND_1337_1_MAIN_INVOKEMETHOD(!(x1[0] = 0) && x0[0] <= 0, 1337_0_gcd_EQ(x0[0], x1[0]))
(1): COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0))
(2): 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[2], x1[2])) → COND_1337_1_MAIN_INVOKEMETHOD(x1[2] < 0 && x0[2] > 0, 1337_0_gcd_EQ(x0[2], x1[2]))
(3): 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[3], x1[3])) → COND_1337_1_MAIN_INVOKEMETHOD2(x1[3] > 0 && x0[3] > 0 && !(x0[3] = x1[3]), 1337_0_gcd_EQ(x0[3], x1[3]))
(4): COND_1337_1_MAIN_INVOKEMETHOD2(TRUE, 1337_0_gcd_EQ(x0[4], x1[4])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4]))
(5): 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])) → COND_1429_2_MAIN_INVOKEMETHOD(x1[5] >= x0[5], 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5]))
(6): COND_1429_2_MAIN_INVOKEMETHOD(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[6], x1[6]), x1[6])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[6], x0[6]))
(7): 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])) → COND_1429_2_MAIN_INVOKEMETHOD1(x1[7] > 0 && x1[7] < x0[7], 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]))
(8): COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8] - x1[8], x1[8]), x1[8]))
(9): 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[9], x0[9])) → COND_1337_1_MAIN_INVOKEMETHOD3(x0[9] > 0, 1337_0_gcd_EQ(x0[9], x0[9]))
(10): COND_1337_1_MAIN_INVOKEMETHOD3(TRUE, 1337_0_gcd_EQ(x0[10], x0[10])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10], 0))

(0) -> (1), if ((!(x1[0] = 0) && x0[0] <= 0* TRUE)∧(1337_0_gcd_EQ(x0[0], x1[0]) →* 1337_0_gcd_EQ(x0[1], x1[1])))


(1) -> (0), if ((1337_0_gcd_EQ(x1[1], 0) →* 1337_0_gcd_EQ(x0[0], x1[0])))


(1) -> (2), if ((1337_0_gcd_EQ(x1[1], 0) →* 1337_0_gcd_EQ(x0[2], x1[2])))


(1) -> (3), if ((1337_0_gcd_EQ(x1[1], 0) →* 1337_0_gcd_EQ(x0[3], x1[3])))


(1) -> (9), if ((1337_0_gcd_EQ(x1[1], 0) →* 1337_0_gcd_EQ(x0[9], x0[9])))


(2) -> (1), if ((x1[2] < 0 && x0[2] > 0* TRUE)∧(1337_0_gcd_EQ(x0[2], x1[2]) →* 1337_0_gcd_EQ(x0[1], x1[1])))


(3) -> (4), if ((x1[3] > 0 && x0[3] > 0 && !(x0[3] = x1[3]) →* TRUE)∧(1337_0_gcd_EQ(x0[3], x1[3]) →* 1337_0_gcd_EQ(x0[4], x1[4])))


(4) -> (5), if ((1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4]) →* 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])))


(4) -> (7), if ((1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4]) →* 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])))


(5) -> (6), if ((x1[5] >= x0[5]* TRUE)∧(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5]) →* 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[6], x1[6]), x1[6])))


(6) -> (0), if ((1337_0_gcd_EQ(x1[6], x0[6]) →* 1337_0_gcd_EQ(x0[0], x1[0])))


(6) -> (2), if ((1337_0_gcd_EQ(x1[6], x0[6]) →* 1337_0_gcd_EQ(x0[2], x1[2])))


(6) -> (3), if ((1337_0_gcd_EQ(x1[6], x0[6]) →* 1337_0_gcd_EQ(x0[3], x1[3])))


(6) -> (9), if ((1337_0_gcd_EQ(x1[6], x0[6]) →* 1337_0_gcd_EQ(x0[9], x0[9])))


(7) -> (8), if ((x1[7] > 0 && x1[7] < x0[7]* TRUE)∧(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]) →* 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8])))


(8) -> (5), if ((1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8] - x1[8], x1[8]), x1[8]) →* 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])))


(8) -> (7), if ((1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8] - x1[8], x1[8]), x1[8]) →* 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])))


(9) -> (10), if ((x0[9] > 0* TRUE)∧(1337_0_gcd_EQ(x0[9], x0[9]) →* 1337_0_gcd_EQ(x0[10], x0[10])))


(10) -> (0), if ((1337_0_gcd_EQ(x0[10], 0) →* 1337_0_gcd_EQ(x0[0], x1[0])))


(10) -> (2), if ((1337_0_gcd_EQ(x0[10], 0) →* 1337_0_gcd_EQ(x0[2], x1[2])))


(10) -> (3), if ((1337_0_gcd_EQ(x0[10], 0) →* 1337_0_gcd_EQ(x0[3], x1[3])))


(10) -> (9), if ((1337_0_gcd_EQ(x0[10], 0) →* 1337_0_gcd_EQ(x0[9], x0[9])))



The set Q consists of the following terms:
1337_1_main_InvokeMethod(1337_0_gcd_EQ(x0, 0))

(5) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0, x1)) → COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1, 0)), <=(x0, 0)), 1337_0_gcd_EQ(x0, x1)) the following chains were created:
  • We consider the chain 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[0], x1[0])) → COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0])), COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0)) which results in the following constraint:

    (1)    (&&(!(=(x1[0], 0)), <=(x0[0], 0))=TRUE1337_0_gcd_EQ(x0[0], x1[0])=1337_0_gcd_EQ(x0[1], x1[1]) ⇒ 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[0], x1[0]))≥NonInfC∧1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[0], x1[0]))≥COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0]))∧(UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0]))), ≥))



    We simplified constraint (1) using rules (I), (II), (IV), (IDP_BOOLEAN) which results in the following new constraints:

    (2)    (<=(x0[0], 0)=TRUE<(x1[0], 0)=TRUE1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[0], x1[0]))≥NonInfC∧1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[0], x1[0]))≥COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0]))∧(UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0]))), ≥))


    (3)    (<=(x0[0], 0)=TRUE>(x1[0], 0)=TRUE1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[0], x1[0]))≥NonInfC∧1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[0], x1[0]))≥COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0]))∧(UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0]))), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (4)    ([-1]x0[0] ≥ 0∧[-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(-3)bni_41 + (-1)Bound*bni_41] + [bni_41]x0[0] ≥ 0∧[(-1)bso_42] ≥ 0)



    We simplified constraint (3) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (5)    ([-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(-3)bni_41 + (-1)Bound*bni_41] + [bni_41]x0[0] ≥ 0∧[(-1)bso_42] ≥ 0)



    We simplified constraint (4) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (6)    ([-1]x0[0] ≥ 0∧[-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(-3)bni_41 + (-1)Bound*bni_41] + [bni_41]x0[0] ≥ 0∧[(-1)bso_42] ≥ 0)



    We simplified constraint (5) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (7)    ([-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(-3)bni_41 + (-1)Bound*bni_41] + [bni_41]x0[0] ≥ 0∧[(-1)bso_42] ≥ 0)



    We simplified constraint (6) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (8)    ([-1]x0[0] ≥ 0∧[-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(-3)bni_41 + (-1)Bound*bni_41] + [bni_41]x0[0] ≥ 0∧[(-1)bso_42] ≥ 0)



    We simplified constraint (7) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (9)    ([-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(-3)bni_41 + (-1)Bound*bni_41] + [bni_41]x0[0] ≥ 0∧[(-1)bso_42] ≥ 0)



    We simplified constraint (8) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (10)    (x0[0] ≥ 0∧[-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(-3)bni_41 + (-1)Bound*bni_41] + [(-1)bni_41]x0[0] ≥ 0∧[(-1)bso_42] ≥ 0)



    We simplified constraint (9) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (11)    (x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(-3)bni_41 + (-1)Bound*bni_41] + [(-1)bni_41]x0[0] ≥ 0∧[(-1)bso_42] ≥ 0)



    We simplified constraint (10) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (12)    (x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(-3)bni_41 + (-1)Bound*bni_41] + [(-1)bni_41]x0[0] ≥ 0∧[(-1)bso_42] ≥ 0)



    We simplified constraint (11) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (13)    (x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(-3)bni_41 + (-1)Bound*bni_41] + [(-1)bni_41]x0[0] ≥ 0∧[(-1)bso_42] ≥ 0)







For Pair COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0, x1)) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1, 0)) the following chains were created:
  • We consider the chain 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[0], x1[0])) → COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0])), COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0)), 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[0], x1[0])) → COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0])), COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0)) which results in the following constraint:

    (14)    (&&(!(=(x1[0], 0)), <=(x0[0], 0))=TRUE1337_0_gcd_EQ(x0[0], x1[0])=1337_0_gcd_EQ(x0[1], x1[1])∧1337_0_gcd_EQ(x1[1], 0)=1337_0_gcd_EQ(x0[0]1, x1[0]1)∧&&(!(=(x1[0]1, 0)), <=(x0[0]1, 0))=TRUE1337_0_gcd_EQ(x0[0]1, x1[0]1)=1337_0_gcd_EQ(x0[1]1, x1[1]1) ⇒ COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1]1, x1[1]1))≥NonInfC∧COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1]1, x1[1]1))≥1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1]1, 0))∧(UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1]1, 0))), ≥))



    We solved constraint (14) using rules (I), (II), (III), (IV), (IDP_CONSTANT_FOLD), (IDP_BOOLEAN).
  • We consider the chain 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[0], x1[0])) → COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0])), COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0)), 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[2], x1[2])) → COND_1337_1_MAIN_INVOKEMETHOD(&&(<(x1[2], 0), >(x0[2], 0)), 1337_0_gcd_EQ(x0[2], x1[2])), COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0)) which results in the following constraint:

    (15)    (&&(!(=(x1[0], 0)), <=(x0[0], 0))=TRUE1337_0_gcd_EQ(x0[0], x1[0])=1337_0_gcd_EQ(x0[1], x1[1])∧1337_0_gcd_EQ(x1[1], 0)=1337_0_gcd_EQ(x0[2], x1[2])∧&&(<(x1[2], 0), >(x0[2], 0))=TRUE1337_0_gcd_EQ(x0[2], x1[2])=1337_0_gcd_EQ(x0[1]1, x1[1]1) ⇒ COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1]1, x1[1]1))≥NonInfC∧COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1]1, x1[1]1))≥1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1]1, 0))∧(UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1]1, 0))), ≥))



    We solved constraint (15) using rules (I), (II), (III), (IV), (IDP_CONSTANT_FOLD), (IDP_BOOLEAN).
  • We consider the chain 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])) → COND_1429_2_MAIN_INVOKEMETHOD(>=(x1[5], x0[5]), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])), COND_1429_2_MAIN_INVOKEMETHOD(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[6], x1[6]), x1[6])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[6], x0[6])), 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[0], x1[0])) → COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0])), COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0)) which results in the following constraint:

    (16)    (>=(x1[5], x0[5])=TRUE1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[6], x1[6]), x1[6])∧1337_0_gcd_EQ(x1[6], x0[6])=1337_0_gcd_EQ(x0[0], x1[0])∧&&(!(=(x1[0], 0)), <=(x0[0], 0))=TRUE1337_0_gcd_EQ(x0[0], x1[0])=1337_0_gcd_EQ(x0[1], x1[1]) ⇒ COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1]))≥NonInfC∧COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1]))≥1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0))∧(UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0))), ≥))



    We simplified constraint (16) using rules (I), (II), (III), (IDP_BOOLEAN) which results in the following new constraint:

    (17)    (>=(x1[5], x0[5])=TRUE<=(x1[5], 0)=TRUE<(x0[5], 0)=TRUECOND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x1[5], x0[5]))≥NonInfC∧COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x1[5], x0[5]))≥1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[5], 0))∧(UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0))), ≥))



    We simplified constraint (17) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (18)    (x1[5] + [-1]x0[5] ≥ 0∧[-1]x1[5] ≥ 0∧[-1] + [-1]x0[5] ≥ 0 ⇒ (UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0))), ≥)∧[(-3)bni_43 + (-1)Bound*bni_43] + [bni_43]x1[5] ≥ 0∧[(-1)bso_44] + [-1]x0[5] + x1[5] ≥ 0)



    We simplified constraint (18) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (19)    (x1[5] + [-1]x0[5] ≥ 0∧[-1]x1[5] ≥ 0∧[-1] + [-1]x0[5] ≥ 0 ⇒ (UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0))), ≥)∧[(-3)bni_43 + (-1)Bound*bni_43] + [bni_43]x1[5] ≥ 0∧[(-1)bso_44] + [-1]x0[5] + x1[5] ≥ 0)



    We simplified constraint (20) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (21)    (x1[5] + [-1]x0[5] ≥ 0∧[-1]x1[5] ≥ 0∧x0[5] + [-1] ≥ 0 ⇒ (UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0))), ≥)∧[(-3)bni_43 + (-1)Bound*bni_43] + [bni_43]x1[5] ≥ 0∧[(-1)bso_44] + [-1]x0[5] + x1[5] ≥ 0)



    We simplified constraint (19) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (22)    (x1[5] + [-1]x0[5] ≥ 0∧[-1]x1[5] ≥ 0∧[-1] + [-1]x0[5] ≥ 0 ⇒ (UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0))), ≥)∧[(-3)bni_43 + (-1)Bound*bni_43] + [bni_43]x1[5] ≥ 0∧[(-1)bso_44] + [-1]x0[5] + x1[5] ≥ 0)



    We simplified constraint (21) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (23)    (x1[5] + [-1]x0[5] ≥ 0∧[-1]x1[5] ≥ 0∧x0[5] + [-1] ≥ 0 ⇒ (UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0))), ≥)∧[(-3)bni_43 + (-1)Bound*bni_43] + [bni_43]x1[5] ≥ 0∧[(-1)bso_44] + [-1]x0[5] + x1[5] ≥ 0)



    We simplified constraint (22) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (24)    ([-1]x1[5] + [-1]x0[5] ≥ 0∧x1[5] ≥ 0∧[-1] + [-1]x0[5] ≥ 0 ⇒ (UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0))), ≥)∧[(-3)bni_43 + (-1)Bound*bni_43] + [(-1)bni_43]x1[5] ≥ 0∧[(-1)bso_44] + [-1]x0[5] + [-1]x1[5] ≥ 0)



    We solved constraint (23) using rule (IDP_SMT_SPLIT).We simplified constraint (24) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (25)    (x0[5] ≥ 0∧x1[5] ≥ 0∧[-1] + x1[5] + x0[5] ≥ 0 ⇒ (UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0))), ≥)∧[(-3)bni_43 + (-1)Bound*bni_43] + [(-1)bni_43]x1[5] ≥ 0∧[(-1)bso_44] + x0[5] ≥ 0)



  • We consider the chain 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[9], x0[9])) → COND_1337_1_MAIN_INVOKEMETHOD3(>(x0[9], 0), 1337_0_gcd_EQ(x0[9], x0[9])), COND_1337_1_MAIN_INVOKEMETHOD3(TRUE, 1337_0_gcd_EQ(x0[10], x0[10])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10], 0)), 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[0], x1[0])) → COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0])), COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0)) which results in the following constraint:

    (26)    (>(x0[9], 0)=TRUE1337_0_gcd_EQ(x0[9], x0[9])=1337_0_gcd_EQ(x0[10], x0[10])∧1337_0_gcd_EQ(x0[10], 0)=1337_0_gcd_EQ(x0[0], x1[0])∧&&(!(=(x1[0], 0)), <=(x0[0], 0))=TRUE1337_0_gcd_EQ(x0[0], x1[0])=1337_0_gcd_EQ(x0[1], x1[1]) ⇒ COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1]))≥NonInfC∧COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1]))≥1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0))∧(UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0))), ≥))



    We solved constraint (26) using rules (I), (II), (III), (IDP_CONSTANT_FOLD), (IDP_BOOLEAN).
  • We consider the chain 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])) → COND_1429_2_MAIN_INVOKEMETHOD(>=(x1[5], x0[5]), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])), COND_1429_2_MAIN_INVOKEMETHOD(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[6], x1[6]), x1[6])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[6], x0[6])), 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[2], x1[2])) → COND_1337_1_MAIN_INVOKEMETHOD(&&(<(x1[2], 0), >(x0[2], 0)), 1337_0_gcd_EQ(x0[2], x1[2])), COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0)) which results in the following constraint:

    (27)    (>=(x1[5], x0[5])=TRUE1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[6], x1[6]), x1[6])∧1337_0_gcd_EQ(x1[6], x0[6])=1337_0_gcd_EQ(x0[2], x1[2])∧&&(<(x1[2], 0), >(x0[2], 0))=TRUE1337_0_gcd_EQ(x0[2], x1[2])=1337_0_gcd_EQ(x0[1], x1[1]) ⇒ COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1]))≥NonInfC∧COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1]))≥1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0))∧(UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0))), ≥))



    We simplified constraint (27) using rules (I), (II), (III), (IDP_BOOLEAN) which results in the following new constraint:

    (28)    (>=(x1[5], x0[5])=TRUE<(x0[5], 0)=TRUE>(x1[5], 0)=TRUECOND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x1[5], x0[5]))≥NonInfC∧COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x1[5], x0[5]))≥1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[5], 0))∧(UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0))), ≥))



    We simplified constraint (28) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (29)    (x1[5] + [-1]x0[5] ≥ 0∧[-1] + [-1]x0[5] ≥ 0∧x1[5] + [-1] ≥ 0 ⇒ (UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0))), ≥)∧[(-3)bni_43 + (-1)Bound*bni_43] + [bni_43]x1[5] ≥ 0∧[(-1)bso_44] + [-1]x0[5] + x1[5] ≥ 0)



    We simplified constraint (29) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (30)    (x1[5] + [-1]x0[5] ≥ 0∧[-1] + [-1]x0[5] ≥ 0∧x1[5] + [-1] ≥ 0 ⇒ (UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0))), ≥)∧[(-3)bni_43 + (-1)Bound*bni_43] + [bni_43]x1[5] ≥ 0∧[(-1)bso_44] + [-1]x0[5] + x1[5] ≥ 0)



    We simplified constraint (30) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (31)    (x1[5] + [-1]x0[5] ≥ 0∧[-1] + [-1]x0[5] ≥ 0∧x1[5] + [-1] ≥ 0 ⇒ (UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0))), ≥)∧[(-3)bni_43 + (-1)Bound*bni_43] + [bni_43]x1[5] ≥ 0∧[(-1)bso_44] + [-1]x0[5] + x1[5] ≥ 0)



    We simplified constraint (31) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (32)    ([1] + x1[5] + [-1]x0[5] ≥ 0∧[-1] + [-1]x0[5] ≥ 0∧x1[5] ≥ 0 ⇒ (UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0))), ≥)∧[(-2)bni_43 + (-1)Bound*bni_43] + [bni_43]x1[5] ≥ 0∧[1 + (-1)bso_44] + [-1]x0[5] + x1[5] ≥ 0)



    We simplified constraint (32) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (33)    ([2] + x1[5] + x0[5] ≥ 0∧x0[5] ≥ 0∧x1[5] ≥ 0 ⇒ (UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0))), ≥)∧[(-2)bni_43 + (-1)Bound*bni_43] + [bni_43]x1[5] ≥ 0∧[2 + (-1)bso_44] + x0[5] + x1[5] ≥ 0)



  • We consider the chain 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[9], x0[9])) → COND_1337_1_MAIN_INVOKEMETHOD3(>(x0[9], 0), 1337_0_gcd_EQ(x0[9], x0[9])), COND_1337_1_MAIN_INVOKEMETHOD3(TRUE, 1337_0_gcd_EQ(x0[10], x0[10])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10], 0)), 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[2], x1[2])) → COND_1337_1_MAIN_INVOKEMETHOD(&&(<(x1[2], 0), >(x0[2], 0)), 1337_0_gcd_EQ(x0[2], x1[2])), COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0)) which results in the following constraint:

    (34)    (>(x0[9], 0)=TRUE1337_0_gcd_EQ(x0[9], x0[9])=1337_0_gcd_EQ(x0[10], x0[10])∧1337_0_gcd_EQ(x0[10], 0)=1337_0_gcd_EQ(x0[2], x1[2])∧&&(<(x1[2], 0), >(x0[2], 0))=TRUE1337_0_gcd_EQ(x0[2], x1[2])=1337_0_gcd_EQ(x0[1], x1[1]) ⇒ COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1]))≥NonInfC∧COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1]))≥1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0))∧(UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0))), ≥))



    We solved constraint (34) using rules (I), (II), (III), (IDP_CONSTANT_FOLD), (IDP_BOOLEAN).
  • We consider the chain 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[2], x1[2])) → COND_1337_1_MAIN_INVOKEMETHOD(&&(<(x1[2], 0), >(x0[2], 0)), 1337_0_gcd_EQ(x0[2], x1[2])), COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0)), 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[0], x1[0])) → COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0])), COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0)) which results in the following constraint:

    (35)    (&&(<(x1[2], 0), >(x0[2], 0))=TRUE1337_0_gcd_EQ(x0[2], x1[2])=1337_0_gcd_EQ(x0[1], x1[1])∧1337_0_gcd_EQ(x1[1], 0)=1337_0_gcd_EQ(x0[0], x1[0])∧&&(!(=(x1[0], 0)), <=(x0[0], 0))=TRUE1337_0_gcd_EQ(x0[0], x1[0])=1337_0_gcd_EQ(x0[1]1, x1[1]1) ⇒ COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1]1, x1[1]1))≥NonInfC∧COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1]1, x1[1]1))≥1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1]1, 0))∧(UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1]1, 0))), ≥))



    We solved constraint (35) using rules (I), (II), (III), (IV), (IDP_CONSTANT_FOLD), (IDP_BOOLEAN).
  • We consider the chain 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[2], x1[2])) → COND_1337_1_MAIN_INVOKEMETHOD(&&(<(x1[2], 0), >(x0[2], 0)), 1337_0_gcd_EQ(x0[2], x1[2])), COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0)), 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[2], x1[2])) → COND_1337_1_MAIN_INVOKEMETHOD(&&(<(x1[2], 0), >(x0[2], 0)), 1337_0_gcd_EQ(x0[2], x1[2])), COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0)) which results in the following constraint:

    (36)    (&&(<(x1[2], 0), >(x0[2], 0))=TRUE1337_0_gcd_EQ(x0[2], x1[2])=1337_0_gcd_EQ(x0[1], x1[1])∧1337_0_gcd_EQ(x1[1], 0)=1337_0_gcd_EQ(x0[2]1, x1[2]1)∧&&(<(x1[2]1, 0), >(x0[2]1, 0))=TRUE1337_0_gcd_EQ(x0[2]1, x1[2]1)=1337_0_gcd_EQ(x0[1]1, x1[1]1) ⇒ COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1]1, x1[1]1))≥NonInfC∧COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1]1, x1[1]1))≥1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1]1, 0))∧(UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1]1, 0))), ≥))



    We solved constraint (36) using rules (I), (II), (III), (IV), (IDP_CONSTANT_FOLD), (IDP_BOOLEAN).




For Pair 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0, x1)) → COND_1337_1_MAIN_INVOKEMETHOD(&&(<(x1, 0), >(x0, 0)), 1337_0_gcd_EQ(x0, x1)) the following chains were created:
  • We consider the chain 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[2], x1[2])) → COND_1337_1_MAIN_INVOKEMETHOD(&&(<(x1[2], 0), >(x0[2], 0)), 1337_0_gcd_EQ(x0[2], x1[2])), COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0)) which results in the following constraint:

    (37)    (&&(<(x1[2], 0), >(x0[2], 0))=TRUE1337_0_gcd_EQ(x0[2], x1[2])=1337_0_gcd_EQ(x0[1], x1[1]) ⇒ 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[2], x1[2]))≥NonInfC∧1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[2], x1[2]))≥COND_1337_1_MAIN_INVOKEMETHOD(&&(<(x1[2], 0), >(x0[2], 0)), 1337_0_gcd_EQ(x0[2], x1[2]))∧(UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(<(x1[2], 0), >(x0[2], 0)), 1337_0_gcd_EQ(x0[2], x1[2]))), ≥))



    We simplified constraint (37) using rules (I), (II), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (38)    (<(x1[2], 0)=TRUE>(x0[2], 0)=TRUE1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[2], x1[2]))≥NonInfC∧1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[2], x1[2]))≥COND_1337_1_MAIN_INVOKEMETHOD(&&(<(x1[2], 0), >(x0[2], 0)), 1337_0_gcd_EQ(x0[2], x1[2]))∧(UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(<(x1[2], 0), >(x0[2], 0)), 1337_0_gcd_EQ(x0[2], x1[2]))), ≥))



    We simplified constraint (38) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (39)    ([-1] + [-1]x1[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(<(x1[2], 0), >(x0[2], 0)), 1337_0_gcd_EQ(x0[2], x1[2]))), ≥)∧[(-3)bni_45 + (-1)Bound*bni_45] + [bni_45]x0[2] ≥ 0∧[(-1)bso_46] ≥ 0)



    We simplified constraint (39) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (40)    ([-1] + [-1]x1[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(<(x1[2], 0), >(x0[2], 0)), 1337_0_gcd_EQ(x0[2], x1[2]))), ≥)∧[(-3)bni_45 + (-1)Bound*bni_45] + [bni_45]x0[2] ≥ 0∧[(-1)bso_46] ≥ 0)



    We simplified constraint (40) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (41)    ([-1] + [-1]x1[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(<(x1[2], 0), >(x0[2], 0)), 1337_0_gcd_EQ(x0[2], x1[2]))), ≥)∧[(-3)bni_45 + (-1)Bound*bni_45] + [bni_45]x0[2] ≥ 0∧[(-1)bso_46] ≥ 0)



    We simplified constraint (41) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (42)    (x1[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(<(x1[2], 0), >(x0[2], 0)), 1337_0_gcd_EQ(x0[2], x1[2]))), ≥)∧[(-3)bni_45 + (-1)Bound*bni_45] + [bni_45]x0[2] ≥ 0∧[(-1)bso_46] ≥ 0)



    We simplified constraint (42) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (43)    (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(<(x1[2], 0), >(x0[2], 0)), 1337_0_gcd_EQ(x0[2], x1[2]))), ≥)∧[(-2)bni_45 + (-1)Bound*bni_45] + [bni_45]x0[2] ≥ 0∧[(-1)bso_46] ≥ 0)







For Pair 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0, x1)) → COND_1337_1_MAIN_INVOKEMETHOD2(&&(&&(>(x1, 0), >(x0, 0)), !(=(x0, x1))), 1337_0_gcd_EQ(x0, x1)) the following chains were created:
  • We consider the chain 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[3], x1[3])) → COND_1337_1_MAIN_INVOKEMETHOD2(&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3]))), 1337_0_gcd_EQ(x0[3], x1[3])), COND_1337_1_MAIN_INVOKEMETHOD2(TRUE, 1337_0_gcd_EQ(x0[4], x1[4])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4])) which results in the following constraint:

    (44)    (&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3])))=TRUE1337_0_gcd_EQ(x0[3], x1[3])=1337_0_gcd_EQ(x0[4], x1[4]) ⇒ 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[3], x1[3]))≥NonInfC∧1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[3], x1[3]))≥COND_1337_1_MAIN_INVOKEMETHOD2(&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3]))), 1337_0_gcd_EQ(x0[3], x1[3]))∧(UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD2(&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3]))), 1337_0_gcd_EQ(x0[3], x1[3]))), ≥))



    We simplified constraint (44) using rules (I), (II), (IV), (IDP_BOOLEAN) which results in the following new constraints:

    (45)    (>(x1[3], 0)=TRUE>(x0[3], 0)=TRUE<(x0[3], x1[3])=TRUE1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[3], x1[3]))≥NonInfC∧1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[3], x1[3]))≥COND_1337_1_MAIN_INVOKEMETHOD2(&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3]))), 1337_0_gcd_EQ(x0[3], x1[3]))∧(UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD2(&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3]))), 1337_0_gcd_EQ(x0[3], x1[3]))), ≥))


    (46)    (>(x1[3], 0)=TRUE>(x0[3], 0)=TRUE>(x0[3], x1[3])=TRUE1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[3], x1[3]))≥NonInfC∧1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[3], x1[3]))≥COND_1337_1_MAIN_INVOKEMETHOD2(&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3]))), 1337_0_gcd_EQ(x0[3], x1[3]))∧(UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD2(&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3]))), 1337_0_gcd_EQ(x0[3], x1[3]))), ≥))



    We simplified constraint (45) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (47)    (x1[3] + [-1] ≥ 0∧x0[3] + [-1] ≥ 0∧x1[3] + [-1] + [-1]x0[3] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD2(&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3]))), 1337_0_gcd_EQ(x0[3], x1[3]))), ≥)∧[(-3)bni_47 + (-1)Bound*bni_47] + [bni_47]x0[3] ≥ 0∧[(-1)bso_48] ≥ 0)



    We simplified constraint (46) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (48)    (x1[3] + [-1] ≥ 0∧x0[3] + [-1] ≥ 0∧x0[3] + [-1] + [-1]x1[3] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD2(&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3]))), 1337_0_gcd_EQ(x0[3], x1[3]))), ≥)∧[(-3)bni_47 + (-1)Bound*bni_47] + [bni_47]x0[3] ≥ 0∧[(-1)bso_48] ≥ 0)



    We simplified constraint (47) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (49)    (x1[3] + [-1] ≥ 0∧x0[3] + [-1] ≥ 0∧x1[3] + [-1] + [-1]x0[3] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD2(&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3]))), 1337_0_gcd_EQ(x0[3], x1[3]))), ≥)∧[(-3)bni_47 + (-1)Bound*bni_47] + [bni_47]x0[3] ≥ 0∧[(-1)bso_48] ≥ 0)



    We simplified constraint (48) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (50)    (x1[3] + [-1] ≥ 0∧x0[3] + [-1] ≥ 0∧x0[3] + [-1] + [-1]x1[3] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD2(&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3]))), 1337_0_gcd_EQ(x0[3], x1[3]))), ≥)∧[(-3)bni_47 + (-1)Bound*bni_47] + [bni_47]x0[3] ≥ 0∧[(-1)bso_48] ≥ 0)



    We simplified constraint (49) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (51)    (x1[3] + [-1] ≥ 0∧x0[3] + [-1] ≥ 0∧x1[3] + [-1] + [-1]x0[3] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD2(&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3]))), 1337_0_gcd_EQ(x0[3], x1[3]))), ≥)∧[(-3)bni_47 + (-1)Bound*bni_47] + [bni_47]x0[3] ≥ 0∧[(-1)bso_48] ≥ 0)



    We simplified constraint (50) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (52)    (x1[3] + [-1] ≥ 0∧x0[3] + [-1] ≥ 0∧x0[3] + [-1] + [-1]x1[3] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD2(&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3]))), 1337_0_gcd_EQ(x0[3], x1[3]))), ≥)∧[(-3)bni_47 + (-1)Bound*bni_47] + [bni_47]x0[3] ≥ 0∧[(-1)bso_48] ≥ 0)



    We simplified constraint (51) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (53)    (x1[3] ≥ 0∧x0[3] + [-1] ≥ 0∧x1[3] + [-1]x0[3] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD2(&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3]))), 1337_0_gcd_EQ(x0[3], x1[3]))), ≥)∧[(-3)bni_47 + (-1)Bound*bni_47] + [bni_47]x0[3] ≥ 0∧[(-1)bso_48] ≥ 0)



    We simplified constraint (52) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (54)    (x1[3] ≥ 0∧x0[3] + [-1] ≥ 0∧x0[3] + [-2] + [-1]x1[3] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD2(&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3]))), 1337_0_gcd_EQ(x0[3], x1[3]))), ≥)∧[(-3)bni_47 + (-1)Bound*bni_47] + [bni_47]x0[3] ≥ 0∧[(-1)bso_48] ≥ 0)



    We simplified constraint (53) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (55)    (x0[3] + x1[3] ≥ 0∧x0[3] + [-1] ≥ 0∧x1[3] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD2(&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3]))), 1337_0_gcd_EQ(x0[3], x1[3]))), ≥)∧[(-3)bni_47 + (-1)Bound*bni_47] + [bni_47]x0[3] ≥ 0∧[(-1)bso_48] ≥ 0)



    We simplified constraint (55) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (56)    ([1] + x0[3] + x1[3] ≥ 0∧x0[3] ≥ 0∧x1[3] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD2(&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3]))), 1337_0_gcd_EQ(x0[3], x1[3]))), ≥)∧[(-2)bni_47 + (-1)Bound*bni_47] + [bni_47]x0[3] ≥ 0∧[(-1)bso_48] ≥ 0)



    We simplified constraint (54) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (57)    (x1[3] ≥ 0∧x0[3] ≥ 0∧[-1] + x0[3] + [-1]x1[3] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD2(&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3]))), 1337_0_gcd_EQ(x0[3], x1[3]))), ≥)∧[(-2)bni_47 + (-1)Bound*bni_47] + [bni_47]x0[3] ≥ 0∧[(-1)bso_48] ≥ 0)



    We simplified constraint (57) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (58)    (x1[3] ≥ 0∧[1] + x1[3] + x0[3] ≥ 0∧x0[3] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD2(&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3]))), 1337_0_gcd_EQ(x0[3], x1[3]))), ≥)∧[(-1)bni_47 + (-1)Bound*bni_47] + [bni_47]x1[3] + [bni_47]x0[3] ≥ 0∧[(-1)bso_48] ≥ 0)







For Pair COND_1337_1_MAIN_INVOKEMETHOD2(TRUE, 1337_0_gcd_EQ(x0, x1)) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0, x1), x1)) the following chains were created:
  • We consider the chain 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[0], x1[0])) → COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0])), COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0)), 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[3], x1[3])) → COND_1337_1_MAIN_INVOKEMETHOD2(&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3]))), 1337_0_gcd_EQ(x0[3], x1[3])), COND_1337_1_MAIN_INVOKEMETHOD2(TRUE, 1337_0_gcd_EQ(x0[4], x1[4])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4])), 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])) → COND_1429_2_MAIN_INVOKEMETHOD(>=(x1[5], x0[5]), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])), COND_1429_2_MAIN_INVOKEMETHOD(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[6], x1[6]), x1[6])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[6], x0[6])) which results in the following constraint:

    (59)    (&&(!(=(x1[0], 0)), <=(x0[0], 0))=TRUE1337_0_gcd_EQ(x0[0], x1[0])=1337_0_gcd_EQ(x0[1], x1[1])∧1337_0_gcd_EQ(x1[1], 0)=1337_0_gcd_EQ(x0[3], x1[3])∧&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3])))=TRUE1337_0_gcd_EQ(x0[3], x1[3])=1337_0_gcd_EQ(x0[4], x1[4])∧1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4])=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])∧>=(x1[5], x0[5])=TRUE1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[6], x1[6]), x1[6]) ⇒ COND_1337_1_MAIN_INVOKEMETHOD2(TRUE, 1337_0_gcd_EQ(x0[4], x1[4]))≥NonInfC∧COND_1337_1_MAIN_INVOKEMETHOD2(TRUE, 1337_0_gcd_EQ(x0[4], x1[4]))≥1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4]))∧(UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4]))), ≥))



    We solved constraint (59) using rules (I), (II), (III), (IV), (IDP_CONSTANT_FOLD), (IDP_BOOLEAN).
  • We consider the chain 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[0], x1[0])) → COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0])), COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0)), 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[3], x1[3])) → COND_1337_1_MAIN_INVOKEMETHOD2(&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3]))), 1337_0_gcd_EQ(x0[3], x1[3])), COND_1337_1_MAIN_INVOKEMETHOD2(TRUE, 1337_0_gcd_EQ(x0[4], x1[4])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4])), 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])) → COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])), COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8])) which results in the following constraint:

    (60)    (&&(!(=(x1[0], 0)), <=(x0[0], 0))=TRUE1337_0_gcd_EQ(x0[0], x1[0])=1337_0_gcd_EQ(x0[1], x1[1])∧1337_0_gcd_EQ(x1[1], 0)=1337_0_gcd_EQ(x0[3], x1[3])∧&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3])))=TRUE1337_0_gcd_EQ(x0[3], x1[3])=1337_0_gcd_EQ(x0[4], x1[4])∧1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4])=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])∧&&(>(x1[7], 0), <(x1[7], x0[7]))=TRUE1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8]) ⇒ COND_1337_1_MAIN_INVOKEMETHOD2(TRUE, 1337_0_gcd_EQ(x0[4], x1[4]))≥NonInfC∧COND_1337_1_MAIN_INVOKEMETHOD2(TRUE, 1337_0_gcd_EQ(x0[4], x1[4]))≥1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4]))∧(UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4]))), ≥))



    We solved constraint (60) using rules (I), (II), (III), (IV), (IDP_CONSTANT_FOLD), (IDP_BOOLEAN).
  • We consider the chain 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])) → COND_1429_2_MAIN_INVOKEMETHOD(>=(x1[5], x0[5]), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])), COND_1429_2_MAIN_INVOKEMETHOD(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[6], x1[6]), x1[6])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[6], x0[6])), 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[3], x1[3])) → COND_1337_1_MAIN_INVOKEMETHOD2(&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3]))), 1337_0_gcd_EQ(x0[3], x1[3])), COND_1337_1_MAIN_INVOKEMETHOD2(TRUE, 1337_0_gcd_EQ(x0[4], x1[4])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4])), 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])) → COND_1429_2_MAIN_INVOKEMETHOD(>=(x1[5], x0[5]), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])), COND_1429_2_MAIN_INVOKEMETHOD(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[6], x1[6]), x1[6])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[6], x0[6])) which results in the following constraint:

    (61)    (>=(x1[5], x0[5])=TRUE1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[6], x1[6]), x1[6])∧1337_0_gcd_EQ(x1[6], x0[6])=1337_0_gcd_EQ(x0[3], x1[3])∧&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3])))=TRUE1337_0_gcd_EQ(x0[3], x1[3])=1337_0_gcd_EQ(x0[4], x1[4])∧1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4])=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5]1, x1[5]1), x1[5]1)∧>=(x1[5]1, x0[5]1)=TRUE1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5]1, x1[5]1), x1[5]1)=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[6]1, x1[6]1), x1[6]1) ⇒ COND_1337_1_MAIN_INVOKEMETHOD2(TRUE, 1337_0_gcd_EQ(x0[4], x1[4]))≥NonInfC∧COND_1337_1_MAIN_INVOKEMETHOD2(TRUE, 1337_0_gcd_EQ(x0[4], x1[4]))≥1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4]))∧(UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4]))), ≥))



    We simplified constraint (61) using rules (I), (II), (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (62)    (>=(x1[5], x0[5])=TRUE>=(x0[5], x1[5])=TRUE>(x0[5], 0)=TRUE>(x1[5], 0)=TRUE<(x1[5], x0[5])=TRUECOND_1337_1_MAIN_INVOKEMETHOD2(TRUE, 1337_0_gcd_EQ(x1[5], x0[5]))≥NonInfC∧COND_1337_1_MAIN_INVOKEMETHOD2(TRUE, 1337_0_gcd_EQ(x1[5], x0[5]))≥1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x1[5], x0[5]), x0[5]))∧(UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4]))), ≥))



    We simplified constraint (62) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (63)    (x1[5] + [-1]x0[5] ≥ 0∧x0[5] + [-1]x1[5] ≥ 0∧x0[5] + [-1] ≥ 0∧x1[5] + [-1] ≥ 0∧x0[5] + [-1] + [-1]x1[5] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4]))), ≥)∧[(-3)bni_49 + (-1)Bound*bni_49] + [bni_49]x1[5] ≥ 0∧[-1 + (-1)bso_50] + [-1]x0[5] + x1[5] ≥ 0)



    We simplified constraint (63) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (64)    (x1[5] + [-1]x0[5] ≥ 0∧x0[5] + [-1]x1[5] ≥ 0∧x0[5] + [-1] ≥ 0∧x1[5] + [-1] ≥ 0∧x0[5] + [-1] + [-1]x1[5] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4]))), ≥)∧[(-3)bni_49 + (-1)Bound*bni_49] + [bni_49]x1[5] ≥ 0∧[-1 + (-1)bso_50] + [-1]x0[5] + x1[5] ≥ 0)



    We simplified constraint (65) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (66)    (x1[5] + [-1]x0[5] ≥ 0∧x0[5] + [-1]x1[5] ≥ 0∧x0[5] + [-1] ≥ 0∧x1[5] + [-1] ≥ 0∧x1[5] + [-1] + [-1]x0[5] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4]))), ≥)∧[(-3)bni_49 + (-1)Bound*bni_49] + [bni_49]x1[5] ≥ 0∧[-1 + (-1)bso_50] + [-1]x0[5] + x1[5] ≥ 0)



    We simplified constraint (64) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (67)    (x1[5] + [-1]x0[5] ≥ 0∧x0[5] + [-1]x1[5] ≥ 0∧x0[5] + [-1] ≥ 0∧x1[5] + [-1] ≥ 0∧x0[5] + [-1] + [-1]x1[5] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4]))), ≥)∧[(-3)bni_49 + (-1)Bound*bni_49] + [bni_49]x1[5] ≥ 0∧[-1 + (-1)bso_50] + [-1]x0[5] + x1[5] ≥ 0)



    We simplified constraint (66) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (68)    (x1[5] + [-1]x0[5] ≥ 0∧x0[5] + [-1]x1[5] ≥ 0∧x0[5] + [-1] ≥ 0∧x1[5] + [-1] ≥ 0∧x1[5] + [-1] + [-1]x0[5] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4]))), ≥)∧[(-3)bni_49 + (-1)Bound*bni_49] + [bni_49]x1[5] ≥ 0∧[-1 + (-1)bso_50] + [-1]x0[5] + x1[5] ≥ 0)



    We solved constraint (67) using rule (IDP_SMT_SPLIT).We solved constraint (68) using rule (IDP_SMT_SPLIT).
  • We consider the chain 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[9], x0[9])) → COND_1337_1_MAIN_INVOKEMETHOD3(>(x0[9], 0), 1337_0_gcd_EQ(x0[9], x0[9])), COND_1337_1_MAIN_INVOKEMETHOD3(TRUE, 1337_0_gcd_EQ(x0[10], x0[10])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10], 0)), 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[3], x1[3])) → COND_1337_1_MAIN_INVOKEMETHOD2(&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3]))), 1337_0_gcd_EQ(x0[3], x1[3])), COND_1337_1_MAIN_INVOKEMETHOD2(TRUE, 1337_0_gcd_EQ(x0[4], x1[4])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4])), 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])) → COND_1429_2_MAIN_INVOKEMETHOD(>=(x1[5], x0[5]), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])), COND_1429_2_MAIN_INVOKEMETHOD(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[6], x1[6]), x1[6])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[6], x0[6])) which results in the following constraint:

    (69)    (>(x0[9], 0)=TRUE1337_0_gcd_EQ(x0[9], x0[9])=1337_0_gcd_EQ(x0[10], x0[10])∧1337_0_gcd_EQ(x0[10], 0)=1337_0_gcd_EQ(x0[3], x1[3])∧&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3])))=TRUE1337_0_gcd_EQ(x0[3], x1[3])=1337_0_gcd_EQ(x0[4], x1[4])∧1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4])=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])∧>=(x1[5], x0[5])=TRUE1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[6], x1[6]), x1[6]) ⇒ COND_1337_1_MAIN_INVOKEMETHOD2(TRUE, 1337_0_gcd_EQ(x0[4], x1[4]))≥NonInfC∧COND_1337_1_MAIN_INVOKEMETHOD2(TRUE, 1337_0_gcd_EQ(x0[4], x1[4]))≥1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4]))∧(UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4]))), ≥))



    We solved constraint (69) using rules (I), (II), (III), (IV), (IDP_CONSTANT_FOLD), (IDP_BOOLEAN).
  • We consider the chain 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])) → COND_1429_2_MAIN_INVOKEMETHOD(>=(x1[5], x0[5]), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])), COND_1429_2_MAIN_INVOKEMETHOD(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[6], x1[6]), x1[6])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[6], x0[6])), 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[3], x1[3])) → COND_1337_1_MAIN_INVOKEMETHOD2(&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3]))), 1337_0_gcd_EQ(x0[3], x1[3])), COND_1337_1_MAIN_INVOKEMETHOD2(TRUE, 1337_0_gcd_EQ(x0[4], x1[4])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4])), 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])) → COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])), COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8])) which results in the following constraint:

    (70)    (>=(x1[5], x0[5])=TRUE1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[6], x1[6]), x1[6])∧1337_0_gcd_EQ(x1[6], x0[6])=1337_0_gcd_EQ(x0[3], x1[3])∧&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3])))=TRUE1337_0_gcd_EQ(x0[3], x1[3])=1337_0_gcd_EQ(x0[4], x1[4])∧1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4])=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])∧&&(>(x1[7], 0), <(x1[7], x0[7]))=TRUE1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8]) ⇒ COND_1337_1_MAIN_INVOKEMETHOD2(TRUE, 1337_0_gcd_EQ(x0[4], x1[4]))≥NonInfC∧COND_1337_1_MAIN_INVOKEMETHOD2(TRUE, 1337_0_gcd_EQ(x0[4], x1[4]))≥1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4]))∧(UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4]))), ≥))



    We simplified constraint (70) using rules (I), (II), (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (71)    (>=(x1[5], x0[5])=TRUE>(x0[5], 0)=TRUE<(x0[5], x1[5])=TRUE>(x1[5], 0)=TRUE<(x1[5], x0[5])=TRUECOND_1337_1_MAIN_INVOKEMETHOD2(TRUE, 1337_0_gcd_EQ(x1[5], x0[5]))≥NonInfC∧COND_1337_1_MAIN_INVOKEMETHOD2(TRUE, 1337_0_gcd_EQ(x1[5], x0[5]))≥1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x1[5], x0[5]), x0[5]))∧(UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4]))), ≥))



    We simplified constraint (71) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (72)    (x1[5] + [-1]x0[5] ≥ 0∧x0[5] + [-1] ≥ 0∧x1[5] + [-1] + [-1]x0[5] ≥ 0∧x1[5] + [-1] ≥ 0∧x0[5] + [-1] + [-1]x1[5] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4]))), ≥)∧[(-3)bni_49 + (-1)Bound*bni_49] + [bni_49]x1[5] ≥ 0∧[-1 + (-1)bso_50] + [-1]x0[5] + x1[5] ≥ 0)



    We simplified constraint (72) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (73)    (x1[5] + [-1]x0[5] ≥ 0∧x0[5] + [-1] ≥ 0∧x1[5] + [-1] + [-1]x0[5] ≥ 0∧x1[5] + [-1] ≥ 0∧x0[5] + [-1] + [-1]x1[5] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4]))), ≥)∧[(-3)bni_49 + (-1)Bound*bni_49] + [bni_49]x1[5] ≥ 0∧[-1 + (-1)bso_50] + [-1]x0[5] + x1[5] ≥ 0)



    We simplified constraint (74) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (75)    (x1[5] + [-1]x0[5] ≥ 0∧x0[5] + [-1] ≥ 0∧x1[5] + [-1] + [-1]x0[5] ≥ 0∧x1[5] + [-1] ≥ 0∧x1[5] + [-1] + [-1]x0[5] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4]))), ≥)∧[(-3)bni_49 + (-1)Bound*bni_49] + [bni_49]x1[5] ≥ 0∧[-1 + (-1)bso_50] + [-1]x0[5] + x1[5] ≥ 0)



    We simplified constraint (73) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (76)    (x1[5] + [-1]x0[5] ≥ 0∧x0[5] + [-1] ≥ 0∧x1[5] + [-1] + [-1]x0[5] ≥ 0∧x1[5] + [-1] ≥ 0∧x0[5] + [-1] + [-1]x1[5] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4]))), ≥)∧[(-3)bni_49 + (-1)Bound*bni_49] + [bni_49]x1[5] ≥ 0∧[-1 + (-1)bso_50] + [-1]x0[5] + x1[5] ≥ 0)



    We simplified constraint (75) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (77)    (x1[5] + [-1]x0[5] ≥ 0∧x0[5] + [-1] ≥ 0∧x1[5] + [-1] + [-1]x0[5] ≥ 0∧x1[5] + [-1] ≥ 0∧x1[5] + [-1] + [-1]x0[5] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4]))), ≥)∧[(-3)bni_49 + (-1)Bound*bni_49] + [bni_49]x1[5] ≥ 0∧[-1 + (-1)bso_50] + [-1]x0[5] + x1[5] ≥ 0)



    We solved constraint (76) using rule (IDP_SMT_SPLIT).We simplified constraint (77) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (78)    (x1[5] ≥ 0∧x0[5] + [-1] ≥ 0∧[-1] + x1[5] ≥ 0∧x0[5] + [-1] + x1[5] ≥ 0∧[-1] + x1[5] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4]))), ≥)∧[(-3)bni_49 + (-1)Bound*bni_49] + [bni_49]x0[5] + [bni_49]x1[5] ≥ 0∧[-1 + (-1)bso_50] + x1[5] ≥ 0)



    We simplified constraint (78) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (79)    (x1[5] ≥ 0∧x0[5] ≥ 0∧[-1] + x1[5] ≥ 0∧x0[5] + x1[5] ≥ 0∧[-1] + x1[5] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4]))), ≥)∧[(-2)bni_49 + (-1)Bound*bni_49] + [bni_49]x0[5] + [bni_49]x1[5] ≥ 0∧[-1 + (-1)bso_50] + x1[5] ≥ 0)



    We simplified constraint (79) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (80)    ([1] + x1[5] ≥ 0∧x0[5] ≥ 0∧x1[5] ≥ 0∧[1] + x0[5] + x1[5] ≥ 0∧x1[5] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4]))), ≥)∧[(-1)bni_49 + (-1)Bound*bni_49] + [bni_49]x0[5] + [bni_49]x1[5] ≥ 0∧[(-1)bso_50] + x1[5] ≥ 0)



  • We consider the chain 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[9], x0[9])) → COND_1337_1_MAIN_INVOKEMETHOD3(>(x0[9], 0), 1337_0_gcd_EQ(x0[9], x0[9])), COND_1337_1_MAIN_INVOKEMETHOD3(TRUE, 1337_0_gcd_EQ(x0[10], x0[10])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10], 0)), 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[3], x1[3])) → COND_1337_1_MAIN_INVOKEMETHOD2(&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3]))), 1337_0_gcd_EQ(x0[3], x1[3])), COND_1337_1_MAIN_INVOKEMETHOD2(TRUE, 1337_0_gcd_EQ(x0[4], x1[4])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4])), 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])) → COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])), COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8])) which results in the following constraint:

    (81)    (>(x0[9], 0)=TRUE1337_0_gcd_EQ(x0[9], x0[9])=1337_0_gcd_EQ(x0[10], x0[10])∧1337_0_gcd_EQ(x0[10], 0)=1337_0_gcd_EQ(x0[3], x1[3])∧&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3])))=TRUE1337_0_gcd_EQ(x0[3], x1[3])=1337_0_gcd_EQ(x0[4], x1[4])∧1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4])=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])∧&&(>(x1[7], 0), <(x1[7], x0[7]))=TRUE1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8]) ⇒ COND_1337_1_MAIN_INVOKEMETHOD2(TRUE, 1337_0_gcd_EQ(x0[4], x1[4]))≥NonInfC∧COND_1337_1_MAIN_INVOKEMETHOD2(TRUE, 1337_0_gcd_EQ(x0[4], x1[4]))≥1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4]))∧(UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4]))), ≥))



    We solved constraint (81) using rules (I), (II), (III), (IV), (IDP_CONSTANT_FOLD), (IDP_BOOLEAN).
  • We consider the chain 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[2], x1[2])) → COND_1337_1_MAIN_INVOKEMETHOD(&&(<(x1[2], 0), >(x0[2], 0)), 1337_0_gcd_EQ(x0[2], x1[2])), COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0)), 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[3], x1[3])) → COND_1337_1_MAIN_INVOKEMETHOD2(&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3]))), 1337_0_gcd_EQ(x0[3], x1[3])), COND_1337_1_MAIN_INVOKEMETHOD2(TRUE, 1337_0_gcd_EQ(x0[4], x1[4])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4])), 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])) → COND_1429_2_MAIN_INVOKEMETHOD(>=(x1[5], x0[5]), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])), COND_1429_2_MAIN_INVOKEMETHOD(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[6], x1[6]), x1[6])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[6], x0[6])) which results in the following constraint:

    (82)    (&&(<(x1[2], 0), >(x0[2], 0))=TRUE1337_0_gcd_EQ(x0[2], x1[2])=1337_0_gcd_EQ(x0[1], x1[1])∧1337_0_gcd_EQ(x1[1], 0)=1337_0_gcd_EQ(x0[3], x1[3])∧&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3])))=TRUE1337_0_gcd_EQ(x0[3], x1[3])=1337_0_gcd_EQ(x0[4], x1[4])∧1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4])=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])∧>=(x1[5], x0[5])=TRUE1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[6], x1[6]), x1[6]) ⇒ COND_1337_1_MAIN_INVOKEMETHOD2(TRUE, 1337_0_gcd_EQ(x0[4], x1[4]))≥NonInfC∧COND_1337_1_MAIN_INVOKEMETHOD2(TRUE, 1337_0_gcd_EQ(x0[4], x1[4]))≥1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4]))∧(UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4]))), ≥))



    We solved constraint (82) using rules (I), (II), (III), (IV), (IDP_CONSTANT_FOLD), (IDP_BOOLEAN).
  • We consider the chain 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[2], x1[2])) → COND_1337_1_MAIN_INVOKEMETHOD(&&(<(x1[2], 0), >(x0[2], 0)), 1337_0_gcd_EQ(x0[2], x1[2])), COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0)), 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[3], x1[3])) → COND_1337_1_MAIN_INVOKEMETHOD2(&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3]))), 1337_0_gcd_EQ(x0[3], x1[3])), COND_1337_1_MAIN_INVOKEMETHOD2(TRUE, 1337_0_gcd_EQ(x0[4], x1[4])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4])), 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])) → COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])), COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8])) which results in the following constraint:

    (83)    (&&(<(x1[2], 0), >(x0[2], 0))=TRUE1337_0_gcd_EQ(x0[2], x1[2])=1337_0_gcd_EQ(x0[1], x1[1])∧1337_0_gcd_EQ(x1[1], 0)=1337_0_gcd_EQ(x0[3], x1[3])∧&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3])))=TRUE1337_0_gcd_EQ(x0[3], x1[3])=1337_0_gcd_EQ(x0[4], x1[4])∧1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4])=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])∧&&(>(x1[7], 0), <(x1[7], x0[7]))=TRUE1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8]) ⇒ COND_1337_1_MAIN_INVOKEMETHOD2(TRUE, 1337_0_gcd_EQ(x0[4], x1[4]))≥NonInfC∧COND_1337_1_MAIN_INVOKEMETHOD2(TRUE, 1337_0_gcd_EQ(x0[4], x1[4]))≥1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4]))∧(UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4]))), ≥))



    We solved constraint (83) using rules (I), (II), (III), (IV), (IDP_CONSTANT_FOLD), (IDP_BOOLEAN).




For Pair 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0, x1), x1)) → COND_1429_2_MAIN_INVOKEMETHOD(>=(x1, x0), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0, x1), x1)) the following chains were created:
  • We consider the chain 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])) → COND_1429_2_MAIN_INVOKEMETHOD(>=(x1[5], x0[5]), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])), COND_1429_2_MAIN_INVOKEMETHOD(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[6], x1[6]), x1[6])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[6], x0[6])) which results in the following constraint:

    (84)    (>=(x1[5], x0[5])=TRUE1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[6], x1[6]), x1[6]) ⇒ 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5]))≥NonInfC∧1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5]))≥COND_1429_2_MAIN_INVOKEMETHOD(>=(x1[5], x0[5]), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5]))∧(UIncreasing(COND_1429_2_MAIN_INVOKEMETHOD(>=(x1[5], x0[5]), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5]))), ≥))



    We simplified constraint (84) using rules (I), (II), (IV) which results in the following new constraint:

    (85)    (>=(x1[5], x0[5])=TRUE1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5]))≥NonInfC∧1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5]))≥COND_1429_2_MAIN_INVOKEMETHOD(>=(x1[5], x0[5]), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5]))∧(UIncreasing(COND_1429_2_MAIN_INVOKEMETHOD(>=(x1[5], x0[5]), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5]))), ≥))



    We simplified constraint (85) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (86)    (x1[5] + [-1]x0[5] ≥ 0 ⇒ (UIncreasing(COND_1429_2_MAIN_INVOKEMETHOD(>=(x1[5], x0[5]), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5]))), ≥)∧[(-2)bni_51 + (-1)Bound*bni_51] + [bni_51]x1[5] ≥ 0∧[(-1)bso_52] ≥ 0)



    We simplified constraint (86) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (87)    (x1[5] + [-1]x0[5] ≥ 0 ⇒ (UIncreasing(COND_1429_2_MAIN_INVOKEMETHOD(>=(x1[5], x0[5]), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5]))), ≥)∧[(-2)bni_51 + (-1)Bound*bni_51] + [bni_51]x1[5] ≥ 0∧[(-1)bso_52] ≥ 0)



    We simplified constraint (87) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (88)    (x1[5] + [-1]x0[5] ≥ 0 ⇒ (UIncreasing(COND_1429_2_MAIN_INVOKEMETHOD(>=(x1[5], x0[5]), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5]))), ≥)∧[(-2)bni_51 + (-1)Bound*bni_51] + [bni_51]x1[5] ≥ 0∧[(-1)bso_52] ≥ 0)



    We simplified constraint (88) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (89)    (x1[5] ≥ 0 ⇒ (UIncreasing(COND_1429_2_MAIN_INVOKEMETHOD(>=(x1[5], x0[5]), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5]))), ≥)∧[(-2)bni_51 + (-1)Bound*bni_51] + [bni_51]x0[5] + [bni_51]x1[5] ≥ 0∧[(-1)bso_52] ≥ 0)



    We simplified constraint (89) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (90)    (x1[5] ≥ 0∧x0[5] ≥ 0 ⇒ (UIncreasing(COND_1429_2_MAIN_INVOKEMETHOD(>=(x1[5], x0[5]), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5]))), ≥)∧[(-2)bni_51 + (-1)Bound*bni_51] + [(-1)bni_51]x0[5] + [bni_51]x1[5] ≥ 0∧[(-1)bso_52] ≥ 0)


    (91)    (x1[5] ≥ 0∧x0[5] ≥ 0 ⇒ (UIncreasing(COND_1429_2_MAIN_INVOKEMETHOD(>=(x1[5], x0[5]), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5]))), ≥)∧[(-2)bni_51 + (-1)Bound*bni_51] + [bni_51]x0[5] + [bni_51]x1[5] ≥ 0∧[(-1)bso_52] ≥ 0)







For Pair COND_1429_2_MAIN_INVOKEMETHOD(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0, x1), x1)) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1, x0)) the following chains were created:
  • We consider the chain 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[3], x1[3])) → COND_1337_1_MAIN_INVOKEMETHOD2(&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3]))), 1337_0_gcd_EQ(x0[3], x1[3])), COND_1337_1_MAIN_INVOKEMETHOD2(TRUE, 1337_0_gcd_EQ(x0[4], x1[4])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4])), 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])) → COND_1429_2_MAIN_INVOKEMETHOD(>=(x1[5], x0[5]), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])), COND_1429_2_MAIN_INVOKEMETHOD(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[6], x1[6]), x1[6])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[6], x0[6])) which results in the following constraint:

    (92)    (&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3])))=TRUE1337_0_gcd_EQ(x0[3], x1[3])=1337_0_gcd_EQ(x0[4], x1[4])∧1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4])=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])∧>=(x1[5], x0[5])=TRUE1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[6], x1[6]), x1[6]) ⇒ COND_1429_2_MAIN_INVOKEMETHOD(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[6], x1[6]), x1[6]))≥NonInfC∧COND_1429_2_MAIN_INVOKEMETHOD(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[6], x1[6]), x1[6]))≥1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[6], x0[6]))∧(UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[6], x0[6]))), ≥))



    We simplified constraint (92) using rules (I), (II), (III), (IDP_BOOLEAN) which results in the following new constraint:

    (93)    (>=(x1[3], x0[3])=TRUE>(x1[3], 0)=TRUE>(x0[3], 0)=TRUE<(x0[3], x1[3])=TRUECOND_1429_2_MAIN_INVOKEMETHOD(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[3], x1[3]), x1[3]))≥NonInfC∧COND_1429_2_MAIN_INVOKEMETHOD(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[3], x1[3]), x1[3]))≥1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[3], x0[3]))∧(UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[6], x0[6]))), ≥))



    We simplified constraint (93) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (94)    (x1[3] + [-1]x0[3] ≥ 0∧x1[3] + [-1] ≥ 0∧x0[3] + [-1] ≥ 0∧x1[3] + [-1] + [-1]x0[3] ≥ 0 ⇒ (UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[6], x0[6]))), ≥)∧[(-2)bni_53 + (-1)Bound*bni_53] + [bni_53]x1[3] ≥ 0∧[1 + (-1)bso_54] ≥ 0)



    We simplified constraint (94) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (95)    (x1[3] + [-1]x0[3] ≥ 0∧x1[3] + [-1] ≥ 0∧x0[3] + [-1] ≥ 0∧x1[3] + [-1] + [-1]x0[3] ≥ 0 ⇒ (UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[6], x0[6]))), ≥)∧[(-2)bni_53 + (-1)Bound*bni_53] + [bni_53]x1[3] ≥ 0∧[1 + (-1)bso_54] ≥ 0)



    We simplified constraint (96) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (97)    (x1[3] + [-1]x0[3] ≥ 0∧x1[3] + [-1] ≥ 0∧x0[3] + [-1] ≥ 0∧x0[3] + [-1] + [-1]x1[3] ≥ 0 ⇒ (UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[6], x0[6]))), ≥)∧[(-2)bni_53 + (-1)Bound*bni_53] + [bni_53]x1[3] ≥ 0∧[1 + (-1)bso_54] ≥ 0)



    We simplified constraint (95) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (98)    (x1[3] + [-1]x0[3] ≥ 0∧x1[3] + [-1] ≥ 0∧x0[3] + [-1] ≥ 0∧x1[3] + [-1] + [-1]x0[3] ≥ 0 ⇒ (UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[6], x0[6]))), ≥)∧[(-2)bni_53 + (-1)Bound*bni_53] + [bni_53]x1[3] ≥ 0∧[1 + (-1)bso_54] ≥ 0)



    We simplified constraint (97) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (99)    (x1[3] + [-1]x0[3] ≥ 0∧x1[3] + [-1] ≥ 0∧x0[3] + [-1] ≥ 0∧x0[3] + [-1] + [-1]x1[3] ≥ 0 ⇒ (UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[6], x0[6]))), ≥)∧[(-2)bni_53 + (-1)Bound*bni_53] + [bni_53]x1[3] ≥ 0∧[1 + (-1)bso_54] ≥ 0)



    We simplified constraint (98) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (100)    (x1[3] ≥ 0∧x0[3] + [-1] + x1[3] ≥ 0∧x0[3] + [-1] ≥ 0∧[-1] + x1[3] ≥ 0 ⇒ (UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[6], x0[6]))), ≥)∧[(-2)bni_53 + (-1)Bound*bni_53] + [bni_53]x0[3] + [bni_53]x1[3] ≥ 0∧[1 + (-1)bso_54] ≥ 0)



    We solved constraint (99) using rule (IDP_SMT_SPLIT).We simplified constraint (100) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (101)    (x1[3] ≥ 0∧x0[3] + x1[3] ≥ 0∧x0[3] ≥ 0∧[-1] + x1[3] ≥ 0 ⇒ (UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[6], x0[6]))), ≥)∧[(-1)bni_53 + (-1)Bound*bni_53] + [bni_53]x0[3] + [bni_53]x1[3] ≥ 0∧[1 + (-1)bso_54] ≥ 0)



    We simplified constraint (101) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (102)    ([1] + x1[3] ≥ 0∧[1] + x0[3] + x1[3] ≥ 0∧x0[3] ≥ 0∧x1[3] ≥ 0 ⇒ (UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[6], x0[6]))), ≥)∧[(-1)Bound*bni_53] + [bni_53]x0[3] + [bni_53]x1[3] ≥ 0∧[1 + (-1)bso_54] ≥ 0)



  • We consider the chain 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])) → COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])), COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8])), 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])) → COND_1429_2_MAIN_INVOKEMETHOD(>=(x1[5], x0[5]), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])), COND_1429_2_MAIN_INVOKEMETHOD(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[6], x1[6]), x1[6])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[6], x0[6])) which results in the following constraint:

    (103)    (&&(>(x1[7], 0), <(x1[7], x0[7]))=TRUE1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8])∧1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8])=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])∧>=(x1[5], x0[5])=TRUE1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[6], x1[6]), x1[6]) ⇒ COND_1429_2_MAIN_INVOKEMETHOD(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[6], x1[6]), x1[6]))≥NonInfC∧COND_1429_2_MAIN_INVOKEMETHOD(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[6], x1[6]), x1[6]))≥1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[6], x0[6]))∧(UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[6], x0[6]))), ≥))



    We simplified constraint (103) using rules (I), (II), (III), (IDP_BOOLEAN) which results in the following new constraint:

    (104)    (>=(x1[7], -(x0[7], x1[7]))=TRUE>(x1[7], 0)=TRUE<(x1[7], x0[7])=TRUECOND_1429_2_MAIN_INVOKEMETHOD(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[7], x1[7]), x1[7]), x1[7]))≥NonInfC∧COND_1429_2_MAIN_INVOKEMETHOD(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[7], x1[7]), x1[7]), x1[7]))≥1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[7], -(x0[7], x1[7])))∧(UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[6], x0[6]))), ≥))



    We simplified constraint (104) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (105)    ([2]x1[7] + [-1]x0[7] ≥ 0∧x1[7] + [-1] ≥ 0∧x0[7] + [-1] + [-1]x1[7] ≥ 0 ⇒ (UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[6], x0[6]))), ≥)∧[(-2)bni_53 + (-1)Bound*bni_53] + [bni_53]x1[7] ≥ 0∧[1 + (-1)bso_54] ≥ 0)



    We simplified constraint (105) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (106)    ([2]x1[7] + [-1]x0[7] ≥ 0∧x1[7] + [-1] ≥ 0∧x0[7] + [-1] + [-1]x1[7] ≥ 0 ⇒ (UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[6], x0[6]))), ≥)∧[(-2)bni_53 + (-1)Bound*bni_53] + [bni_53]x1[7] ≥ 0∧[1 + (-1)bso_54] ≥ 0)



    We simplified constraint (106) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (107)    ([2]x1[7] + [-1]x0[7] ≥ 0∧x1[7] + [-1] ≥ 0∧x0[7] + [-1] + [-1]x1[7] ≥ 0 ⇒ (UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[6], x0[6]))), ≥)∧[(-2)bni_53 + (-1)Bound*bni_53] + [bni_53]x1[7] ≥ 0∧[1 + (-1)bso_54] ≥ 0)



    We simplified constraint (107) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (108)    ([2] + [2]x1[7] + [-1]x0[7] ≥ 0∧x1[7] ≥ 0∧x0[7] + [-2] + [-1]x1[7] ≥ 0 ⇒ (UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[6], x0[6]))), ≥)∧[(-1)bni_53 + (-1)Bound*bni_53] + [bni_53]x1[7] ≥ 0∧[1 + (-1)bso_54] ≥ 0)



    We simplified constraint (108) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (109)    (x1[7] + [-1]x0[7] ≥ 0∧x1[7] ≥ 0∧x0[7] ≥ 0 ⇒ (UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[6], x0[6]))), ≥)∧[(-1)bni_53 + (-1)Bound*bni_53] + [bni_53]x1[7] ≥ 0∧[1 + (-1)bso_54] ≥ 0)



    We simplified constraint (109) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (110)    (x1[7] ≥ 0∧x0[7] + x1[7] ≥ 0∧x0[7] ≥ 0 ⇒ (UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[6], x0[6]))), ≥)∧[(-1)bni_53 + (-1)Bound*bni_53] + [bni_53]x0[7] + [bni_53]x1[7] ≥ 0∧[1 + (-1)bso_54] ≥ 0)







For Pair 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0, x1), x1)) → COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1, 0), <(x1, x0)), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0, x1), x1)) the following chains were created:
  • We consider the chain 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])) → COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])), COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8])) which results in the following constraint:

    (111)    (&&(>(x1[7], 0), <(x1[7], x0[7]))=TRUE1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8]) ⇒ 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]))≥NonInfC∧1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]))≥COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]))∧(UIncreasing(COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]))), ≥))



    We simplified constraint (111) using rules (I), (II), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (112)    (>(x1[7], 0)=TRUE<(x1[7], x0[7])=TRUE1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]))≥NonInfC∧1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]))≥COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]))∧(UIncreasing(COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]))), ≥))



    We simplified constraint (112) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (113)    (x1[7] + [-1] ≥ 0∧x0[7] + [-1] + [-1]x1[7] ≥ 0 ⇒ (UIncreasing(COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]))), ≥)∧[(-2)bni_55 + (-1)Bound*bni_55] + [bni_55]x1[7] ≥ 0∧[(-1)bso_56] ≥ 0)



    We simplified constraint (113) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (114)    (x1[7] + [-1] ≥ 0∧x0[7] + [-1] + [-1]x1[7] ≥ 0 ⇒ (UIncreasing(COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]))), ≥)∧[(-2)bni_55 + (-1)Bound*bni_55] + [bni_55]x1[7] ≥ 0∧[(-1)bso_56] ≥ 0)



    We simplified constraint (114) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (115)    (x1[7] + [-1] ≥ 0∧x0[7] + [-1] + [-1]x1[7] ≥ 0 ⇒ (UIncreasing(COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]))), ≥)∧[(-2)bni_55 + (-1)Bound*bni_55] + [bni_55]x1[7] ≥ 0∧[(-1)bso_56] ≥ 0)



    We simplified constraint (115) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (116)    (x1[7] ≥ 0∧x0[7] + [-2] + [-1]x1[7] ≥ 0 ⇒ (UIncreasing(COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]))), ≥)∧[(-1)bni_55 + (-1)Bound*bni_55] + [bni_55]x1[7] ≥ 0∧[(-1)bso_56] ≥ 0)



    We simplified constraint (116) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (117)    (x1[7] ≥ 0∧x0[7] ≥ 0 ⇒ (UIncreasing(COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]))), ≥)∧[(-1)bni_55 + (-1)Bound*bni_55] + [bni_55]x1[7] ≥ 0∧[(-1)bso_56] ≥ 0)







For Pair COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0, x1), x1)) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0, x1), x1), x1)) the following chains were created:
  • We consider the chain 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[3], x1[3])) → COND_1337_1_MAIN_INVOKEMETHOD2(&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3]))), 1337_0_gcd_EQ(x0[3], x1[3])), COND_1337_1_MAIN_INVOKEMETHOD2(TRUE, 1337_0_gcd_EQ(x0[4], x1[4])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4])), 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])) → COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])), COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8])), 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])) → COND_1429_2_MAIN_INVOKEMETHOD(>=(x1[5], x0[5]), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])), COND_1429_2_MAIN_INVOKEMETHOD(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[6], x1[6]), x1[6])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[6], x0[6])) which results in the following constraint:

    (118)    (&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3])))=TRUE1337_0_gcd_EQ(x0[3], x1[3])=1337_0_gcd_EQ(x0[4], x1[4])∧1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4])=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])∧&&(>(x1[7], 0), <(x1[7], x0[7]))=TRUE1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8])∧1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8])=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])∧>=(x1[5], x0[5])=TRUE1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[6], x1[6]), x1[6]) ⇒ COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8]))≥NonInfC∧COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8]))≥1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8]))∧(UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8]))), ≥))



    We simplified constraint (118) using rules (I), (II), (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (119)    (>=(x1[3], -(x0[3], x1[3]))=TRUE>(x1[3], 0)=TRUE<(x1[3], x0[3])=TRUE>(x0[3], 0)=TRUE<(x0[3], x1[3])=TRUECOND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[3], x1[3]), x1[3]))≥NonInfC∧COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[3], x1[3]), x1[3]))≥1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[3], x1[3]), x1[3]), x1[3]))∧(UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8]))), ≥))



    We simplified constraint (119) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (120)    ([2]x1[3] + [-1]x0[3] ≥ 0∧x1[3] + [-1] ≥ 0∧x0[3] + [-1] + [-1]x1[3] ≥ 0∧x0[3] + [-1] ≥ 0∧x1[3] + [-1] + [-1]x0[3] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8]))), ≥)∧[(-2)bni_57 + (-1)Bound*bni_57] + [bni_57]x1[3] ≥ 0∧[(-1)bso_58] ≥ 0)



    We simplified constraint (120) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (121)    ([2]x1[3] + [-1]x0[3] ≥ 0∧x1[3] + [-1] ≥ 0∧x0[3] + [-1] + [-1]x1[3] ≥ 0∧x0[3] + [-1] ≥ 0∧x1[3] + [-1] + [-1]x0[3] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8]))), ≥)∧[(-2)bni_57 + (-1)Bound*bni_57] + [bni_57]x1[3] ≥ 0∧[(-1)bso_58] ≥ 0)



    We simplified constraint (122) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (123)    ([2]x1[3] + [-1]x0[3] ≥ 0∧x1[3] + [-1] ≥ 0∧x0[3] + [-1] + [-1]x1[3] ≥ 0∧x0[3] + [-1] ≥ 0∧x0[3] + [-1] + [-1]x1[3] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8]))), ≥)∧[(-2)bni_57 + (-1)Bound*bni_57] + [bni_57]x1[3] ≥ 0∧[(-1)bso_58] ≥ 0)



    We simplified constraint (121) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (124)    ([2]x1[3] + [-1]x0[3] ≥ 0∧x1[3] + [-1] ≥ 0∧x0[3] + [-1] + [-1]x1[3] ≥ 0∧x0[3] + [-1] ≥ 0∧x1[3] + [-1] + [-1]x0[3] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8]))), ≥)∧[(-2)bni_57 + (-1)Bound*bni_57] + [bni_57]x1[3] ≥ 0∧[(-1)bso_58] ≥ 0)



    We simplified constraint (123) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (125)    ([2]x1[3] + [-1]x0[3] ≥ 0∧x1[3] + [-1] ≥ 0∧x0[3] + [-1] + [-1]x1[3] ≥ 0∧x0[3] + [-1] ≥ 0∧x0[3] + [-1] + [-1]x1[3] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8]))), ≥)∧[(-2)bni_57 + (-1)Bound*bni_57] + [bni_57]x1[3] ≥ 0∧[(-1)bso_58] ≥ 0)



    We solved constraint (124) using rule (IDP_SMT_SPLIT).We simplified constraint (125) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (126)    ([2] + [2]x1[3] + [-1]x0[3] ≥ 0∧x1[3] ≥ 0∧x0[3] + [-2] + [-1]x1[3] ≥ 0∧x0[3] + [-1] ≥ 0∧x0[3] + [-2] + [-1]x1[3] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8]))), ≥)∧[(-1)bni_57 + (-1)Bound*bni_57] + [bni_57]x1[3] ≥ 0∧[(-1)bso_58] ≥ 0)



    We simplified constraint (126) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (127)    (x1[3] + [-1]x0[3] ≥ 0∧x1[3] ≥ 0∧x0[3] ≥ 0∧[1] + x1[3] + x0[3] ≥ 0∧x0[3] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8]))), ≥)∧[(-1)bni_57 + (-1)Bound*bni_57] + [bni_57]x1[3] ≥ 0∧[(-1)bso_58] ≥ 0)



    We simplified constraint (127) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (128)    (x1[3] ≥ 0∧x0[3] + x1[3] ≥ 0∧x0[3] ≥ 0∧[1] + [2]x0[3] + x1[3] ≥ 0∧x0[3] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8]))), ≥)∧[(-1)bni_57 + (-1)Bound*bni_57] + [bni_57]x0[3] + [bni_57]x1[3] ≥ 0∧[(-1)bso_58] ≥ 0)



  • We consider the chain 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[3], x1[3])) → COND_1337_1_MAIN_INVOKEMETHOD2(&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3]))), 1337_0_gcd_EQ(x0[3], x1[3])), COND_1337_1_MAIN_INVOKEMETHOD2(TRUE, 1337_0_gcd_EQ(x0[4], x1[4])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4])), 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])) → COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])), COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8])), 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])) → COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])), COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8])) which results in the following constraint:

    (129)    (&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3])))=TRUE1337_0_gcd_EQ(x0[3], x1[3])=1337_0_gcd_EQ(x0[4], x1[4])∧1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4])=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])∧&&(>(x1[7], 0), <(x1[7], x0[7]))=TRUE1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8])∧1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8])=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7]1, x1[7]1), x1[7]1)∧&&(>(x1[7]1, 0), <(x1[7]1, x0[7]1))=TRUE1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7]1, x1[7]1), x1[7]1)=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8]1, x1[8]1), x1[8]1) ⇒ COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8]))≥NonInfC∧COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8]))≥1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8]))∧(UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8]))), ≥))



    We simplified constraint (129) using rules (I), (II), (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (130)    (>(x1[3], 0)=TRUE<(x1[3], x0[3])=TRUE<(x1[3], -(x0[3], x1[3]))=TRUE>(x0[3], 0)=TRUE<(x0[3], x1[3])=TRUECOND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[3], x1[3]), x1[3]))≥NonInfC∧COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[3], x1[3]), x1[3]))≥1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[3], x1[3]), x1[3]), x1[3]))∧(UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8]))), ≥))



    We simplified constraint (130) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (131)    (x1[3] + [-1] ≥ 0∧x0[3] + [-1] + [-1]x1[3] ≥ 0∧x0[3] + [-1] + [-2]x1[3] ≥ 0∧x0[3] + [-1] ≥ 0∧x1[3] + [-1] + [-1]x0[3] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8]))), ≥)∧[(-2)bni_57 + (-1)Bound*bni_57] + [bni_57]x1[3] ≥ 0∧[(-1)bso_58] ≥ 0)



    We simplified constraint (131) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (132)    (x1[3] + [-1] ≥ 0∧x0[3] + [-1] + [-1]x1[3] ≥ 0∧x0[3] + [-1] + [-2]x1[3] ≥ 0∧x0[3] + [-1] ≥ 0∧x1[3] + [-1] + [-1]x0[3] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8]))), ≥)∧[(-2)bni_57 + (-1)Bound*bni_57] + [bni_57]x1[3] ≥ 0∧[(-1)bso_58] ≥ 0)



    We simplified constraint (133) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (134)    (x1[3] + [-1] ≥ 0∧x0[3] + [-1] + [-1]x1[3] ≥ 0∧x0[3] + [-1] + [-2]x1[3] ≥ 0∧x0[3] + [-1] ≥ 0∧x0[3] + [-1] + [-1]x1[3] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8]))), ≥)∧[(-2)bni_57 + (-1)Bound*bni_57] + [bni_57]x1[3] ≥ 0∧[(-1)bso_58] ≥ 0)



    We simplified constraint (132) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (135)    (x1[3] + [-1] ≥ 0∧x0[3] + [-1] + [-1]x1[3] ≥ 0∧x0[3] + [-1] + [-2]x1[3] ≥ 0∧x0[3] + [-1] ≥ 0∧x1[3] + [-1] + [-1]x0[3] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8]))), ≥)∧[(-2)bni_57 + (-1)Bound*bni_57] + [bni_57]x1[3] ≥ 0∧[(-1)bso_58] ≥ 0)



    We simplified constraint (134) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (136)    (x1[3] + [-1] ≥ 0∧x0[3] + [-1] + [-1]x1[3] ≥ 0∧x0[3] + [-1] + [-2]x1[3] ≥ 0∧x0[3] + [-1] ≥ 0∧x0[3] + [-1] + [-1]x1[3] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8]))), ≥)∧[(-2)bni_57 + (-1)Bound*bni_57] + [bni_57]x1[3] ≥ 0∧[(-1)bso_58] ≥ 0)



    We solved constraint (135) using rule (IDP_SMT_SPLIT).We simplified constraint (136) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (137)    (x1[3] ≥ 0∧x0[3] + [-2] + [-1]x1[3] ≥ 0∧x0[3] + [-3] + [-2]x1[3] ≥ 0∧x0[3] + [-1] ≥ 0∧x0[3] + [-2] + [-1]x1[3] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8]))), ≥)∧[(-1)bni_57 + (-1)Bound*bni_57] + [bni_57]x1[3] ≥ 0∧[(-1)bso_58] ≥ 0)



    We simplified constraint (137) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (138)    (x1[3] ≥ 0∧x0[3] ≥ 0∧[-1] + [-1]x1[3] + x0[3] ≥ 0∧[1] + x1[3] + x0[3] ≥ 0∧x0[3] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8]))), ≥)∧[(-1)bni_57 + (-1)Bound*bni_57] + [bni_57]x1[3] ≥ 0∧[(-1)bso_58] ≥ 0)



    We simplified constraint (138) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (139)    (x1[3] ≥ 0∧[1] + x1[3] + x0[3] ≥ 0∧x0[3] ≥ 0∧[2] + [2]x1[3] + x0[3] ≥ 0∧[1] + x1[3] + x0[3] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8]))), ≥)∧[(-1)bni_57 + (-1)Bound*bni_57] + [bni_57]x1[3] ≥ 0∧[(-1)bso_58] ≥ 0)



  • We consider the chain 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])) → COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])), COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8])), 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])) → COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])), COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8])), 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])) → COND_1429_2_MAIN_INVOKEMETHOD(>=(x1[5], x0[5]), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])), COND_1429_2_MAIN_INVOKEMETHOD(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[6], x1[6]), x1[6])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[6], x0[6])) which results in the following constraint:

    (140)    (&&(>(x1[7], 0), <(x1[7], x0[7]))=TRUE1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8])∧1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8])=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7]1, x1[7]1), x1[7]1)∧&&(>(x1[7]1, 0), <(x1[7]1, x0[7]1))=TRUE1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7]1, x1[7]1), x1[7]1)=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8]1, x1[8]1), x1[8]1)∧1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8]1, x1[8]1), x1[8]1), x1[8]1)=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])∧>=(x1[5], x0[5])=TRUE1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[6], x1[6]), x1[6]) ⇒ COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8]1, x1[8]1), x1[8]1))≥NonInfC∧COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8]1, x1[8]1), x1[8]1))≥1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8]1, x1[8]1), x1[8]1), x1[8]1))∧(UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8]1, x1[8]1), x1[8]1), x1[8]1))), ≥))



    We simplified constraint (140) using rules (I), (II), (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (141)    (>=(x1[7], -(-(x0[7], x1[7]), x1[7]))=TRUE>(x1[7], 0)=TRUE<(x1[7], x0[7])=TRUE<(x1[7], -(x0[7], x1[7]))=TRUECOND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[7], x1[7]), x1[7]), x1[7]))≥NonInfC∧COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[7], x1[7]), x1[7]), x1[7]))≥1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(-(x0[7], x1[7]), x1[7]), x1[7]), x1[7]))∧(UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8]1, x1[8]1), x1[8]1), x1[8]1))), ≥))



    We simplified constraint (141) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (142)    ([3]x1[7] + [-1]x0[7] ≥ 0∧x1[7] + [-1] ≥ 0∧x0[7] + [-1] + [-1]x1[7] ≥ 0∧x0[7] + [-1] + [-2]x1[7] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8]1, x1[8]1), x1[8]1), x1[8]1))), ≥)∧[(-2)bni_57 + (-1)Bound*bni_57] + [bni_57]x1[7] ≥ 0∧[(-1)bso_58] ≥ 0)



    We simplified constraint (142) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (143)    ([3]x1[7] + [-1]x0[7] ≥ 0∧x1[7] + [-1] ≥ 0∧x0[7] + [-1] + [-1]x1[7] ≥ 0∧x0[7] + [-1] + [-2]x1[7] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8]1, x1[8]1), x1[8]1), x1[8]1))), ≥)∧[(-2)bni_57 + (-1)Bound*bni_57] + [bni_57]x1[7] ≥ 0∧[(-1)bso_58] ≥ 0)



    We simplified constraint (143) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (144)    ([3]x1[7] + [-1]x0[7] ≥ 0∧x1[7] + [-1] ≥ 0∧x0[7] + [-1] + [-1]x1[7] ≥ 0∧x0[7] + [-1] + [-2]x1[7] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8]1, x1[8]1), x1[8]1), x1[8]1))), ≥)∧[(-2)bni_57 + (-1)Bound*bni_57] + [bni_57]x1[7] ≥ 0∧[(-1)bso_58] ≥ 0)



    We simplified constraint (144) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (145)    ([3] + [3]x1[7] + [-1]x0[7] ≥ 0∧x1[7] ≥ 0∧x0[7] + [-2] + [-1]x1[7] ≥ 0∧x0[7] + [-3] + [-2]x1[7] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8]1, x1[8]1), x1[8]1), x1[8]1))), ≥)∧[(-1)bni_57 + (-1)Bound*bni_57] + [bni_57]x1[7] ≥ 0∧[(-1)bso_58] ≥ 0)



    We simplified constraint (145) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (146)    ([1] + [2]x1[7] + [-1]x0[7] ≥ 0∧x1[7] ≥ 0∧x0[7] ≥ 0∧[-1] + [-1]x1[7] + x0[7] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8]1, x1[8]1), x1[8]1), x1[8]1))), ≥)∧[(-1)bni_57 + (-1)Bound*bni_57] + [bni_57]x1[7] ≥ 0∧[(-1)bso_58] ≥ 0)



    We simplified constraint (146) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (147)    (x1[7] + [-1]x0[7] ≥ 0∧x1[7] ≥ 0∧[1] + x1[7] + x0[7] ≥ 0∧x0[7] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8]1, x1[8]1), x1[8]1), x1[8]1))), ≥)∧[(-1)bni_57 + (-1)Bound*bni_57] + [bni_57]x1[7] ≥ 0∧[(-1)bso_58] ≥ 0)



    We simplified constraint (147) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (148)    (x1[7] ≥ 0∧x0[7] + x1[7] ≥ 0∧[1] + [2]x0[7] + x1[7] ≥ 0∧x0[7] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8]1, x1[8]1), x1[8]1), x1[8]1))), ≥)∧[(-1)bni_57 + (-1)Bound*bni_57] + [bni_57]x0[7] + [bni_57]x1[7] ≥ 0∧[(-1)bso_58] ≥ 0)



  • We consider the chain 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])) → COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])), COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8])), 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])) → COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])), COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8])), 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])) → COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])), COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8])) which results in the following constraint:

    (149)    (&&(>(x1[7], 0), <(x1[7], x0[7]))=TRUE1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8])∧1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8])=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7]1, x1[7]1), x1[7]1)∧&&(>(x1[7]1, 0), <(x1[7]1, x0[7]1))=TRUE1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7]1, x1[7]1), x1[7]1)=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8]1, x1[8]1), x1[8]1)∧1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8]1, x1[8]1), x1[8]1), x1[8]1)=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7]2, x1[7]2), x1[7]2)∧&&(>(x1[7]2, 0), <(x1[7]2, x0[7]2))=TRUE1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7]2, x1[7]2), x1[7]2)=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8]2, x1[8]2), x1[8]2) ⇒ COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8]1, x1[8]1), x1[8]1))≥NonInfC∧COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8]1, x1[8]1), x1[8]1))≥1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8]1, x1[8]1), x1[8]1), x1[8]1))∧(UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8]1, x1[8]1), x1[8]1), x1[8]1))), ≥))



    We simplified constraint (149) using rules (I), (II), (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (150)    (>(x1[7], 0)=TRUE<(x1[7], x0[7])=TRUE<(x1[7], -(x0[7], x1[7]))=TRUE<(x1[7], -(-(x0[7], x1[7]), x1[7]))=TRUECOND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[7], x1[7]), x1[7]), x1[7]))≥NonInfC∧COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[7], x1[7]), x1[7]), x1[7]))≥1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(-(x0[7], x1[7]), x1[7]), x1[7]), x1[7]))∧(UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8]1, x1[8]1), x1[8]1), x1[8]1))), ≥))



    We simplified constraint (150) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (151)    (x1[7] + [-1] ≥ 0∧x0[7] + [-1] + [-1]x1[7] ≥ 0∧x0[7] + [-1] + [-2]x1[7] ≥ 0∧x0[7] + [-1] + [-3]x1[7] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8]1, x1[8]1), x1[8]1), x1[8]1))), ≥)∧[(-2)bni_57 + (-1)Bound*bni_57] + [bni_57]x1[7] ≥ 0∧[(-1)bso_58] ≥ 0)



    We simplified constraint (151) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (152)    (x1[7] + [-1] ≥ 0∧x0[7] + [-1] + [-1]x1[7] ≥ 0∧x0[7] + [-1] + [-2]x1[7] ≥ 0∧x0[7] + [-1] + [-3]x1[7] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8]1, x1[8]1), x1[8]1), x1[8]1))), ≥)∧[(-2)bni_57 + (-1)Bound*bni_57] + [bni_57]x1[7] ≥ 0∧[(-1)bso_58] ≥ 0)



    We simplified constraint (152) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (153)    (x1[7] + [-1] ≥ 0∧x0[7] + [-1] + [-1]x1[7] ≥ 0∧x0[7] + [-1] + [-2]x1[7] ≥ 0∧x0[7] + [-1] + [-3]x1[7] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8]1, x1[8]1), x1[8]1), x1[8]1))), ≥)∧[(-2)bni_57 + (-1)Bound*bni_57] + [bni_57]x1[7] ≥ 0∧[(-1)bso_58] ≥ 0)



    We simplified constraint (153) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (154)    (x1[7] ≥ 0∧x0[7] + [-2] + [-1]x1[7] ≥ 0∧x0[7] + [-3] + [-2]x1[7] ≥ 0∧x0[7] + [-4] + [-3]x1[7] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8]1, x1[8]1), x1[8]1), x1[8]1))), ≥)∧[(-1)bni_57 + (-1)Bound*bni_57] + [bni_57]x1[7] ≥ 0∧[(-1)bso_58] ≥ 0)



    We simplified constraint (154) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (155)    (x1[7] ≥ 0∧x0[7] ≥ 0∧[-1] + [-1]x1[7] + x0[7] ≥ 0∧[-2] + [-2]x1[7] + x0[7] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8]1, x1[8]1), x1[8]1), x1[8]1))), ≥)∧[(-1)bni_57 + (-1)Bound*bni_57] + [bni_57]x1[7] ≥ 0∧[(-1)bso_58] ≥ 0)



    We simplified constraint (155) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (156)    (x1[7] ≥ 0∧[1] + x1[7] + x0[7] ≥ 0∧x0[7] ≥ 0∧[-1] + [-1]x1[7] + x0[7] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8]1, x1[8]1), x1[8]1), x1[8]1))), ≥)∧[(-1)bni_57 + (-1)Bound*bni_57] + [bni_57]x1[7] ≥ 0∧[(-1)bso_58] ≥ 0)



    We simplified constraint (156) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (157)    (x1[7] ≥ 0∧[2] + [2]x1[7] + x0[7] ≥ 0∧[1] + x1[7] + x0[7] ≥ 0∧x0[7] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8]1, x1[8]1), x1[8]1), x1[8]1))), ≥)∧[(-1)bni_57 + (-1)Bound*bni_57] + [bni_57]x1[7] ≥ 0∧[(-1)bso_58] ≥ 0)







For Pair 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0, x0)) → COND_1337_1_MAIN_INVOKEMETHOD3(>(x0, 0), 1337_0_gcd_EQ(x0, x0)) the following chains were created:
  • We consider the chain 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[9], x0[9])) → COND_1337_1_MAIN_INVOKEMETHOD3(>(x0[9], 0), 1337_0_gcd_EQ(x0[9], x0[9])), COND_1337_1_MAIN_INVOKEMETHOD3(TRUE, 1337_0_gcd_EQ(x0[10], x0[10])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10], 0)) which results in the following constraint:

    (158)    (>(x0[9], 0)=TRUE1337_0_gcd_EQ(x0[9], x0[9])=1337_0_gcd_EQ(x0[10], x0[10]) ⇒ 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[9], x0[9]))≥NonInfC∧1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[9], x0[9]))≥COND_1337_1_MAIN_INVOKEMETHOD3(>(x0[9], 0), 1337_0_gcd_EQ(x0[9], x0[9]))∧(UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD3(>(x0[9], 0), 1337_0_gcd_EQ(x0[9], x0[9]))), ≥))



    We simplified constraint (158) using rules (I), (II), (IV) which results in the following new constraint:

    (159)    (>(x0[9], 0)=TRUE1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[9], x0[9]))≥NonInfC∧1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[9], x0[9]))≥COND_1337_1_MAIN_INVOKEMETHOD3(>(x0[9], 0), 1337_0_gcd_EQ(x0[9], x0[9]))∧(UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD3(>(x0[9], 0), 1337_0_gcd_EQ(x0[9], x0[9]))), ≥))



    We simplified constraint (159) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (160)    (x0[9] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD3(>(x0[9], 0), 1337_0_gcd_EQ(x0[9], x0[9]))), ≥)∧[(-3)bni_59 + (-1)Bound*bni_59] + [bni_59]x0[9] ≥ 0∧[(-1)bso_60] ≥ 0)



    We simplified constraint (160) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (161)    (x0[9] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD3(>(x0[9], 0), 1337_0_gcd_EQ(x0[9], x0[9]))), ≥)∧[(-3)bni_59 + (-1)Bound*bni_59] + [bni_59]x0[9] ≥ 0∧[(-1)bso_60] ≥ 0)



    We simplified constraint (161) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (162)    (x0[9] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD3(>(x0[9], 0), 1337_0_gcd_EQ(x0[9], x0[9]))), ≥)∧[(-3)bni_59 + (-1)Bound*bni_59] + [bni_59]x0[9] ≥ 0∧[(-1)bso_60] ≥ 0)



    We simplified constraint (162) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (163)    (x0[9] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD3(>(x0[9], 0), 1337_0_gcd_EQ(x0[9], x0[9]))), ≥)∧[(-2)bni_59 + (-1)Bound*bni_59] + [bni_59]x0[9] ≥ 0∧[(-1)bso_60] ≥ 0)







For Pair COND_1337_1_MAIN_INVOKEMETHOD3(TRUE, 1337_0_gcd_EQ(x0, x0)) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0, 0)) the following chains were created:
  • We consider the chain 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[0], x1[0])) → COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0])), COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0)), 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[9], x0[9])) → COND_1337_1_MAIN_INVOKEMETHOD3(>(x0[9], 0), 1337_0_gcd_EQ(x0[9], x0[9])), COND_1337_1_MAIN_INVOKEMETHOD3(TRUE, 1337_0_gcd_EQ(x0[10], x0[10])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10], 0)) which results in the following constraint:

    (164)    (&&(!(=(x1[0], 0)), <=(x0[0], 0))=TRUE1337_0_gcd_EQ(x0[0], x1[0])=1337_0_gcd_EQ(x0[1], x1[1])∧1337_0_gcd_EQ(x1[1], 0)=1337_0_gcd_EQ(x0[9], x0[9])∧>(x0[9], 0)=TRUE1337_0_gcd_EQ(x0[9], x0[9])=1337_0_gcd_EQ(x0[10], x0[10]) ⇒ COND_1337_1_MAIN_INVOKEMETHOD3(TRUE, 1337_0_gcd_EQ(x0[10], x0[10]))≥NonInfC∧COND_1337_1_MAIN_INVOKEMETHOD3(TRUE, 1337_0_gcd_EQ(x0[10], x0[10]))≥1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10], 0))∧(UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10], 0))), ≥))



    We solved constraint (164) using rules (I), (II), (III), (IV), (IDP_CONSTANT_FOLD), (IDP_BOOLEAN).
  • We consider the chain 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])) → COND_1429_2_MAIN_INVOKEMETHOD(>=(x1[5], x0[5]), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])), COND_1429_2_MAIN_INVOKEMETHOD(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[6], x1[6]), x1[6])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[6], x0[6])), 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[9], x0[9])) → COND_1337_1_MAIN_INVOKEMETHOD3(>(x0[9], 0), 1337_0_gcd_EQ(x0[9], x0[9])), COND_1337_1_MAIN_INVOKEMETHOD3(TRUE, 1337_0_gcd_EQ(x0[10], x0[10])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10], 0)) which results in the following constraint:

    (165)    (>=(x1[5], x0[5])=TRUE1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[6], x1[6]), x1[6])∧1337_0_gcd_EQ(x1[6], x0[6])=1337_0_gcd_EQ(x0[9], x0[9])∧>(x0[9], 0)=TRUE1337_0_gcd_EQ(x0[9], x0[9])=1337_0_gcd_EQ(x0[10], x0[10]) ⇒ COND_1337_1_MAIN_INVOKEMETHOD3(TRUE, 1337_0_gcd_EQ(x0[10], x0[10]))≥NonInfC∧COND_1337_1_MAIN_INVOKEMETHOD3(TRUE, 1337_0_gcd_EQ(x0[10], x0[10]))≥1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10], 0))∧(UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10], 0))), ≥))



    We simplified constraint (165) using rules (I), (II), (III) which results in the following new constraint:

    (166)    (>=(x0[5], x0[5])=TRUE>(x0[5], 0)=TRUECOND_1337_1_MAIN_INVOKEMETHOD3(TRUE, 1337_0_gcd_EQ(x0[5], x0[5]))≥NonInfC∧COND_1337_1_MAIN_INVOKEMETHOD3(TRUE, 1337_0_gcd_EQ(x0[5], x0[5]))≥1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[5], 0))∧(UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10], 0))), ≥))



    We simplified constraint (166) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (167)    (0 ≥ 0∧x0[5] + [-1] ≥ 0 ⇒ (UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10], 0))), ≥)∧[(-3)bni_61 + (-1)Bound*bni_61] + [bni_61]x0[5] ≥ 0∧[(-1)bso_62] ≥ 0)



    We simplified constraint (167) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (168)    (0 ≥ 0∧x0[5] + [-1] ≥ 0 ⇒ (UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10], 0))), ≥)∧[(-3)bni_61 + (-1)Bound*bni_61] + [bni_61]x0[5] ≥ 0∧[(-1)bso_62] ≥ 0)



    We simplified constraint (168) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (169)    (0 ≥ 0∧x0[5] + [-1] ≥ 0 ⇒ (UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10], 0))), ≥)∧[(-3)bni_61 + (-1)Bound*bni_61] + [bni_61]x0[5] ≥ 0∧[(-1)bso_62] ≥ 0)



    We simplified constraint (169) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (170)    (0 ≥ 0∧x0[5] ≥ 0 ⇒ (UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10], 0))), ≥)∧[(-2)bni_61 + (-1)Bound*bni_61] + [bni_61]x0[5] ≥ 0∧[(-1)bso_62] ≥ 0)



  • We consider the chain 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[9], x0[9])) → COND_1337_1_MAIN_INVOKEMETHOD3(>(x0[9], 0), 1337_0_gcd_EQ(x0[9], x0[9])), COND_1337_1_MAIN_INVOKEMETHOD3(TRUE, 1337_0_gcd_EQ(x0[10], x0[10])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10], 0)), 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[9], x0[9])) → COND_1337_1_MAIN_INVOKEMETHOD3(>(x0[9], 0), 1337_0_gcd_EQ(x0[9], x0[9])), COND_1337_1_MAIN_INVOKEMETHOD3(TRUE, 1337_0_gcd_EQ(x0[10], x0[10])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10], 0)) which results in the following constraint:

    (171)    (>(x0[9], 0)=TRUE1337_0_gcd_EQ(x0[9], x0[9])=1337_0_gcd_EQ(x0[10], x0[10])∧1337_0_gcd_EQ(x0[10], 0)=1337_0_gcd_EQ(x0[9]1, x0[9]1)∧>(x0[9]1, 0)=TRUE1337_0_gcd_EQ(x0[9]1, x0[9]1)=1337_0_gcd_EQ(x0[10]1, x0[10]1) ⇒ COND_1337_1_MAIN_INVOKEMETHOD3(TRUE, 1337_0_gcd_EQ(x0[10]1, x0[10]1))≥NonInfC∧COND_1337_1_MAIN_INVOKEMETHOD3(TRUE, 1337_0_gcd_EQ(x0[10]1, x0[10]1))≥1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10]1, 0))∧(UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10]1, 0))), ≥))



    We solved constraint (171) using rules (I), (II), (III), (IDP_CONSTANT_FOLD).
  • We consider the chain 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[2], x1[2])) → COND_1337_1_MAIN_INVOKEMETHOD(&&(<(x1[2], 0), >(x0[2], 0)), 1337_0_gcd_EQ(x0[2], x1[2])), COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0)), 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[9], x0[9])) → COND_1337_1_MAIN_INVOKEMETHOD3(>(x0[9], 0), 1337_0_gcd_EQ(x0[9], x0[9])), COND_1337_1_MAIN_INVOKEMETHOD3(TRUE, 1337_0_gcd_EQ(x0[10], x0[10])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10], 0)) which results in the following constraint:

    (172)    (&&(<(x1[2], 0), >(x0[2], 0))=TRUE1337_0_gcd_EQ(x0[2], x1[2])=1337_0_gcd_EQ(x0[1], x1[1])∧1337_0_gcd_EQ(x1[1], 0)=1337_0_gcd_EQ(x0[9], x0[9])∧>(x0[9], 0)=TRUE1337_0_gcd_EQ(x0[9], x0[9])=1337_0_gcd_EQ(x0[10], x0[10]) ⇒ COND_1337_1_MAIN_INVOKEMETHOD3(TRUE, 1337_0_gcd_EQ(x0[10], x0[10]))≥NonInfC∧COND_1337_1_MAIN_INVOKEMETHOD3(TRUE, 1337_0_gcd_EQ(x0[10], x0[10]))≥1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10], 0))∧(UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10], 0))), ≥))



    We solved constraint (172) using rules (I), (II), (III), (IV), (IDP_CONSTANT_FOLD), (IDP_BOOLEAN).




To summarize, we get the following constraints P for the following pairs.
  • 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0, x1)) → COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1, 0)), <=(x0, 0)), 1337_0_gcd_EQ(x0, x1))
    • (x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(-3)bni_41 + (-1)Bound*bni_41] + [(-1)bni_41]x0[0] ≥ 0∧[(-1)bso_42] ≥ 0)
    • (x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(-3)bni_41 + (-1)Bound*bni_41] + [(-1)bni_41]x0[0] ≥ 0∧[(-1)bso_42] ≥ 0)

  • COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0, x1)) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1, 0))
    • (x0[5] ≥ 0∧x1[5] ≥ 0∧[-1] + x1[5] + x0[5] ≥ 0 ⇒ (UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0))), ≥)∧[(-3)bni_43 + (-1)Bound*bni_43] + [(-1)bni_43]x1[5] ≥ 0∧[(-1)bso_44] + x0[5] ≥ 0)
    • ([2] + x1[5] + x0[5] ≥ 0∧x0[5] ≥ 0∧x1[5] ≥ 0 ⇒ (UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0))), ≥)∧[(-2)bni_43 + (-1)Bound*bni_43] + [bni_43]x1[5] ≥ 0∧[2 + (-1)bso_44] + x0[5] + x1[5] ≥ 0)

  • 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0, x1)) → COND_1337_1_MAIN_INVOKEMETHOD(&&(<(x1, 0), >(x0, 0)), 1337_0_gcd_EQ(x0, x1))
    • (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(<(x1[2], 0), >(x0[2], 0)), 1337_0_gcd_EQ(x0[2], x1[2]))), ≥)∧[(-2)bni_45 + (-1)Bound*bni_45] + [bni_45]x0[2] ≥ 0∧[(-1)bso_46] ≥ 0)

  • 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0, x1)) → COND_1337_1_MAIN_INVOKEMETHOD2(&&(&&(>(x1, 0), >(x0, 0)), !(=(x0, x1))), 1337_0_gcd_EQ(x0, x1))
    • ([1] + x0[3] + x1[3] ≥ 0∧x0[3] ≥ 0∧x1[3] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD2(&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3]))), 1337_0_gcd_EQ(x0[3], x1[3]))), ≥)∧[(-2)bni_47 + (-1)Bound*bni_47] + [bni_47]x0[3] ≥ 0∧[(-1)bso_48] ≥ 0)
    • (x1[3] ≥ 0∧[1] + x1[3] + x0[3] ≥ 0∧x0[3] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD2(&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3]))), 1337_0_gcd_EQ(x0[3], x1[3]))), ≥)∧[(-1)bni_47 + (-1)Bound*bni_47] + [bni_47]x1[3] + [bni_47]x0[3] ≥ 0∧[(-1)bso_48] ≥ 0)

  • COND_1337_1_MAIN_INVOKEMETHOD2(TRUE, 1337_0_gcd_EQ(x0, x1)) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0, x1), x1))
    • ([1] + x1[5] ≥ 0∧x0[5] ≥ 0∧x1[5] ≥ 0∧[1] + x0[5] + x1[5] ≥ 0∧x1[5] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4]))), ≥)∧[(-1)bni_49 + (-1)Bound*bni_49] + [bni_49]x0[5] + [bni_49]x1[5] ≥ 0∧[(-1)bso_50] + x1[5] ≥ 0)

  • 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0, x1), x1)) → COND_1429_2_MAIN_INVOKEMETHOD(>=(x1, x0), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0, x1), x1))
    • (x1[5] ≥ 0∧x0[5] ≥ 0 ⇒ (UIncreasing(COND_1429_2_MAIN_INVOKEMETHOD(>=(x1[5], x0[5]), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5]))), ≥)∧[(-2)bni_51 + (-1)Bound*bni_51] + [(-1)bni_51]x0[5] + [bni_51]x1[5] ≥ 0∧[(-1)bso_52] ≥ 0)
    • (x1[5] ≥ 0∧x0[5] ≥ 0 ⇒ (UIncreasing(COND_1429_2_MAIN_INVOKEMETHOD(>=(x1[5], x0[5]), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5]))), ≥)∧[(-2)bni_51 + (-1)Bound*bni_51] + [bni_51]x0[5] + [bni_51]x1[5] ≥ 0∧[(-1)bso_52] ≥ 0)

  • COND_1429_2_MAIN_INVOKEMETHOD(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0, x1), x1)) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1, x0))
    • ([1] + x1[3] ≥ 0∧[1] + x0[3] + x1[3] ≥ 0∧x0[3] ≥ 0∧x1[3] ≥ 0 ⇒ (UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[6], x0[6]))), ≥)∧[(-1)Bound*bni_53] + [bni_53]x0[3] + [bni_53]x1[3] ≥ 0∧[1 + (-1)bso_54] ≥ 0)
    • (x1[7] ≥ 0∧x0[7] + x1[7] ≥ 0∧x0[7] ≥ 0 ⇒ (UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[6], x0[6]))), ≥)∧[(-1)bni_53 + (-1)Bound*bni_53] + [bni_53]x0[7] + [bni_53]x1[7] ≥ 0∧[1 + (-1)bso_54] ≥ 0)

  • 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0, x1), x1)) → COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1, 0), <(x1, x0)), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0, x1), x1))
    • (x1[7] ≥ 0∧x0[7] ≥ 0 ⇒ (UIncreasing(COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]))), ≥)∧[(-1)bni_55 + (-1)Bound*bni_55] + [bni_55]x1[7] ≥ 0∧[(-1)bso_56] ≥ 0)

  • COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0, x1), x1)) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0, x1), x1), x1))
    • (x1[3] ≥ 0∧x0[3] + x1[3] ≥ 0∧x0[3] ≥ 0∧[1] + [2]x0[3] + x1[3] ≥ 0∧x0[3] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8]))), ≥)∧[(-1)bni_57 + (-1)Bound*bni_57] + [bni_57]x0[3] + [bni_57]x1[3] ≥ 0∧[(-1)bso_58] ≥ 0)
    • (x1[3] ≥ 0∧[1] + x1[3] + x0[3] ≥ 0∧x0[3] ≥ 0∧[2] + [2]x1[3] + x0[3] ≥ 0∧[1] + x1[3] + x0[3] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8]))), ≥)∧[(-1)bni_57 + (-1)Bound*bni_57] + [bni_57]x1[3] ≥ 0∧[(-1)bso_58] ≥ 0)
    • (x1[7] ≥ 0∧x0[7] + x1[7] ≥ 0∧[1] + [2]x0[7] + x1[7] ≥ 0∧x0[7] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8]1, x1[8]1), x1[8]1), x1[8]1))), ≥)∧[(-1)bni_57 + (-1)Bound*bni_57] + [bni_57]x0[7] + [bni_57]x1[7] ≥ 0∧[(-1)bso_58] ≥ 0)
    • (x1[7] ≥ 0∧[2] + [2]x1[7] + x0[7] ≥ 0∧[1] + x1[7] + x0[7] ≥ 0∧x0[7] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8]1, x1[8]1), x1[8]1), x1[8]1))), ≥)∧[(-1)bni_57 + (-1)Bound*bni_57] + [bni_57]x1[7] ≥ 0∧[(-1)bso_58] ≥ 0)

  • 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0, x0)) → COND_1337_1_MAIN_INVOKEMETHOD3(>(x0, 0), 1337_0_gcd_EQ(x0, x0))
    • (x0[9] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD3(>(x0[9], 0), 1337_0_gcd_EQ(x0[9], x0[9]))), ≥)∧[(-2)bni_59 + (-1)Bound*bni_59] + [bni_59]x0[9] ≥ 0∧[(-1)bso_60] ≥ 0)

  • COND_1337_1_MAIN_INVOKEMETHOD3(TRUE, 1337_0_gcd_EQ(x0, x0)) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0, 0))
    • (0 ≥ 0∧x0[5] ≥ 0 ⇒ (UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10], 0))), ≥)∧[(-2)bni_61 + (-1)Bound*bni_61] + [bni_61]x0[5] ≥ 0∧[(-1)bso_62] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(1337_1_main_InvokeMethod(x1)) = [-1] + [-1]x1   
POL(1337_0_gcd_EQ(x1, x2)) = [2] + [-1]x1   
POL(0) = 0   
POL(1351_0_main_Return) = [-1]   
POL(1337_1_MAIN_INVOKEMETHOD(x1)) = [-1] + [-1]x1   
POL(COND_1337_1_MAIN_INVOKEMETHOD(x1, x2)) = [-1] + [-1]x2 + [-1]x1   
POL(&&(x1, x2)) = 0   
POL(!(x1)) = [-1]   
POL(=(x1, x2)) = [-1]   
POL(<=(x1, x2)) = [-1]   
POL(<(x1, x2)) = [-1]   
POL(>(x1, x2)) = [-1]   
POL(COND_1337_1_MAIN_INVOKEMETHOD2(x1, x2)) = [-1] + [-1]x2 + [2]x1   
POL(1429_2_MAIN_INVOKEMETHOD(x1)) = [-1] + [-1]x1   
POL(1429_1_gcd_InvokeMethod(x1, x2)) = [-1]x2 + [-1]x1   
POL(1429_0_mod_LE(x1, x2)) = [-1]   
POL(COND_1429_2_MAIN_INVOKEMETHOD(x1, x2)) = [-1] + [-1]x2   
POL(>=(x1, x2)) = [-1]   
POL(COND_1429_2_MAIN_INVOKEMETHOD1(x1, x2)) = [-1] + [-1]x2 + [-1]x1   
POL(-(x1, x2)) = x1 + [-1]x2   
POL(COND_1337_1_MAIN_INVOKEMETHOD3(x1, x2)) = [-1] + [-1]x2   

The following pairs are in P>:

COND_1429_2_MAIN_INVOKEMETHOD(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[6], x1[6]), x1[6])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[6], x0[6]))

The following pairs are in Pbound:

1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[2], x1[2])) → COND_1337_1_MAIN_INVOKEMETHOD(&&(<(x1[2], 0), >(x0[2], 0)), 1337_0_gcd_EQ(x0[2], x1[2]))
1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[3], x1[3])) → COND_1337_1_MAIN_INVOKEMETHOD2(&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3]))), 1337_0_gcd_EQ(x0[3], x1[3]))
COND_1337_1_MAIN_INVOKEMETHOD2(TRUE, 1337_0_gcd_EQ(x0[4], x1[4])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4]))
COND_1429_2_MAIN_INVOKEMETHOD(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[6], x1[6]), x1[6])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[6], x0[6]))
1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])) → COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]))
COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8]))
1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[9], x0[9])) → COND_1337_1_MAIN_INVOKEMETHOD3(>(x0[9], 0), 1337_0_gcd_EQ(x0[9], x0[9]))
COND_1337_1_MAIN_INVOKEMETHOD3(TRUE, 1337_0_gcd_EQ(x0[10], x0[10])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10], 0))

The following pairs are in P:

1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[0], x1[0])) → COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0]))
COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0))
1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[2], x1[2])) → COND_1337_1_MAIN_INVOKEMETHOD(&&(<(x1[2], 0), >(x0[2], 0)), 1337_0_gcd_EQ(x0[2], x1[2]))
1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[3], x1[3])) → COND_1337_1_MAIN_INVOKEMETHOD2(&&(&&(>(x1[3], 0), >(x0[3], 0)), !(=(x0[3], x1[3]))), 1337_0_gcd_EQ(x0[3], x1[3]))
COND_1337_1_MAIN_INVOKEMETHOD2(TRUE, 1337_0_gcd_EQ(x0[4], x1[4])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4]))
1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])) → COND_1429_2_MAIN_INVOKEMETHOD(>=(x1[5], x0[5]), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5]))
1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])) → COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]))
COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8]))
1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[9], x0[9])) → COND_1337_1_MAIN_INVOKEMETHOD3(>(x0[9], 0), 1337_0_gcd_EQ(x0[9], x0[9]))
COND_1337_1_MAIN_INVOKEMETHOD3(TRUE, 1337_0_gcd_EQ(x0[10], x0[10])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10], 0))

At least the following rules have been oriented under context sensitive arithmetic replacement:

&&(TRUE, TRUE)1TRUE1
&&(TRUE, FALSE)1FALSE1
&&(FALSE, TRUE)1FALSE1
&&(FALSE, FALSE)1FALSE1

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


The ITRS R consists of the following rules:
1337_1_main_InvokeMethod(1337_0_gcd_EQ(x0, 0)) → 1351_0_main_Return

The integer pair graph contains the following rules and edges:
(0): 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[0], x1[0])) → COND_1337_1_MAIN_INVOKEMETHOD(!(x1[0] = 0) && x0[0] <= 0, 1337_0_gcd_EQ(x0[0], x1[0]))
(1): COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0))
(2): 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[2], x1[2])) → COND_1337_1_MAIN_INVOKEMETHOD(x1[2] < 0 && x0[2] > 0, 1337_0_gcd_EQ(x0[2], x1[2]))
(3): 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[3], x1[3])) → COND_1337_1_MAIN_INVOKEMETHOD2(x1[3] > 0 && x0[3] > 0 && !(x0[3] = x1[3]), 1337_0_gcd_EQ(x0[3], x1[3]))
(4): COND_1337_1_MAIN_INVOKEMETHOD2(TRUE, 1337_0_gcd_EQ(x0[4], x1[4])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4]))
(5): 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])) → COND_1429_2_MAIN_INVOKEMETHOD(x1[5] >= x0[5], 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5]))
(7): 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])) → COND_1429_2_MAIN_INVOKEMETHOD1(x1[7] > 0 && x1[7] < x0[7], 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]))
(8): COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8] - x1[8], x1[8]), x1[8]))
(9): 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[9], x0[9])) → COND_1337_1_MAIN_INVOKEMETHOD3(x0[9] > 0, 1337_0_gcd_EQ(x0[9], x0[9]))
(10): COND_1337_1_MAIN_INVOKEMETHOD3(TRUE, 1337_0_gcd_EQ(x0[10], x0[10])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10], 0))

(1) -> (0), if ((1337_0_gcd_EQ(x1[1], 0) →* 1337_0_gcd_EQ(x0[0], x1[0])))


(10) -> (0), if ((1337_0_gcd_EQ(x0[10], 0) →* 1337_0_gcd_EQ(x0[0], x1[0])))


(0) -> (1), if ((!(x1[0] = 0) && x0[0] <= 0* TRUE)∧(1337_0_gcd_EQ(x0[0], x1[0]) →* 1337_0_gcd_EQ(x0[1], x1[1])))


(2) -> (1), if ((x1[2] < 0 && x0[2] > 0* TRUE)∧(1337_0_gcd_EQ(x0[2], x1[2]) →* 1337_0_gcd_EQ(x0[1], x1[1])))


(1) -> (2), if ((1337_0_gcd_EQ(x1[1], 0) →* 1337_0_gcd_EQ(x0[2], x1[2])))


(10) -> (2), if ((1337_0_gcd_EQ(x0[10], 0) →* 1337_0_gcd_EQ(x0[2], x1[2])))


(1) -> (3), if ((1337_0_gcd_EQ(x1[1], 0) →* 1337_0_gcd_EQ(x0[3], x1[3])))


(10) -> (3), if ((1337_0_gcd_EQ(x0[10], 0) →* 1337_0_gcd_EQ(x0[3], x1[3])))


(3) -> (4), if ((x1[3] > 0 && x0[3] > 0 && !(x0[3] = x1[3]) →* TRUE)∧(1337_0_gcd_EQ(x0[3], x1[3]) →* 1337_0_gcd_EQ(x0[4], x1[4])))


(4) -> (5), if ((1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4]) →* 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])))


(8) -> (5), if ((1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8] - x1[8], x1[8]), x1[8]) →* 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[5], x1[5]), x1[5])))


(4) -> (7), if ((1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[4], x1[4]), x1[4]) →* 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])))


(8) -> (7), if ((1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8] - x1[8], x1[8]), x1[8]) →* 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])))


(7) -> (8), if ((x1[7] > 0 && x1[7] < x0[7]* TRUE)∧(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]) →* 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8])))


(1) -> (9), if ((1337_0_gcd_EQ(x1[1], 0) →* 1337_0_gcd_EQ(x0[9], x0[9])))


(10) -> (9), if ((1337_0_gcd_EQ(x0[10], 0) →* 1337_0_gcd_EQ(x0[9], x0[9])))


(9) -> (10), if ((x0[9] > 0* TRUE)∧(1337_0_gcd_EQ(x0[9], x0[9]) →* 1337_0_gcd_EQ(x0[10], x0[10])))



The set Q consists of the following terms:
1337_1_main_InvokeMethod(1337_0_gcd_EQ(x0, 0))

(7) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 3 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


The ITRS R consists of the following rules:
1337_1_main_InvokeMethod(1337_0_gcd_EQ(x0, 0)) → 1351_0_main_Return

The integer pair graph contains the following rules and edges:
(8): COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8] - x1[8], x1[8]), x1[8]))
(7): 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])) → COND_1429_2_MAIN_INVOKEMETHOD1(x1[7] > 0 && x1[7] < x0[7], 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]))

(8) -> (7), if ((1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8] - x1[8], x1[8]), x1[8]) →* 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])))


(7) -> (8), if ((x1[7] > 0 && x1[7] < x0[7]* TRUE)∧(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]) →* 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8])))



The set Q consists of the following terms:
1337_1_main_InvokeMethod(1337_0_gcd_EQ(x0, 0))

(10) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(11) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


R is empty.

The integer pair graph contains the following rules and edges:
(8): COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8] - x1[8], x1[8]), x1[8]))
(7): 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])) → COND_1429_2_MAIN_INVOKEMETHOD1(x1[7] > 0 && x1[7] < x0[7], 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]))

(8) -> (7), if ((1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8] - x1[8], x1[8]), x1[8]) →* 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])))


(7) -> (8), if ((x1[7] > 0 && x1[7] < x0[7]* TRUE)∧(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]) →* 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8])))



The set Q consists of the following terms:
1337_1_main_InvokeMethod(1337_0_gcd_EQ(x0, 0))

(12) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8])) the following chains were created:
  • We consider the chain 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])) → COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])), COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8])), 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])) → COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])) which results in the following constraint:

    (1)    (&&(>(x1[7], 0), <(x1[7], x0[7]))=TRUE1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8])∧1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8])=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7]1, x1[7]1), x1[7]1) ⇒ COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8]))≥NonInfC∧COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8]))≥1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8]))∧(UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8]))), ≥))



    We simplified constraint (1) using rules (I), (II), (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>(x1[7], 0)=TRUE<(x1[7], x0[7])=TRUECOND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]))≥NonInfC∧COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]))≥1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[7], x1[7]), x1[7]), x1[7]))∧(UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8]))), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x1[7] + [-1] ≥ 0∧x0[7] + [-1] + [-1]x1[7] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8]))), ≥)∧[bni_17 + (-1)Bound*bni_17] + [bni_17]x1[7] + [bni_17]x0[7] ≥ 0∧[-1 + (-1)bso_18] + x1[7] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x1[7] + [-1] ≥ 0∧x0[7] + [-1] + [-1]x1[7] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8]))), ≥)∧[bni_17 + (-1)Bound*bni_17] + [bni_17]x1[7] + [bni_17]x0[7] ≥ 0∧[-1 + (-1)bso_18] + x1[7] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x1[7] + [-1] ≥ 0∧x0[7] + [-1] + [-1]x1[7] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8]))), ≥)∧[bni_17 + (-1)Bound*bni_17] + [bni_17]x1[7] + [bni_17]x0[7] ≥ 0∧[-1 + (-1)bso_18] + x1[7] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x1[7] ≥ 0∧x0[7] + [-2] + [-1]x1[7] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8]))), ≥)∧[(2)bni_17 + (-1)Bound*bni_17] + [bni_17]x1[7] + [bni_17]x0[7] ≥ 0∧[(-1)bso_18] + x1[7] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (7)    (x1[7] ≥ 0∧x0[7] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8]))), ≥)∧[(4)bni_17 + (-1)Bound*bni_17] + [(2)bni_17]x1[7] + [bni_17]x0[7] ≥ 0∧[(-1)bso_18] + x1[7] ≥ 0)







For Pair 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])) → COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])) the following chains were created:
  • We consider the chain 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])) → COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])), COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8])) which results in the following constraint:

    (8)    (&&(>(x1[7], 0), <(x1[7], x0[7]))=TRUE1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])=1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8]) ⇒ 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]))≥NonInfC∧1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]))≥COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]))∧(UIncreasing(COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]))), ≥))



    We simplified constraint (8) using rules (I), (II), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (9)    (>(x1[7], 0)=TRUE<(x1[7], x0[7])=TRUE1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]))≥NonInfC∧1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]))≥COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]))∧(UIncreasing(COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]))), ≥))



    We simplified constraint (9) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (10)    (x1[7] + [-1] ≥ 0∧x0[7] + [-1] + [-1]x1[7] ≥ 0 ⇒ (UIncreasing(COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]))), ≥)∧[(2)bni_19 + (-1)Bound*bni_19] + [bni_19]x1[7] + [bni_19]x0[7] ≥ 0∧[1 + (-1)bso_20] ≥ 0)



    We simplified constraint (10) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (11)    (x1[7] + [-1] ≥ 0∧x0[7] + [-1] + [-1]x1[7] ≥ 0 ⇒ (UIncreasing(COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]))), ≥)∧[(2)bni_19 + (-1)Bound*bni_19] + [bni_19]x1[7] + [bni_19]x0[7] ≥ 0∧[1 + (-1)bso_20] ≥ 0)



    We simplified constraint (11) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (12)    (x1[7] + [-1] ≥ 0∧x0[7] + [-1] + [-1]x1[7] ≥ 0 ⇒ (UIncreasing(COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]))), ≥)∧[(2)bni_19 + (-1)Bound*bni_19] + [bni_19]x1[7] + [bni_19]x0[7] ≥ 0∧[1 + (-1)bso_20] ≥ 0)



    We simplified constraint (12) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (13)    (x1[7] ≥ 0∧x0[7] + [-2] + [-1]x1[7] ≥ 0 ⇒ (UIncreasing(COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]))), ≥)∧[(3)bni_19 + (-1)Bound*bni_19] + [bni_19]x1[7] + [bni_19]x0[7] ≥ 0∧[1 + (-1)bso_20] ≥ 0)



    We simplified constraint (13) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (14)    (x1[7] ≥ 0∧x0[7] ≥ 0 ⇒ (UIncreasing(COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]))), ≥)∧[(5)bni_19 + (-1)Bound*bni_19] + [(2)bni_19]x1[7] + [bni_19]x0[7] ≥ 0∧[1 + (-1)bso_20] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8]))
    • (x1[7] ≥ 0∧x0[7] ≥ 0 ⇒ (UIncreasing(1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8]))), ≥)∧[(4)bni_17 + (-1)Bound*bni_17] + [(2)bni_17]x1[7] + [bni_17]x0[7] ≥ 0∧[(-1)bso_18] + x1[7] ≥ 0)

  • 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])) → COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]))
    • (x1[7] ≥ 0∧x0[7] ≥ 0 ⇒ (UIncreasing(COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]))), ≥)∧[(5)bni_19 + (-1)Bound*bni_19] + [(2)bni_19]x1[7] + [bni_19]x0[7] ≥ 0∧[1 + (-1)bso_20] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(COND_1429_2_MAIN_INVOKEMETHOD1(x1, x2)) = [-1] + [-1]x2 + [-1]x1   
POL(1429_1_gcd_InvokeMethod(x1, x2)) = [-1] + x1   
POL(1429_0_mod_LE(x1, x2)) = [-1] + [-1]x2 + [-1]x1   
POL(1429_2_MAIN_INVOKEMETHOD(x1)) = [-1]x1   
POL(-(x1, x2)) = x1 + [-1]x2   
POL(&&(x1, x2)) = 0   
POL(>(x1, x2)) = [-1]   
POL(0) = 0   
POL(<(x1, x2)) = [-1]   

The following pairs are in P>:

1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])) → COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]))

The following pairs are in Pbound:

COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8]))
1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7])) → COND_1429_2_MAIN_INVOKEMETHOD1(&&(>(x1[7], 0), <(x1[7], x0[7])), 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[7], x1[7]), x1[7]))

The following pairs are in P:

COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(-(x0[8], x1[8]), x1[8]), x1[8]))

At least the following rules have been oriented under context sensitive arithmetic replacement:

&&(TRUE, TRUE)1TRUE1
&&(TRUE, FALSE)1FALSE1
&&(FALSE, TRUE)1FALSE1
&&(FALSE, FALSE)1FALSE1

(13) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(8): COND_1429_2_MAIN_INVOKEMETHOD1(TRUE, 1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8], x1[8]), x1[8])) → 1429_2_MAIN_INVOKEMETHOD(1429_1_gcd_InvokeMethod(1429_0_mod_LE(x0[8] - x1[8], x1[8]), x1[8]))


The set Q consists of the following terms:
1337_1_main_InvokeMethod(1337_0_gcd_EQ(x0, 0))

(14) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(15) TRUE

(16) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


The ITRS R consists of the following rules:
1337_1_main_InvokeMethod(1337_0_gcd_EQ(x0, 0)) → 1351_0_main_Return

The integer pair graph contains the following rules and edges:
(10): COND_1337_1_MAIN_INVOKEMETHOD3(TRUE, 1337_0_gcd_EQ(x0[10], x0[10])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10], 0))
(9): 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[9], x0[9])) → COND_1337_1_MAIN_INVOKEMETHOD3(x0[9] > 0, 1337_0_gcd_EQ(x0[9], x0[9]))
(2): 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[2], x1[2])) → COND_1337_1_MAIN_INVOKEMETHOD(x1[2] < 0 && x0[2] > 0, 1337_0_gcd_EQ(x0[2], x1[2]))
(1): COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0))
(0): 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[0], x1[0])) → COND_1337_1_MAIN_INVOKEMETHOD(!(x1[0] = 0) && x0[0] <= 0, 1337_0_gcd_EQ(x0[0], x1[0]))

(1) -> (0), if ((1337_0_gcd_EQ(x1[1], 0) →* 1337_0_gcd_EQ(x0[0], x1[0])))


(10) -> (0), if ((1337_0_gcd_EQ(x0[10], 0) →* 1337_0_gcd_EQ(x0[0], x1[0])))


(0) -> (1), if ((!(x1[0] = 0) && x0[0] <= 0* TRUE)∧(1337_0_gcd_EQ(x0[0], x1[0]) →* 1337_0_gcd_EQ(x0[1], x1[1])))


(2) -> (1), if ((x1[2] < 0 && x0[2] > 0* TRUE)∧(1337_0_gcd_EQ(x0[2], x1[2]) →* 1337_0_gcd_EQ(x0[1], x1[1])))


(1) -> (2), if ((1337_0_gcd_EQ(x1[1], 0) →* 1337_0_gcd_EQ(x0[2], x1[2])))


(10) -> (2), if ((1337_0_gcd_EQ(x0[10], 0) →* 1337_0_gcd_EQ(x0[2], x1[2])))


(1) -> (9), if ((1337_0_gcd_EQ(x1[1], 0) →* 1337_0_gcd_EQ(x0[9], x0[9])))


(10) -> (9), if ((1337_0_gcd_EQ(x0[10], 0) →* 1337_0_gcd_EQ(x0[9], x0[9])))


(9) -> (10), if ((x0[9] > 0* TRUE)∧(1337_0_gcd_EQ(x0[9], x0[9]) →* 1337_0_gcd_EQ(x0[10], x0[10])))



The set Q consists of the following terms:
1337_1_main_InvokeMethod(1337_0_gcd_EQ(x0, 0))

(17) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(18) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


R is empty.

The integer pair graph contains the following rules and edges:
(10): COND_1337_1_MAIN_INVOKEMETHOD3(TRUE, 1337_0_gcd_EQ(x0[10], x0[10])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10], 0))
(9): 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[9], x0[9])) → COND_1337_1_MAIN_INVOKEMETHOD3(x0[9] > 0, 1337_0_gcd_EQ(x0[9], x0[9]))
(2): 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[2], x1[2])) → COND_1337_1_MAIN_INVOKEMETHOD(x1[2] < 0 && x0[2] > 0, 1337_0_gcd_EQ(x0[2], x1[2]))
(1): COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0))
(0): 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[0], x1[0])) → COND_1337_1_MAIN_INVOKEMETHOD(!(x1[0] = 0) && x0[0] <= 0, 1337_0_gcd_EQ(x0[0], x1[0]))

(1) -> (0), if ((1337_0_gcd_EQ(x1[1], 0) →* 1337_0_gcd_EQ(x0[0], x1[0])))


(10) -> (0), if ((1337_0_gcd_EQ(x0[10], 0) →* 1337_0_gcd_EQ(x0[0], x1[0])))


(0) -> (1), if ((!(x1[0] = 0) && x0[0] <= 0* TRUE)∧(1337_0_gcd_EQ(x0[0], x1[0]) →* 1337_0_gcd_EQ(x0[1], x1[1])))


(2) -> (1), if ((x1[2] < 0 && x0[2] > 0* TRUE)∧(1337_0_gcd_EQ(x0[2], x1[2]) →* 1337_0_gcd_EQ(x0[1], x1[1])))


(1) -> (2), if ((1337_0_gcd_EQ(x1[1], 0) →* 1337_0_gcd_EQ(x0[2], x1[2])))


(10) -> (2), if ((1337_0_gcd_EQ(x0[10], 0) →* 1337_0_gcd_EQ(x0[2], x1[2])))


(1) -> (9), if ((1337_0_gcd_EQ(x1[1], 0) →* 1337_0_gcd_EQ(x0[9], x0[9])))


(10) -> (9), if ((1337_0_gcd_EQ(x0[10], 0) →* 1337_0_gcd_EQ(x0[9], x0[9])))


(9) -> (10), if ((x0[9] > 0* TRUE)∧(1337_0_gcd_EQ(x0[9], x0[9]) →* 1337_0_gcd_EQ(x0[10], x0[10])))



The set Q consists of the following terms:
1337_1_main_InvokeMethod(1337_0_gcd_EQ(x0, 0))

(19) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair COND_1337_1_MAIN_INVOKEMETHOD3(TRUE, 1337_0_gcd_EQ(x0[10], x0[10])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10], 0)) the following chains were created:
  • We consider the chain COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0)), 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[9], x0[9])) → COND_1337_1_MAIN_INVOKEMETHOD3(>(x0[9], 0), 1337_0_gcd_EQ(x0[9], x0[9])), COND_1337_1_MAIN_INVOKEMETHOD3(TRUE, 1337_0_gcd_EQ(x0[10], x0[10])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10], 0)) which results in the following constraint:

    (1)    (1337_0_gcd_EQ(x1[1], 0)=1337_0_gcd_EQ(x0[9], x0[9])∧>(x0[9], 0)=TRUE1337_0_gcd_EQ(x0[9], x0[9])=1337_0_gcd_EQ(x0[10], x0[10]) ⇒ COND_1337_1_MAIN_INVOKEMETHOD3(TRUE, 1337_0_gcd_EQ(x0[10], x0[10]))≥NonInfC∧COND_1337_1_MAIN_INVOKEMETHOD3(TRUE, 1337_0_gcd_EQ(x0[10], x0[10]))≥1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10], 0))∧(UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10], 0))), ≥))



    We solved constraint (1) using rules (I), (II), (III), (IDP_CONSTANT_FOLD).
  • We consider the chain COND_1337_1_MAIN_INVOKEMETHOD3(TRUE, 1337_0_gcd_EQ(x0[10], x0[10])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10], 0)), 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[9], x0[9])) → COND_1337_1_MAIN_INVOKEMETHOD3(>(x0[9], 0), 1337_0_gcd_EQ(x0[9], x0[9])), COND_1337_1_MAIN_INVOKEMETHOD3(TRUE, 1337_0_gcd_EQ(x0[10], x0[10])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10], 0)) which results in the following constraint:

    (2)    (1337_0_gcd_EQ(x0[10], 0)=1337_0_gcd_EQ(x0[9], x0[9])∧>(x0[9], 0)=TRUE1337_0_gcd_EQ(x0[9], x0[9])=1337_0_gcd_EQ(x0[10]1, x0[10]1) ⇒ COND_1337_1_MAIN_INVOKEMETHOD3(TRUE, 1337_0_gcd_EQ(x0[10]1, x0[10]1))≥NonInfC∧COND_1337_1_MAIN_INVOKEMETHOD3(TRUE, 1337_0_gcd_EQ(x0[10]1, x0[10]1))≥1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10]1, 0))∧(UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10]1, 0))), ≥))



    We solved constraint (2) using rules (I), (II), (III), (IDP_CONSTANT_FOLD).




For Pair 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[9], x0[9])) → COND_1337_1_MAIN_INVOKEMETHOD3(>(x0[9], 0), 1337_0_gcd_EQ(x0[9], x0[9])) the following chains were created:
  • We consider the chain 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[9], x0[9])) → COND_1337_1_MAIN_INVOKEMETHOD3(>(x0[9], 0), 1337_0_gcd_EQ(x0[9], x0[9])), COND_1337_1_MAIN_INVOKEMETHOD3(TRUE, 1337_0_gcd_EQ(x0[10], x0[10])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10], 0)) which results in the following constraint:

    (3)    (>(x0[9], 0)=TRUE1337_0_gcd_EQ(x0[9], x0[9])=1337_0_gcd_EQ(x0[10], x0[10]) ⇒ 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[9], x0[9]))≥NonInfC∧1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[9], x0[9]))≥COND_1337_1_MAIN_INVOKEMETHOD3(>(x0[9], 0), 1337_0_gcd_EQ(x0[9], x0[9]))∧(UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD3(>(x0[9], 0), 1337_0_gcd_EQ(x0[9], x0[9]))), ≥))



    We simplified constraint (3) using rules (I), (II), (IV) which results in the following new constraint:

    (4)    (>(x0[9], 0)=TRUE1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[9], x0[9]))≥NonInfC∧1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[9], x0[9]))≥COND_1337_1_MAIN_INVOKEMETHOD3(>(x0[9], 0), 1337_0_gcd_EQ(x0[9], x0[9]))∧(UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD3(>(x0[9], 0), 1337_0_gcd_EQ(x0[9], x0[9]))), ≥))



    We simplified constraint (4) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (5)    (x0[9] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD3(>(x0[9], 0), 1337_0_gcd_EQ(x0[9], x0[9]))), ≥)∧[(3)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[9] ≥ 0∧[1 + (-1)bso_14] ≥ 0)



    We simplified constraint (5) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (6)    (x0[9] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD3(>(x0[9], 0), 1337_0_gcd_EQ(x0[9], x0[9]))), ≥)∧[(3)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[9] ≥ 0∧[1 + (-1)bso_14] ≥ 0)



    We simplified constraint (6) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (7)    (x0[9] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD3(>(x0[9], 0), 1337_0_gcd_EQ(x0[9], x0[9]))), ≥)∧[(3)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[9] ≥ 0∧[1 + (-1)bso_14] ≥ 0)



    We simplified constraint (7) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (8)    (x0[9] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD3(>(x0[9], 0), 1337_0_gcd_EQ(x0[9], x0[9]))), ≥)∧[(4)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[9] ≥ 0∧[1 + (-1)bso_14] ≥ 0)







For Pair 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[2], x1[2])) → COND_1337_1_MAIN_INVOKEMETHOD(&&(<(x1[2], 0), >(x0[2], 0)), 1337_0_gcd_EQ(x0[2], x1[2])) the following chains were created:
  • We consider the chain 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[2], x1[2])) → COND_1337_1_MAIN_INVOKEMETHOD(&&(<(x1[2], 0), >(x0[2], 0)), 1337_0_gcd_EQ(x0[2], x1[2])), COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0)) which results in the following constraint:

    (9)    (&&(<(x1[2], 0), >(x0[2], 0))=TRUE1337_0_gcd_EQ(x0[2], x1[2])=1337_0_gcd_EQ(x0[1], x1[1]) ⇒ 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[2], x1[2]))≥NonInfC∧1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[2], x1[2]))≥COND_1337_1_MAIN_INVOKEMETHOD(&&(<(x1[2], 0), >(x0[2], 0)), 1337_0_gcd_EQ(x0[2], x1[2]))∧(UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(<(x1[2], 0), >(x0[2], 0)), 1337_0_gcd_EQ(x0[2], x1[2]))), ≥))



    We simplified constraint (9) using rules (I), (II), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (10)    (<(x1[2], 0)=TRUE>(x0[2], 0)=TRUE1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[2], x1[2]))≥NonInfC∧1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[2], x1[2]))≥COND_1337_1_MAIN_INVOKEMETHOD(&&(<(x1[2], 0), >(x0[2], 0)), 1337_0_gcd_EQ(x0[2], x1[2]))∧(UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(<(x1[2], 0), >(x0[2], 0)), 1337_0_gcd_EQ(x0[2], x1[2]))), ≥))



    We simplified constraint (10) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (11)    ([-1] + [-1]x1[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(<(x1[2], 0), >(x0[2], 0)), 1337_0_gcd_EQ(x0[2], x1[2]))), ≥)∧[(3)bni_15 + (-1)Bound*bni_15] + [(2)bni_15]x1[2] + [(-1)bni_15]x0[2] ≥ 0∧[3 + (-1)bso_16] ≥ 0)



    We simplified constraint (11) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (12)    ([-1] + [-1]x1[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(<(x1[2], 0), >(x0[2], 0)), 1337_0_gcd_EQ(x0[2], x1[2]))), ≥)∧[(3)bni_15 + (-1)Bound*bni_15] + [(2)bni_15]x1[2] + [(-1)bni_15]x0[2] ≥ 0∧[3 + (-1)bso_16] ≥ 0)



    We simplified constraint (12) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (13)    ([-1] + [-1]x1[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(<(x1[2], 0), >(x0[2], 0)), 1337_0_gcd_EQ(x0[2], x1[2]))), ≥)∧[(3)bni_15 + (-1)Bound*bni_15] + [(2)bni_15]x1[2] + [(-1)bni_15]x0[2] ≥ 0∧[3 + (-1)bso_16] ≥ 0)



    We simplified constraint (13) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (14)    (x1[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(<(x1[2], 0), >(x0[2], 0)), 1337_0_gcd_EQ(x0[2], x1[2]))), ≥)∧[bni_15 + (-1)Bound*bni_15] + [(-2)bni_15]x1[2] + [(-1)bni_15]x0[2] ≥ 0∧[3 + (-1)bso_16] ≥ 0)



    We simplified constraint (14) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (15)    (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(<(x1[2], 0), >(x0[2], 0)), 1337_0_gcd_EQ(x0[2], x1[2]))), ≥)∧[(-1)Bound*bni_15] + [(-2)bni_15]x1[2] + [(-1)bni_15]x0[2] ≥ 0∧[3 + (-1)bso_16] ≥ 0)







For Pair COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0)) the following chains were created:
  • We consider the chain COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0)), 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[0], x1[0])) → COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0])), COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0)) which results in the following constraint:

    (16)    (1337_0_gcd_EQ(x1[1], 0)=1337_0_gcd_EQ(x0[0], x1[0])∧&&(!(=(x1[0], 0)), <=(x0[0], 0))=TRUE1337_0_gcd_EQ(x0[0], x1[0])=1337_0_gcd_EQ(x0[1]1, x1[1]1) ⇒ COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1]1, x1[1]1))≥NonInfC∧COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1]1, x1[1]1))≥1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1]1, 0))∧(UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1]1, 0))), ≥))



    We solved constraint (16) using rules (I), (II), (III), (IDP_CONSTANT_FOLD), (IDP_BOOLEAN).
  • We consider the chain COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0)), 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[2], x1[2])) → COND_1337_1_MAIN_INVOKEMETHOD(&&(<(x1[2], 0), >(x0[2], 0)), 1337_0_gcd_EQ(x0[2], x1[2])), COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0)) which results in the following constraint:

    (17)    (1337_0_gcd_EQ(x1[1], 0)=1337_0_gcd_EQ(x0[2], x1[2])∧&&(<(x1[2], 0), >(x0[2], 0))=TRUE1337_0_gcd_EQ(x0[2], x1[2])=1337_0_gcd_EQ(x0[1]1, x1[1]1) ⇒ COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1]1, x1[1]1))≥NonInfC∧COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1]1, x1[1]1))≥1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1]1, 0))∧(UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1]1, 0))), ≥))



    We solved constraint (17) using rules (I), (II), (III), (IDP_CONSTANT_FOLD), (IDP_BOOLEAN).
  • We consider the chain COND_1337_1_MAIN_INVOKEMETHOD3(TRUE, 1337_0_gcd_EQ(x0[10], x0[10])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10], 0)), 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[0], x1[0])) → COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0])), COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0)) which results in the following constraint:

    (18)    (1337_0_gcd_EQ(x0[10], 0)=1337_0_gcd_EQ(x0[0], x1[0])∧&&(!(=(x1[0], 0)), <=(x0[0], 0))=TRUE1337_0_gcd_EQ(x0[0], x1[0])=1337_0_gcd_EQ(x0[1], x1[1]) ⇒ COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1]))≥NonInfC∧COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1]))≥1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0))∧(UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0))), ≥))



    We solved constraint (18) using rules (I), (II), (III), (IDP_CONSTANT_FOLD), (IDP_BOOLEAN).
  • We consider the chain COND_1337_1_MAIN_INVOKEMETHOD3(TRUE, 1337_0_gcd_EQ(x0[10], x0[10])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10], 0)), 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[2], x1[2])) → COND_1337_1_MAIN_INVOKEMETHOD(&&(<(x1[2], 0), >(x0[2], 0)), 1337_0_gcd_EQ(x0[2], x1[2])), COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0)) which results in the following constraint:

    (19)    (1337_0_gcd_EQ(x0[10], 0)=1337_0_gcd_EQ(x0[2], x1[2])∧&&(<(x1[2], 0), >(x0[2], 0))=TRUE1337_0_gcd_EQ(x0[2], x1[2])=1337_0_gcd_EQ(x0[1], x1[1]) ⇒ COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1]))≥NonInfC∧COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1]))≥1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0))∧(UIncreasing(1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0))), ≥))



    We solved constraint (19) using rules (I), (II), (III), (IDP_CONSTANT_FOLD), (IDP_BOOLEAN).




For Pair 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[0], x1[0])) → COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0])) the following chains were created:
  • We consider the chain 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[0], x1[0])) → COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0])), COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0)) which results in the following constraint:

    (20)    (&&(!(=(x1[0], 0)), <=(x0[0], 0))=TRUE1337_0_gcd_EQ(x0[0], x1[0])=1337_0_gcd_EQ(x0[1], x1[1]) ⇒ 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[0], x1[0]))≥NonInfC∧1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[0], x1[0]))≥COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0]))∧(UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0]))), ≥))



    We simplified constraint (20) using rules (I), (II), (IV), (IDP_BOOLEAN) which results in the following new constraints:

    (21)    (<=(x0[0], 0)=TRUE<(x1[0], 0)=TRUE1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[0], x1[0]))≥NonInfC∧1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[0], x1[0]))≥COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0]))∧(UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0]))), ≥))


    (22)    (<=(x0[0], 0)=TRUE>(x1[0], 0)=TRUE1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[0], x1[0]))≥NonInfC∧1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[0], x1[0]))≥COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0]))∧(UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0]))), ≥))



    We simplified constraint (21) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (23)    ([-1]x0[0] ≥ 0∧[-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(3)bni_17 + (-1)Bound*bni_17] + [(2)bni_17]x1[0] + [(-1)bni_17]x0[0] ≥ 0∧[3 + (-1)bso_18] ≥ 0)



    We simplified constraint (22) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (24)    ([-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(3)bni_17 + (-1)Bound*bni_17] + [(2)bni_17]x1[0] + [(-1)bni_17]x0[0] ≥ 0∧[3 + (-1)bso_18] ≥ 0)



    We simplified constraint (23) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (25)    ([-1]x0[0] ≥ 0∧[-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(3)bni_17 + (-1)Bound*bni_17] + [(2)bni_17]x1[0] + [(-1)bni_17]x0[0] ≥ 0∧[3 + (-1)bso_18] ≥ 0)



    We simplified constraint (24) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (26)    ([-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(3)bni_17 + (-1)Bound*bni_17] + [(2)bni_17]x1[0] + [(-1)bni_17]x0[0] ≥ 0∧[3 + (-1)bso_18] ≥ 0)



    We simplified constraint (25) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (27)    ([-1]x0[0] ≥ 0∧[-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(3)bni_17 + (-1)Bound*bni_17] + [(2)bni_17]x1[0] + [(-1)bni_17]x0[0] ≥ 0∧[3 + (-1)bso_18] ≥ 0)



    We simplified constraint (26) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (28)    ([-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(3)bni_17 + (-1)Bound*bni_17] + [(2)bni_17]x1[0] + [(-1)bni_17]x0[0] ≥ 0∧[3 + (-1)bso_18] ≥ 0)



    We simplified constraint (27) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (29)    (x0[0] ≥ 0∧[-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(3)bni_17 + (-1)Bound*bni_17] + [(2)bni_17]x1[0] + [bni_17]x0[0] ≥ 0∧[3 + (-1)bso_18] ≥ 0)



    We simplified constraint (28) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (30)    (x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(3)bni_17 + (-1)Bound*bni_17] + [(2)bni_17]x1[0] + [bni_17]x0[0] ≥ 0∧[3 + (-1)bso_18] ≥ 0)



    We simplified constraint (29) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (31)    (x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[bni_17 + (-1)Bound*bni_17] + [(-2)bni_17]x1[0] + [bni_17]x0[0] ≥ 0∧[3 + (-1)bso_18] ≥ 0)



    We simplified constraint (30) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (32)    (x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(5)bni_17 + (-1)Bound*bni_17] + [(2)bni_17]x1[0] + [bni_17]x0[0] ≥ 0∧[3 + (-1)bso_18] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • COND_1337_1_MAIN_INVOKEMETHOD3(TRUE, 1337_0_gcd_EQ(x0[10], x0[10])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10], 0))

  • 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[9], x0[9])) → COND_1337_1_MAIN_INVOKEMETHOD3(>(x0[9], 0), 1337_0_gcd_EQ(x0[9], x0[9]))
    • (x0[9] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD3(>(x0[9], 0), 1337_0_gcd_EQ(x0[9], x0[9]))), ≥)∧[(4)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[9] ≥ 0∧[1 + (-1)bso_14] ≥ 0)

  • 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[2], x1[2])) → COND_1337_1_MAIN_INVOKEMETHOD(&&(<(x1[2], 0), >(x0[2], 0)), 1337_0_gcd_EQ(x0[2], x1[2]))
    • (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(<(x1[2], 0), >(x0[2], 0)), 1337_0_gcd_EQ(x0[2], x1[2]))), ≥)∧[(-1)Bound*bni_15] + [(-2)bni_15]x1[2] + [(-1)bni_15]x0[2] ≥ 0∧[3 + (-1)bso_16] ≥ 0)

  • COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0))

  • 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[0], x1[0])) → COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0]))
    • (x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[bni_17 + (-1)Bound*bni_17] + [(-2)bni_17]x1[0] + [bni_17]x0[0] ≥ 0∧[3 + (-1)bso_18] ≥ 0)
    • (x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0]))), ≥)∧[(5)bni_17 + (-1)Bound*bni_17] + [(2)bni_17]x1[0] + [bni_17]x0[0] ≥ 0∧[3 + (-1)bso_18] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(COND_1337_1_MAIN_INVOKEMETHOD3(x1, x2)) = [1] + x2   
POL(1337_0_gcd_EQ(x1, x2)) = [1] + [2]x2 + [-1]x1   
POL(1337_1_MAIN_INVOKEMETHOD(x1)) = [2] + x1   
POL(0) = 0   
POL(>(x1, x2)) = [-1]   
POL(COND_1337_1_MAIN_INVOKEMETHOD(x1, x2)) = [-1] + x2   
POL(&&(x1, x2)) = [-1]   
POL(<(x1, x2)) = [-1]   
POL(!(x1)) = [-1]   
POL(=(x1, x2)) = [-1]   
POL(<=(x1, x2)) = [-1]   

The following pairs are in P>:

COND_1337_1_MAIN_INVOKEMETHOD3(TRUE, 1337_0_gcd_EQ(x0[10], x0[10])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10], 0))
1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[9], x0[9])) → COND_1337_1_MAIN_INVOKEMETHOD3(>(x0[9], 0), 1337_0_gcd_EQ(x0[9], x0[9]))
1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[2], x1[2])) → COND_1337_1_MAIN_INVOKEMETHOD(&&(<(x1[2], 0), >(x0[2], 0)), 1337_0_gcd_EQ(x0[2], x1[2]))
COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0))
1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[0], x1[0])) → COND_1337_1_MAIN_INVOKEMETHOD(&&(!(=(x1[0], 0)), <=(x0[0], 0)), 1337_0_gcd_EQ(x0[0], x1[0]))

The following pairs are in Pbound:

COND_1337_1_MAIN_INVOKEMETHOD3(TRUE, 1337_0_gcd_EQ(x0[10], x0[10])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[10], 0))
1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[9], x0[9])) → COND_1337_1_MAIN_INVOKEMETHOD3(>(x0[9], 0), 1337_0_gcd_EQ(x0[9], x0[9]))
COND_1337_1_MAIN_INVOKEMETHOD(TRUE, 1337_0_gcd_EQ(x0[1], x1[1])) → 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x1[1], 0))

The following pairs are in P:
none

There are no usable rules.

(20) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(2): 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[2], x1[2])) → COND_1337_1_MAIN_INVOKEMETHOD(x1[2] < 0 && x0[2] > 0, 1337_0_gcd_EQ(x0[2], x1[2]))
(0): 1337_1_MAIN_INVOKEMETHOD(1337_0_gcd_EQ(x0[0], x1[0])) → COND_1337_1_MAIN_INVOKEMETHOD(!(x1[0] = 0) && x0[0] <= 0, 1337_0_gcd_EQ(x0[0], x1[0]))


The set Q consists of the following terms:
1337_1_main_InvokeMethod(1337_0_gcd_EQ(x0, 0))

(21) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(22) TRUE