(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: DuplicateNodes
public class DuplicateNodes {
public static void main(String[] args) {
Random.args = args;
Tree tree = Tree.createTree();

randomlyDuplicate(tree);
}

public static void randomlyDuplicate(Tree tree) {
Tree cur = tree;

while (cur != null) {
if (Random.random() > 42) {
cur.right = new Tree(cur.left, cur.right);
cur = cur.left;
} else {
cur.left = new Tree(cur.left, cur.right);
cur = cur.right;
}
}
}
}


public class List {
Tree value;
List next;

public List(Tree value, List next) {
this.value = value;
this.next = next;
}
}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


public class Tree {
Tree left;
Tree right;
Object value;

public Tree(Tree l, Tree r) {
this.left = l;
this.right = r;
}

public Tree() {
}

public static Tree createNode() {
if (Random.random() == 0) {
return null;
}
Tree result = new Tree();
return result;
}

public static Tree createTree() {
Tree result = createNode();
List list = new List(result, null);

int counter = Random.random();
while (counter > 0 && list != null) {
Tree first = list.value;
list = list.next;

if (first != null) {
Tree left = createNode();
Tree right = createNode();
first.left = left;
first.right = right;
list = new List(left, list);
list = new List(right, list);
}

counter--;
}

return result;
}

public static void main(String[] args) {
Random.args = args;
createTree();
}
}


(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
DuplicateNodes.main([Ljava/lang/String;)V: Graph of 56 nodes with 0 SCCs.

Tree.createTree()LTree;: Graph of 404 nodes with 1 SCC.

Tree.createNode()LTree;: Graph of 108 nodes with 0 SCCs.

DuplicateNodes.randomlyDuplicate(LTree;)V: Graph of 191 nodes with 1 SCC.


(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Logs:


Log for SCC 0:

Generated 115 rules for P and 73 rules for R.


Combined rules. Obtained 7 rules for P and 0 rules for R.


Filtered ground terms:


11176_0_randomlyDuplicate_Store(x1, x2) → 11176_0_randomlyDuplicate_Store(x2)
Tree(x1, x2, x3) → Tree(x2, x3)
8591_0_random_IntArithmetic(x1, x2, x3, x4) → 8591_0_random_IntArithmetic(x2, x3)
7873_0_random_ArrayAccess(x1, x2, x3) → 7873_0_random_ArrayAccess(x2, x3)
11172_0_randomlyDuplicate_Store(x1, x2) → 11172_0_randomlyDuplicate_Store(x2)

Filtered all free variables:


8591_1_randomlyDuplicate_InvokeMethod(x1, x2) → 8591_1_randomlyDuplicate_InvokeMethod(x2)
7873_1_randomlyDuplicate_InvokeMethod(x1, x2) → 7873_1_randomlyDuplicate_InvokeMethod(x2)
Cond_8591_1_randomlyDuplicate_InvokeMethod(x1, x2, x3) → Cond_8591_1_randomlyDuplicate_InvokeMethod(x1, x3)
Cond_8591_1_randomlyDuplicate_InvokeMethod1(x1, x2, x3) → Cond_8591_1_randomlyDuplicate_InvokeMethod1(x1, x3)
Cond_8591_1_randomlyDuplicate_InvokeMethod2(x1, x2, x3) → Cond_8591_1_randomlyDuplicate_InvokeMethod2(x1, x3)
Cond_8591_1_randomlyDuplicate_InvokeMethod3(x1, x2, x3) → Cond_8591_1_randomlyDuplicate_InvokeMethod3(x1, x3)
Cond_7873_1_randomlyDuplicate_InvokeMethod(x1, x2, x3) → Cond_7873_1_randomlyDuplicate_InvokeMethod(x1, x3)

Combined rules. Obtained 6 rules for P and 0 rules for R.


Finished conversion. Obtained 6 rules for P and 0 rules for R. System has no predefined symbols.




Log for SCC 1:

Generated 194 rules for P and 134 rules for R.


Combined rules. Obtained 8 rules for P and 20 rules for R.


Filtered ground terms:


10624_0_createTree_LE(x1, x2, x3, x4) → 10624_0_createTree_LE(x2, x3, x4)
List(x1, x2, x3) → List(x2, x3)
Tree(x1) → Tree
Cond_11302_1_createTree_InvokeMethod1(x1, x2, x3, x4, x5, x6) → Cond_11302_1_createTree_InvokeMethod1(x1, x3, x4)
3384_0_createNode_Return(x1, x2) → 3384_0_createNode_Return
11302_1_createTree_InvokeMethod(x1, x2, x3, x4, x5) → 11302_1_createTree_InvokeMethod(x1, x2, x3, x4)
Cond_11302_1_createTree_InvokeMethod(x1, x2, x3, x4, x5, x6) → Cond_11302_1_createTree_InvokeMethod(x1, x3, x4)
3032_0_createNode_Return(x1, x2) → 3032_0_createNode_Return
11302_0_createNode_InvokeMethod(x1) → 11302_0_createNode_InvokeMethod
Cond_11286_1_createTree_InvokeMethod1(x1, x2, x3, x4, x5, x6) → Cond_11286_1_createTree_InvokeMethod1(x1, x3, x4)
11286_1_createTree_InvokeMethod(x1, x2, x3, x4, x5) → 11286_1_createTree_InvokeMethod(x1, x2, x3, x4)
Cond_11286_1_createTree_InvokeMethod(x1, x2, x3, x4, x5, x6) → Cond_11286_1_createTree_InvokeMethod(x1, x3, x4)
Cond_10624_0_createTree_LE1(x1, x2, x3, x4, x5) → Cond_10624_0_createTree_LE1(x1, x3, x4, x5)
11286_0_createNode_InvokeMethod(x1) → 11286_0_createNode_InvokeMethod
11187_0_createNode_InvokeMethod(x1) → 11187_0_createNode_InvokeMethod
Cond_10624_0_createTree_LE(x1, x2, x3, x4, x5) → Cond_10624_0_createTree_LE(x1, x3, x4, x5)
3291_0_createNode_InvokeMethod(x1, x2) → 3291_0_createNode_InvokeMethod
java.lang.ArrayIndexOutOfBoundsException(x1) → java.lang.ArrayIndexOutOfBoundsException
java.lang.IndexOutOfBoundsException(x1) → java.lang.IndexOutOfBoundsException
2546_0_random_ArrayAccess(x1, x2, x3) → 2546_0_random_ArrayAccess(x2, x3)
Cond_2908_0_createNode_NE(x1, x2, x3) → Cond_2908_0_createNode_NE(x1, x3)
2908_0_createNode_NE(x1, x2) → 2908_0_createNode_NE(x2)
2636_0_random_IntArithmetic(x1, x2, x3, x4) → 2636_0_random_IntArithmetic(x2, x3)
3660_0_createNode_InvokeMethod(x1, x2) → 3660_0_createNode_InvokeMethod
java.lang.NullPointerException(x1) → java.lang.NullPointerException
3338_0_createNode_InvokeMethod(x1, x2) → 3338_0_createNode_InvokeMethod
11356_0_createTree_InvokeMethod(x1, x2, x3, x4, x5, x6) → 11356_0_createTree_InvokeMethod(x2, x3, x4, x5)
11338_0_createTree_InvokeMethod(x1, x2, x3, x4, x5, x6) → 11338_0_createTree_InvokeMethod(x2, x3, x4, x5)
11259_0_createTree_InvokeMethod(x1, x2, x3, x4, x5) → 11259_0_createTree_InvokeMethod(x2, x3, x4, x5)
10721_0_createTree_Return(x1) → 10721_0_createTree_Return
11307_0_createNode_InvokeMethod(x1, x2) → 11307_0_createNode_InvokeMethod
11290_0_createNode_InvokeMethod(x1, x2) → 11290_0_createNode_InvokeMethod

Filtered duplicate args:


10624_0_createTree_LE(x1, x2, x3) → 10624_0_createTree_LE(x1, x3)
Cond_10624_0_createTree_LE1(x1, x2, x3, x4) → Cond_10624_0_createTree_LE1(x1, x2, x4)
Cond_10624_0_createTree_LE(x1, x2, x3, x4) → Cond_10624_0_createTree_LE(x1, x2, x4)

Filtered unneeded arguments:


Cond_2908_0_createNode_NE(x1, x2) → Cond_2908_0_createNode_NE(x1)

Filtered all non-integer terms:


10624_0_createTree_LE(x1, x2) → 10624_0_createTree_LE(x2)
List(x1, x2) → List
Cond_10624_0_createTree_LE(x1, x2, x3) → Cond_10624_0_createTree_LE(x1, x3)
11187_1_createTree_InvokeMethod(x1, x2, x3, x4) → 11187_1_createTree_InvokeMethod(x1, x2, x3)
11286_1_createTree_InvokeMethod(x1, x2, x3, x4) → 11286_1_createTree_InvokeMethod(x1, x2, x3)
Cond_10624_0_createTree_LE1(x1, x2, x3) → Cond_10624_0_createTree_LE1(x1, x3)
11302_1_createTree_InvokeMethod(x1, x2, x3, x4) → 11302_1_createTree_InvokeMethod(x1, x2, x3)
11259_0_createTree_InvokeMethod(x1, x2, x3, x4) → 11259_0_createTree_InvokeMethod(x2, x3)
11338_0_createTree_InvokeMethod(x1, x2, x3, x4) → 11338_0_createTree_InvokeMethod(x2, x3)
11356_0_createTree_InvokeMethod(x1, x2, x3, x4) → 11356_0_createTree_InvokeMethod(x2, x3)
2636_0_random_IntArithmetic(x1, x2) → 2636_0_random_IntArithmetic(x2)

Filtered all free variables:


2546_0_random_ArrayAccess(x1, x2) → 2546_0_random_ArrayAccess(x1)
ARRAY(x1, x2) → ARRAY(x1)
2636_0_random_IntArithmetic(x1) → 2636_0_random_IntArithmetic
2908_0_createNode_NE(x1) → 2908_0_createNode_NE

Filtered ground terms:


Cond_2636_1_createNode_InvokeMethod1(x1, x2) → Cond_2636_1_createNode_InvokeMethod1(x1)
2636_1_createNode_InvokeMethod(x1) → 2636_1_createNode_InvokeMethod
Cond_2636_1_createNode_InvokeMethod(x1, x2) → Cond_2636_1_createNode_InvokeMethod(x1)

Combined rules. Obtained 8 rules for P and 18 rules for R.


Finished conversion. Obtained 8 rules for P and 18 rules for R. System has predefined symbols.


(4) Complex Obligation (AND)

(5) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:
none


R is empty.

The integer pair graph contains the following rules and edges:
(0): 11172_0_RANDOMLYDUPLICATE_STORE(java.lang.Object(x0[0])) → 7873_1_RANDOMLYDUPLICATE_INVOKEMETHOD(java.lang.Object(x0[0]))
(1): 7873_1_RANDOMLYDUPLICATE_INVOKEMETHOD(java.lang.Object(Tree(x0[1], java.lang.Object(x1[1])))) → 7873_1_RANDOMLYDUPLICATE_INVOKEMETHOD(java.lang.Object(x1[1]))
(2): 7873_1_RANDOMLYDUPLICATE_INVOKEMETHOD(java.lang.Object(Tree(x0[2], x1[2]))) → 11172_0_RANDOMLYDUPLICATE_STORE(x1[2])
(3): 7873_1_RANDOMLYDUPLICATE_INVOKEMETHOD(java.lang.Object(Tree(java.lang.Object(x0[3]), x1[3]))) → 7873_1_RANDOMLYDUPLICATE_INVOKEMETHOD(java.lang.Object(x0[3]))
(4): 7873_1_RANDOMLYDUPLICATE_INVOKEMETHOD(java.lang.Object(Tree(x0[4], x1[4]))) → 11172_0_RANDOMLYDUPLICATE_STORE(x0[4])

(0) -> (1), if ((java.lang.Object(x0[0]) →* java.lang.Object(Tree(x0[1], java.lang.Object(x1[1])))))


(0) -> (2), if ((java.lang.Object(x0[0]) →* java.lang.Object(Tree(x0[2], x1[2]))))


(0) -> (3), if ((java.lang.Object(x0[0]) →* java.lang.Object(Tree(java.lang.Object(x0[3]), x1[3]))))


(0) -> (4), if ((java.lang.Object(x0[0]) →* java.lang.Object(Tree(x0[4], x1[4]))))


(1) -> (1), if ((java.lang.Object(x1[1]) →* java.lang.Object(Tree(x0[1]', java.lang.Object(x1[1]')))))


(1) -> (2), if ((java.lang.Object(x1[1]) →* java.lang.Object(Tree(x0[2], x1[2]))))


(1) -> (3), if ((java.lang.Object(x1[1]) →* java.lang.Object(Tree(java.lang.Object(x0[3]), x1[3]))))


(1) -> (4), if ((java.lang.Object(x1[1]) →* java.lang.Object(Tree(x0[4], x1[4]))))


(2) -> (0), if ((x1[2]* java.lang.Object(x0[0])))


(3) -> (1), if ((java.lang.Object(x0[3]) →* java.lang.Object(Tree(x0[1], java.lang.Object(x1[1])))))


(3) -> (2), if ((java.lang.Object(x0[3]) →* java.lang.Object(Tree(x0[2], x1[2]))))


(3) -> (3), if ((java.lang.Object(x0[3]) →* java.lang.Object(Tree(java.lang.Object(x0[3]'), x1[3]'))))


(3) -> (4), if ((java.lang.Object(x0[3]) →* java.lang.Object(Tree(x0[4], x1[4]))))


(4) -> (0), if ((x0[4]* java.lang.Object(x0[0])))



The set Q is empty.

(6) IDPtoQDPProof (SOUND transformation)

Represented integers and predefined function symbols by Terms

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

11172_0_RANDOMLYDUPLICATE_STORE(java.lang.Object(x0[0])) → 7873_1_RANDOMLYDUPLICATE_INVOKEMETHOD(java.lang.Object(x0[0]))
7873_1_RANDOMLYDUPLICATE_INVOKEMETHOD(java.lang.Object(Tree(x0[1], java.lang.Object(x1[1])))) → 7873_1_RANDOMLYDUPLICATE_INVOKEMETHOD(java.lang.Object(x1[1]))
7873_1_RANDOMLYDUPLICATE_INVOKEMETHOD(java.lang.Object(Tree(x0[2], x1[2]))) → 11172_0_RANDOMLYDUPLICATE_STORE(x1[2])
7873_1_RANDOMLYDUPLICATE_INVOKEMETHOD(java.lang.Object(Tree(java.lang.Object(x0[3]), x1[3]))) → 7873_1_RANDOMLYDUPLICATE_INVOKEMETHOD(java.lang.Object(x0[3]))
7873_1_RANDOMLYDUPLICATE_INVOKEMETHOD(java.lang.Object(Tree(x0[4], x1[4]))) → 11172_0_RANDOMLYDUPLICATE_STORE(x0[4])

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • 11172_0_RANDOMLYDUPLICATE_STORE(java.lang.Object(x0[0])) → 7873_1_RANDOMLYDUPLICATE_INVOKEMETHOD(java.lang.Object(x0[0]))
    The graph contains the following edges 1 >= 1

  • 7873_1_RANDOMLYDUPLICATE_INVOKEMETHOD(java.lang.Object(Tree(x0[2], x1[2]))) → 11172_0_RANDOMLYDUPLICATE_STORE(x1[2])
    The graph contains the following edges 1 > 1

  • 7873_1_RANDOMLYDUPLICATE_INVOKEMETHOD(java.lang.Object(Tree(x0[4], x1[4]))) → 11172_0_RANDOMLYDUPLICATE_STORE(x0[4])
    The graph contains the following edges 1 > 1

  • 7873_1_RANDOMLYDUPLICATE_INVOKEMETHOD(java.lang.Object(Tree(x0[1], java.lang.Object(x1[1])))) → 7873_1_RANDOMLYDUPLICATE_INVOKEMETHOD(java.lang.Object(x1[1]))
    The graph contains the following edges 1 > 1

  • 7873_1_RANDOMLYDUPLICATE_INVOKEMETHOD(java.lang.Object(Tree(java.lang.Object(x0[3]), x1[3]))) → 7873_1_RANDOMLYDUPLICATE_INVOKEMETHOD(java.lang.Object(x0[3]))
    The graph contains the following edges 1 > 1

(9) YES

(10) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


The ITRS R consists of the following rules:
11187_0_createNode_InvokeMethod11290_0_createNode_InvokeMethod
11187_0_createNode_InvokeMethod11307_0_createNode_InvokeMethod
10624_0_createTree_LE(0) → 10721_0_createTree_Return
11187_0_createNode_InvokeMethod2546_1_createNode_InvokeMethod(2546_0_random_ArrayAccess(java.lang.Object(ARRAY(x0))))
11187_1_createTree_InvokeMethod(3291_0_createNode_InvokeMethod, x0, x1) → 11259_0_createTree_InvokeMethod(x0, x1)
11187_1_createTree_InvokeMethod(3338_0_createNode_InvokeMethod, x0, x1) → 11259_0_createTree_InvokeMethod(x0, x1)
11187_1_createTree_InvokeMethod(3660_0_createNode_InvokeMethod, x0, x1) → 11259_0_createTree_InvokeMethod(x0, x1)
11286_1_createTree_InvokeMethod(3338_0_createNode_InvokeMethod, x0, x1) → 11338_0_createTree_InvokeMethod(x0, x1)
11286_1_createTree_InvokeMethod(3660_0_createNode_InvokeMethod, x0, x1) → 11338_0_createTree_InvokeMethod(x0, x1)
11286_1_createTree_InvokeMethod(3338_0_createNode_InvokeMethod, x0, x1) → 11356_0_createTree_InvokeMethod(x0, x1)
11286_1_createTree_InvokeMethod(3660_0_createNode_InvokeMethod, x0, x1) → 11356_0_createTree_InvokeMethod(x0, x1)
2546_1_createNode_InvokeMethod(2546_0_random_ArrayAccess(java.lang.Object(ARRAY(x0)))) → 3338_0_createNode_InvokeMethod
2546_1_createNode_InvokeMethod(2546_0_random_ArrayAccess(java.lang.Object(ARRAY(x0)))) → 3291_0_createNode_InvokeMethod
2546_1_createNode_InvokeMethod(2546_0_random_ArrayAccess(java.lang.Object(ARRAY(x0)))) → 3660_0_createNode_InvokeMethod
2546_1_createNode_InvokeMethod(2546_0_random_ArrayAccess(java.lang.Object(ARRAY(x0)))) → 3032_0_createNode_Return
2546_1_createNode_InvokeMethod(2546_0_random_ArrayAccess(java.lang.Object(ARRAY(x0)))) → 3384_0_createNode_Return

The integer pair graph contains the following rules and edges:
(0): 10624_0_CREATETREE_LE(x2[0]) → COND_10624_0_CREATETREE_LE(x2[0] > 0, x2[0])
(1): COND_10624_0_CREATETREE_LE(TRUE, x2[1]) → 11187_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x1[1], x2[1])
(2): 11187_1_CREATETREE_INVOKEMETHOD(3032_0_createNode_Return, x0[2], x1[2]) → 11286_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x0[2], x1[2])
(3): 10624_0_CREATETREE_LE(x1[3]) → COND_10624_0_CREATETREE_LE1(x1[3] > 0, x1[3])
(4): COND_10624_0_CREATETREE_LE1(TRUE, x1[4]) → 10624_0_CREATETREE_LE(x1[4] + -1)
(5): 11286_1_CREATETREE_INVOKEMETHOD(3032_0_createNode_Return, x0[5], x1[5]) → COND_11286_1_CREATETREE_INVOKEMETHOD(x1[5] > 0, 3032_0_createNode_Return, x0[5], x1[5])
(6): COND_11286_1_CREATETREE_INVOKEMETHOD(TRUE, 3032_0_createNode_Return, x0[6], x1[6]) → 10624_0_CREATETREE_LE(x1[6] + -1)
(7): 11286_1_CREATETREE_INVOKEMETHOD(3384_0_createNode_Return, x0[7], x1[7]) → COND_11286_1_CREATETREE_INVOKEMETHOD1(x1[7] > 0, 3384_0_createNode_Return, x0[7], x1[7])
(8): COND_11286_1_CREATETREE_INVOKEMETHOD1(TRUE, 3384_0_createNode_Return, x0[8], x1[8]) → 10624_0_CREATETREE_LE(x1[8] + -1)
(9): 11187_1_CREATETREE_INVOKEMETHOD(3384_0_createNode_Return, x0[9], x1[9]) → 11286_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x0[9], x1[9])

(0) -> (1), if ((x2[0] > 0* TRUE)∧(x2[0]* x2[1]))


(1) -> (2), if ((11187_0_createNode_InvokeMethod* 3032_0_createNode_Return)∧(x1[1]* x0[2])∧(x2[1]* x1[2]))


(1) -> (9), if ((11187_0_createNode_InvokeMethod* 3384_0_createNode_Return)∧(x1[1]* x0[9])∧(x2[1]* x1[9]))


(2) -> (5), if ((11187_0_createNode_InvokeMethod* 3032_0_createNode_Return)∧(x0[2]* x0[5])∧(x1[2]* x1[5]))


(2) -> (7), if ((11187_0_createNode_InvokeMethod* 3384_0_createNode_Return)∧(x0[2]* x0[7])∧(x1[2]* x1[7]))


(3) -> (4), if ((x1[3] > 0* TRUE)∧(x1[3]* x1[4]))


(4) -> (0), if ((x1[4] + -1* x2[0]))


(4) -> (3), if ((x1[4] + -1* x1[3]))


(5) -> (6), if ((x1[5] > 0* TRUE)∧(x0[5]* x0[6])∧(x1[5]* x1[6]))


(6) -> (0), if ((x1[6] + -1* x2[0]))


(6) -> (3), if ((x1[6] + -1* x1[3]))


(7) -> (8), if ((x1[7] > 0* TRUE)∧(x0[7]* x0[8])∧(x1[7]* x1[8]))


(8) -> (0), if ((x1[8] + -1* x2[0]))


(8) -> (3), if ((x1[8] + -1* x1[3]))


(9) -> (5), if ((11187_0_createNode_InvokeMethod* 3032_0_createNode_Return)∧(x0[9]* x0[5])∧(x1[9]* x1[5]))


(9) -> (7), if ((11187_0_createNode_InvokeMethod* 3384_0_createNode_Return)∧(x0[9]* x0[7])∧(x1[9]* x1[7]))



The set Q consists of the following terms:
11187_0_createNode_InvokeMethod
10624_0_createTree_LE(0)
11187_1_createTree_InvokeMethod(3291_0_createNode_InvokeMethod, x0, x1)
11187_1_createTree_InvokeMethod(3338_0_createNode_InvokeMethod, x0, x1)
11187_1_createTree_InvokeMethod(3660_0_createNode_InvokeMethod, x0, x1)
11286_1_createTree_InvokeMethod(3338_0_createNode_InvokeMethod, x0, x1)
11286_1_createTree_InvokeMethod(3660_0_createNode_InvokeMethod, x0, x1)
2546_1_createNode_InvokeMethod(2546_0_random_ArrayAccess(java.lang.Object(ARRAY(x0))))

(11) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 10624_0_CREATETREE_LE(x2) → COND_10624_0_CREATETREE_LE(>(x2, 0), x2) the following chains were created:
  • We consider the chain 10624_0_CREATETREE_LE(x2[0]) → COND_10624_0_CREATETREE_LE(>(x2[0], 0), x2[0]), COND_10624_0_CREATETREE_LE(TRUE, x2[1]) → 11187_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x1[1], x2[1]) which results in the following constraint:

    (1)    (>(x2[0], 0)=TRUEx2[0]=x2[1]10624_0_CREATETREE_LE(x2[0])≥NonInfC∧10624_0_CREATETREE_LE(x2[0])≥COND_10624_0_CREATETREE_LE(>(x2[0], 0), x2[0])∧(UIncreasing(COND_10624_0_CREATETREE_LE(>(x2[0], 0), x2[0])), ≥))



    We simplified constraint (1) using rule (IV) which results in the following new constraint:

    (2)    (>(x2[0], 0)=TRUE10624_0_CREATETREE_LE(x2[0])≥NonInfC∧10624_0_CREATETREE_LE(x2[0])≥COND_10624_0_CREATETREE_LE(>(x2[0], 0), x2[0])∧(UIncreasing(COND_10624_0_CREATETREE_LE(>(x2[0], 0), x2[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x2[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_10624_0_CREATETREE_LE(>(x2[0], 0), x2[0])), ≥)∧[(2)bni_37 + (-1)Bound*bni_37] + [(2)bni_37]x2[0] ≥ 0∧[1 + (-1)bso_38] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x2[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_10624_0_CREATETREE_LE(>(x2[0], 0), x2[0])), ≥)∧[(2)bni_37 + (-1)Bound*bni_37] + [(2)bni_37]x2[0] ≥ 0∧[1 + (-1)bso_38] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x2[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_10624_0_CREATETREE_LE(>(x2[0], 0), x2[0])), ≥)∧[(2)bni_37 + (-1)Bound*bni_37] + [(2)bni_37]x2[0] ≥ 0∧[1 + (-1)bso_38] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x2[0] ≥ 0 ⇒ (UIncreasing(COND_10624_0_CREATETREE_LE(>(x2[0], 0), x2[0])), ≥)∧[(4)bni_37 + (-1)Bound*bni_37] + [(2)bni_37]x2[0] ≥ 0∧[1 + (-1)bso_38] ≥ 0)







For Pair COND_10624_0_CREATETREE_LE(TRUE, x2) → 11187_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x1, x2) the following chains were created:
  • We consider the chain COND_10624_0_CREATETREE_LE(TRUE, x2[1]) → 11187_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x1[1], x2[1]) which results in the following constraint:

    (7)    (COND_10624_0_CREATETREE_LE(TRUE, x2[1])≥NonInfC∧COND_10624_0_CREATETREE_LE(TRUE, x2[1])≥11187_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x1[1], x2[1])∧(UIncreasing(11187_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x1[1], x2[1])), ≥))



    We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (8)    ((UIncreasing(11187_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x1[1], x2[1])), ≥)∧[(-1)bso_40] ≥ 0)



    We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (9)    ((UIncreasing(11187_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x1[1], x2[1])), ≥)∧[(-1)bso_40] ≥ 0)



    We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (10)    ((UIncreasing(11187_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x1[1], x2[1])), ≥)∧[(-1)bso_40] ≥ 0)



    We simplified constraint (10) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (11)    ((UIncreasing(11187_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x1[1], x2[1])), ≥)∧0 = 0∧[(-1)bso_40] ≥ 0)







For Pair 11187_1_CREATETREE_INVOKEMETHOD(3032_0_createNode_Return, x0, x1) → 11286_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x0, x1) the following chains were created:
  • We consider the chain 11187_1_CREATETREE_INVOKEMETHOD(3032_0_createNode_Return, x0[2], x1[2]) → 11286_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x0[2], x1[2]) which results in the following constraint:

    (12)    (11187_1_CREATETREE_INVOKEMETHOD(3032_0_createNode_Return, x0[2], x1[2])≥NonInfC∧11187_1_CREATETREE_INVOKEMETHOD(3032_0_createNode_Return, x0[2], x1[2])≥11286_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x0[2], x1[2])∧(UIncreasing(11286_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x0[2], x1[2])), ≥))



    We simplified constraint (12) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (13)    ((UIncreasing(11286_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x0[2], x1[2])), ≥)∧[(-1)bso_42] ≥ 0)



    We simplified constraint (13) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (14)    ((UIncreasing(11286_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x0[2], x1[2])), ≥)∧[(-1)bso_42] ≥ 0)



    We simplified constraint (14) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (15)    ((UIncreasing(11286_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x0[2], x1[2])), ≥)∧[(-1)bso_42] ≥ 0)



    We simplified constraint (15) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (16)    ((UIncreasing(11286_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x0[2], x1[2])), ≥)∧0 = 0∧[(-1)bso_42] ≥ 0)







For Pair 10624_0_CREATETREE_LE(x1) → COND_10624_0_CREATETREE_LE1(>(x1, 0), x1) the following chains were created:
  • We consider the chain 10624_0_CREATETREE_LE(x1[3]) → COND_10624_0_CREATETREE_LE1(>(x1[3], 0), x1[3]), COND_10624_0_CREATETREE_LE1(TRUE, x1[4]) → 10624_0_CREATETREE_LE(+(x1[4], -1)) which results in the following constraint:

    (17)    (>(x1[3], 0)=TRUEx1[3]=x1[4]10624_0_CREATETREE_LE(x1[3])≥NonInfC∧10624_0_CREATETREE_LE(x1[3])≥COND_10624_0_CREATETREE_LE1(>(x1[3], 0), x1[3])∧(UIncreasing(COND_10624_0_CREATETREE_LE1(>(x1[3], 0), x1[3])), ≥))



    We simplified constraint (17) using rule (IV) which results in the following new constraint:

    (18)    (>(x1[3], 0)=TRUE10624_0_CREATETREE_LE(x1[3])≥NonInfC∧10624_0_CREATETREE_LE(x1[3])≥COND_10624_0_CREATETREE_LE1(>(x1[3], 0), x1[3])∧(UIncreasing(COND_10624_0_CREATETREE_LE1(>(x1[3], 0), x1[3])), ≥))



    We simplified constraint (18) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (19)    (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_10624_0_CREATETREE_LE1(>(x1[3], 0), x1[3])), ≥)∧[(2)bni_43 + (-1)Bound*bni_43] + [(2)bni_43]x1[3] ≥ 0∧[2 + (-1)bso_44] ≥ 0)



    We simplified constraint (19) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (20)    (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_10624_0_CREATETREE_LE1(>(x1[3], 0), x1[3])), ≥)∧[(2)bni_43 + (-1)Bound*bni_43] + [(2)bni_43]x1[3] ≥ 0∧[2 + (-1)bso_44] ≥ 0)



    We simplified constraint (20) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (21)    (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_10624_0_CREATETREE_LE1(>(x1[3], 0), x1[3])), ≥)∧[(2)bni_43 + (-1)Bound*bni_43] + [(2)bni_43]x1[3] ≥ 0∧[2 + (-1)bso_44] ≥ 0)



    We simplified constraint (21) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (22)    (x1[3] ≥ 0 ⇒ (UIncreasing(COND_10624_0_CREATETREE_LE1(>(x1[3], 0), x1[3])), ≥)∧[(4)bni_43 + (-1)Bound*bni_43] + [(2)bni_43]x1[3] ≥ 0∧[2 + (-1)bso_44] ≥ 0)







For Pair COND_10624_0_CREATETREE_LE1(TRUE, x1) → 10624_0_CREATETREE_LE(+(x1, -1)) the following chains were created:
  • We consider the chain COND_10624_0_CREATETREE_LE1(TRUE, x1[4]) → 10624_0_CREATETREE_LE(+(x1[4], -1)) which results in the following constraint:

    (23)    (COND_10624_0_CREATETREE_LE1(TRUE, x1[4])≥NonInfC∧COND_10624_0_CREATETREE_LE1(TRUE, x1[4])≥10624_0_CREATETREE_LE(+(x1[4], -1))∧(UIncreasing(10624_0_CREATETREE_LE(+(x1[4], -1))), ≥))



    We simplified constraint (23) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (24)    ((UIncreasing(10624_0_CREATETREE_LE(+(x1[4], -1))), ≥)∧[(-1)bso_46] ≥ 0)



    We simplified constraint (24) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (25)    ((UIncreasing(10624_0_CREATETREE_LE(+(x1[4], -1))), ≥)∧[(-1)bso_46] ≥ 0)



    We simplified constraint (25) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (26)    ((UIncreasing(10624_0_CREATETREE_LE(+(x1[4], -1))), ≥)∧[(-1)bso_46] ≥ 0)



    We simplified constraint (26) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (27)    ((UIncreasing(10624_0_CREATETREE_LE(+(x1[4], -1))), ≥)∧0 = 0∧[(-1)bso_46] ≥ 0)







For Pair 11286_1_CREATETREE_INVOKEMETHOD(3032_0_createNode_Return, x0, x1) → COND_11286_1_CREATETREE_INVOKEMETHOD(>(x1, 0), 3032_0_createNode_Return, x0, x1) the following chains were created:
  • We consider the chain 11286_1_CREATETREE_INVOKEMETHOD(3032_0_createNode_Return, x0[5], x1[5]) → COND_11286_1_CREATETREE_INVOKEMETHOD(>(x1[5], 0), 3032_0_createNode_Return, x0[5], x1[5]), COND_11286_1_CREATETREE_INVOKEMETHOD(TRUE, 3032_0_createNode_Return, x0[6], x1[6]) → 10624_0_CREATETREE_LE(+(x1[6], -1)) which results in the following constraint:

    (28)    (>(x1[5], 0)=TRUEx0[5]=x0[6]x1[5]=x1[6]11286_1_CREATETREE_INVOKEMETHOD(3032_0_createNode_Return, x0[5], x1[5])≥NonInfC∧11286_1_CREATETREE_INVOKEMETHOD(3032_0_createNode_Return, x0[5], x1[5])≥COND_11286_1_CREATETREE_INVOKEMETHOD(>(x1[5], 0), 3032_0_createNode_Return, x0[5], x1[5])∧(UIncreasing(COND_11286_1_CREATETREE_INVOKEMETHOD(>(x1[5], 0), 3032_0_createNode_Return, x0[5], x1[5])), ≥))



    We simplified constraint (28) using rule (IV) which results in the following new constraint:

    (29)    (>(x1[5], 0)=TRUE11286_1_CREATETREE_INVOKEMETHOD(3032_0_createNode_Return, x0[5], x1[5])≥NonInfC∧11286_1_CREATETREE_INVOKEMETHOD(3032_0_createNode_Return, x0[5], x1[5])≥COND_11286_1_CREATETREE_INVOKEMETHOD(>(x1[5], 0), 3032_0_createNode_Return, x0[5], x1[5])∧(UIncreasing(COND_11286_1_CREATETREE_INVOKEMETHOD(>(x1[5], 0), 3032_0_createNode_Return, x0[5], x1[5])), ≥))



    We simplified constraint (29) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (30)    (x1[5] + [-1] ≥ 0 ⇒ (UIncreasing(COND_11286_1_CREATETREE_INVOKEMETHOD(>(x1[5], 0), 3032_0_createNode_Return, x0[5], x1[5])), ≥)∧[bni_47 + (-1)Bound*bni_47] + [(2)bni_47]x1[5] ≥ 0∧[(-1)bso_48] ≥ 0)



    We simplified constraint (30) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (31)    (x1[5] + [-1] ≥ 0 ⇒ (UIncreasing(COND_11286_1_CREATETREE_INVOKEMETHOD(>(x1[5], 0), 3032_0_createNode_Return, x0[5], x1[5])), ≥)∧[bni_47 + (-1)Bound*bni_47] + [(2)bni_47]x1[5] ≥ 0∧[(-1)bso_48] ≥ 0)



    We simplified constraint (31) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (32)    (x1[5] + [-1] ≥ 0 ⇒ (UIncreasing(COND_11286_1_CREATETREE_INVOKEMETHOD(>(x1[5], 0), 3032_0_createNode_Return, x0[5], x1[5])), ≥)∧[bni_47 + (-1)Bound*bni_47] + [(2)bni_47]x1[5] ≥ 0∧[(-1)bso_48] ≥ 0)



    We simplified constraint (32) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (33)    (x1[5] ≥ 0 ⇒ (UIncreasing(COND_11286_1_CREATETREE_INVOKEMETHOD(>(x1[5], 0), 3032_0_createNode_Return, x0[5], x1[5])), ≥)∧[(3)bni_47 + (-1)Bound*bni_47] + [(2)bni_47]x1[5] ≥ 0∧[(-1)bso_48] ≥ 0)







For Pair COND_11286_1_CREATETREE_INVOKEMETHOD(TRUE, 3032_0_createNode_Return, x0, x1) → 10624_0_CREATETREE_LE(+(x1, -1)) the following chains were created:
  • We consider the chain COND_11286_1_CREATETREE_INVOKEMETHOD(TRUE, 3032_0_createNode_Return, x0[6], x1[6]) → 10624_0_CREATETREE_LE(+(x1[6], -1)) which results in the following constraint:

    (34)    (COND_11286_1_CREATETREE_INVOKEMETHOD(TRUE, 3032_0_createNode_Return, x0[6], x1[6])≥NonInfC∧COND_11286_1_CREATETREE_INVOKEMETHOD(TRUE, 3032_0_createNode_Return, x0[6], x1[6])≥10624_0_CREATETREE_LE(+(x1[6], -1))∧(UIncreasing(10624_0_CREATETREE_LE(+(x1[6], -1))), ≥))



    We simplified constraint (34) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (35)    ((UIncreasing(10624_0_CREATETREE_LE(+(x1[6], -1))), ≥)∧[1 + (-1)bso_50] ≥ 0)



    We simplified constraint (35) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (36)    ((UIncreasing(10624_0_CREATETREE_LE(+(x1[6], -1))), ≥)∧[1 + (-1)bso_50] ≥ 0)



    We simplified constraint (36) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (37)    ((UIncreasing(10624_0_CREATETREE_LE(+(x1[6], -1))), ≥)∧[1 + (-1)bso_50] ≥ 0)



    We simplified constraint (37) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (38)    ((UIncreasing(10624_0_CREATETREE_LE(+(x1[6], -1))), ≥)∧0 = 0∧[1 + (-1)bso_50] ≥ 0)







For Pair 11286_1_CREATETREE_INVOKEMETHOD(3384_0_createNode_Return, x0, x1) → COND_11286_1_CREATETREE_INVOKEMETHOD1(>(x1, 0), 3384_0_createNode_Return, x0, x1) the following chains were created:
  • We consider the chain 11286_1_CREATETREE_INVOKEMETHOD(3384_0_createNode_Return, x0[7], x1[7]) → COND_11286_1_CREATETREE_INVOKEMETHOD1(>(x1[7], 0), 3384_0_createNode_Return, x0[7], x1[7]), COND_11286_1_CREATETREE_INVOKEMETHOD1(TRUE, 3384_0_createNode_Return, x0[8], x1[8]) → 10624_0_CREATETREE_LE(+(x1[8], -1)) which results in the following constraint:

    (39)    (>(x1[7], 0)=TRUEx0[7]=x0[8]x1[7]=x1[8]11286_1_CREATETREE_INVOKEMETHOD(3384_0_createNode_Return, x0[7], x1[7])≥NonInfC∧11286_1_CREATETREE_INVOKEMETHOD(3384_0_createNode_Return, x0[7], x1[7])≥COND_11286_1_CREATETREE_INVOKEMETHOD1(>(x1[7], 0), 3384_0_createNode_Return, x0[7], x1[7])∧(UIncreasing(COND_11286_1_CREATETREE_INVOKEMETHOD1(>(x1[7], 0), 3384_0_createNode_Return, x0[7], x1[7])), ≥))



    We simplified constraint (39) using rule (IV) which results in the following new constraint:

    (40)    (>(x1[7], 0)=TRUE11286_1_CREATETREE_INVOKEMETHOD(3384_0_createNode_Return, x0[7], x1[7])≥NonInfC∧11286_1_CREATETREE_INVOKEMETHOD(3384_0_createNode_Return, x0[7], x1[7])≥COND_11286_1_CREATETREE_INVOKEMETHOD1(>(x1[7], 0), 3384_0_createNode_Return, x0[7], x1[7])∧(UIncreasing(COND_11286_1_CREATETREE_INVOKEMETHOD1(>(x1[7], 0), 3384_0_createNode_Return, x0[7], x1[7])), ≥))



    We simplified constraint (40) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (41)    (x1[7] + [-1] ≥ 0 ⇒ (UIncreasing(COND_11286_1_CREATETREE_INVOKEMETHOD1(>(x1[7], 0), 3384_0_createNode_Return, x0[7], x1[7])), ≥)∧[bni_51 + (-1)Bound*bni_51] + [(2)bni_51]x1[7] ≥ 0∧[1 + (-1)bso_52] ≥ 0)



    We simplified constraint (41) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (42)    (x1[7] + [-1] ≥ 0 ⇒ (UIncreasing(COND_11286_1_CREATETREE_INVOKEMETHOD1(>(x1[7], 0), 3384_0_createNode_Return, x0[7], x1[7])), ≥)∧[bni_51 + (-1)Bound*bni_51] + [(2)bni_51]x1[7] ≥ 0∧[1 + (-1)bso_52] ≥ 0)



    We simplified constraint (42) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (43)    (x1[7] + [-1] ≥ 0 ⇒ (UIncreasing(COND_11286_1_CREATETREE_INVOKEMETHOD1(>(x1[7], 0), 3384_0_createNode_Return, x0[7], x1[7])), ≥)∧[bni_51 + (-1)Bound*bni_51] + [(2)bni_51]x1[7] ≥ 0∧[1 + (-1)bso_52] ≥ 0)



    We simplified constraint (43) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (44)    (x1[7] ≥ 0 ⇒ (UIncreasing(COND_11286_1_CREATETREE_INVOKEMETHOD1(>(x1[7], 0), 3384_0_createNode_Return, x0[7], x1[7])), ≥)∧[(3)bni_51 + (-1)Bound*bni_51] + [(2)bni_51]x1[7] ≥ 0∧[1 + (-1)bso_52] ≥ 0)







For Pair COND_11286_1_CREATETREE_INVOKEMETHOD1(TRUE, 3384_0_createNode_Return, x0, x1) → 10624_0_CREATETREE_LE(+(x1, -1)) the following chains were created:
  • We consider the chain COND_11286_1_CREATETREE_INVOKEMETHOD1(TRUE, 3384_0_createNode_Return, x0[8], x1[8]) → 10624_0_CREATETREE_LE(+(x1[8], -1)) which results in the following constraint:

    (45)    (COND_11286_1_CREATETREE_INVOKEMETHOD1(TRUE, 3384_0_createNode_Return, x0[8], x1[8])≥NonInfC∧COND_11286_1_CREATETREE_INVOKEMETHOD1(TRUE, 3384_0_createNode_Return, x0[8], x1[8])≥10624_0_CREATETREE_LE(+(x1[8], -1))∧(UIncreasing(10624_0_CREATETREE_LE(+(x1[8], -1))), ≥))



    We simplified constraint (45) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (46)    ((UIncreasing(10624_0_CREATETREE_LE(+(x1[8], -1))), ≥)∧[(-1)bso_54] ≥ 0)



    We simplified constraint (46) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (47)    ((UIncreasing(10624_0_CREATETREE_LE(+(x1[8], -1))), ≥)∧[(-1)bso_54] ≥ 0)



    We simplified constraint (47) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (48)    ((UIncreasing(10624_0_CREATETREE_LE(+(x1[8], -1))), ≥)∧[(-1)bso_54] ≥ 0)



    We simplified constraint (48) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (49)    ((UIncreasing(10624_0_CREATETREE_LE(+(x1[8], -1))), ≥)∧0 = 0∧[(-1)bso_54] ≥ 0)







For Pair 11187_1_CREATETREE_INVOKEMETHOD(3384_0_createNode_Return, x0, x1) → 11286_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x0, x1) the following chains were created:
  • We consider the chain 11187_1_CREATETREE_INVOKEMETHOD(3384_0_createNode_Return, x0[9], x1[9]) → 11286_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x0[9], x1[9]) which results in the following constraint:

    (50)    (11187_1_CREATETREE_INVOKEMETHOD(3384_0_createNode_Return, x0[9], x1[9])≥NonInfC∧11187_1_CREATETREE_INVOKEMETHOD(3384_0_createNode_Return, x0[9], x1[9])≥11286_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x0[9], x1[9])∧(UIncreasing(11286_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x0[9], x1[9])), ≥))



    We simplified constraint (50) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (51)    ((UIncreasing(11286_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x0[9], x1[9])), ≥)∧[(-1)bso_56] ≥ 0)



    We simplified constraint (51) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (52)    ((UIncreasing(11286_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x0[9], x1[9])), ≥)∧[(-1)bso_56] ≥ 0)



    We simplified constraint (52) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (53)    ((UIncreasing(11286_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x0[9], x1[9])), ≥)∧[(-1)bso_56] ≥ 0)



    We simplified constraint (53) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (54)    ((UIncreasing(11286_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x0[9], x1[9])), ≥)∧0 = 0∧[(-1)bso_56] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 10624_0_CREATETREE_LE(x2) → COND_10624_0_CREATETREE_LE(>(x2, 0), x2)
    • (x2[0] ≥ 0 ⇒ (UIncreasing(COND_10624_0_CREATETREE_LE(>(x2[0], 0), x2[0])), ≥)∧[(4)bni_37 + (-1)Bound*bni_37] + [(2)bni_37]x2[0] ≥ 0∧[1 + (-1)bso_38] ≥ 0)

  • COND_10624_0_CREATETREE_LE(TRUE, x2) → 11187_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x1, x2)
    • ((UIncreasing(11187_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x1[1], x2[1])), ≥)∧0 = 0∧[(-1)bso_40] ≥ 0)

  • 11187_1_CREATETREE_INVOKEMETHOD(3032_0_createNode_Return, x0, x1) → 11286_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x0, x1)
    • ((UIncreasing(11286_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x0[2], x1[2])), ≥)∧0 = 0∧[(-1)bso_42] ≥ 0)

  • 10624_0_CREATETREE_LE(x1) → COND_10624_0_CREATETREE_LE1(>(x1, 0), x1)
    • (x1[3] ≥ 0 ⇒ (UIncreasing(COND_10624_0_CREATETREE_LE1(>(x1[3], 0), x1[3])), ≥)∧[(4)bni_43 + (-1)Bound*bni_43] + [(2)bni_43]x1[3] ≥ 0∧[2 + (-1)bso_44] ≥ 0)

  • COND_10624_0_CREATETREE_LE1(TRUE, x1) → 10624_0_CREATETREE_LE(+(x1, -1))
    • ((UIncreasing(10624_0_CREATETREE_LE(+(x1[4], -1))), ≥)∧0 = 0∧[(-1)bso_46] ≥ 0)

  • 11286_1_CREATETREE_INVOKEMETHOD(3032_0_createNode_Return, x0, x1) → COND_11286_1_CREATETREE_INVOKEMETHOD(>(x1, 0), 3032_0_createNode_Return, x0, x1)
    • (x1[5] ≥ 0 ⇒ (UIncreasing(COND_11286_1_CREATETREE_INVOKEMETHOD(>(x1[5], 0), 3032_0_createNode_Return, x0[5], x1[5])), ≥)∧[(3)bni_47 + (-1)Bound*bni_47] + [(2)bni_47]x1[5] ≥ 0∧[(-1)bso_48] ≥ 0)

  • COND_11286_1_CREATETREE_INVOKEMETHOD(TRUE, 3032_0_createNode_Return, x0, x1) → 10624_0_CREATETREE_LE(+(x1, -1))
    • ((UIncreasing(10624_0_CREATETREE_LE(+(x1[6], -1))), ≥)∧0 = 0∧[1 + (-1)bso_50] ≥ 0)

  • 11286_1_CREATETREE_INVOKEMETHOD(3384_0_createNode_Return, x0, x1) → COND_11286_1_CREATETREE_INVOKEMETHOD1(>(x1, 0), 3384_0_createNode_Return, x0, x1)
    • (x1[7] ≥ 0 ⇒ (UIncreasing(COND_11286_1_CREATETREE_INVOKEMETHOD1(>(x1[7], 0), 3384_0_createNode_Return, x0[7], x1[7])), ≥)∧[(3)bni_51 + (-1)Bound*bni_51] + [(2)bni_51]x1[7] ≥ 0∧[1 + (-1)bso_52] ≥ 0)

  • COND_11286_1_CREATETREE_INVOKEMETHOD1(TRUE, 3384_0_createNode_Return, x0, x1) → 10624_0_CREATETREE_LE(+(x1, -1))
    • ((UIncreasing(10624_0_CREATETREE_LE(+(x1[8], -1))), ≥)∧0 = 0∧[(-1)bso_54] ≥ 0)

  • 11187_1_CREATETREE_INVOKEMETHOD(3384_0_createNode_Return, x0, x1) → 11286_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x0, x1)
    • ((UIncreasing(11286_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x0[9], x1[9])), ≥)∧0 = 0∧[(-1)bso_56] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(11187_0_createNode_InvokeMethod) = [-1]   
POL(11290_0_createNode_InvokeMethod) = [-1]   
POL(11307_0_createNode_InvokeMethod) = [-1]   
POL(10624_0_createTree_LE(x1)) = [-1]   
POL(0) = 0   
POL(10721_0_createTree_Return) = [-1]   
POL(2546_1_createNode_InvokeMethod(x1)) = [-1]   
POL(2546_0_random_ArrayAccess(x1)) = [-1]   
POL(java.lang.Object(x1)) = [-1]   
POL(ARRAY(x1)) = [-1]   
POL(11187_1_createTree_InvokeMethod(x1, x2, x3)) = [-1]   
POL(3291_0_createNode_InvokeMethod) = [-1]   
POL(11259_0_createTree_InvokeMethod(x1, x2)) = [-1]   
POL(3338_0_createNode_InvokeMethod) = [-1]   
POL(3660_0_createNode_InvokeMethod) = [-1]   
POL(11286_1_createTree_InvokeMethod(x1, x2, x3)) = [-1]   
POL(11338_0_createTree_InvokeMethod(x1, x2)) = [-1]   
POL(11356_0_createTree_InvokeMethod(x1, x2)) = [-1]   
POL(3032_0_createNode_Return) = [-1]   
POL(3384_0_createNode_Return) = [-1]   
POL(10624_0_CREATETREE_LE(x1)) = [2] + [2]x1   
POL(COND_10624_0_CREATETREE_LE(x1, x2)) = [1] + [2]x2   
POL(>(x1, x2)) = [-1]   
POL(11187_1_CREATETREE_INVOKEMETHOD(x1, x2, x3)) = [1] + [2]x3   
POL(11286_1_CREATETREE_INVOKEMETHOD(x1, x2, x3)) = [1] + [2]x3   
POL(COND_10624_0_CREATETREE_LE1(x1, x2)) = [2]x2   
POL(+(x1, x2)) = x1 + x2   
POL(-1) = [-1]   
POL(COND_11286_1_CREATETREE_INVOKEMETHOD(x1, x2, x3, x4)) = [1] + [2]x4   
POL(COND_11286_1_CREATETREE_INVOKEMETHOD1(x1, x2, x3, x4)) = [2]x4   

The following pairs are in P>:

10624_0_CREATETREE_LE(x2[0]) → COND_10624_0_CREATETREE_LE(>(x2[0], 0), x2[0])
10624_0_CREATETREE_LE(x1[3]) → COND_10624_0_CREATETREE_LE1(>(x1[3], 0), x1[3])
COND_11286_1_CREATETREE_INVOKEMETHOD(TRUE, 3032_0_createNode_Return, x0[6], x1[6]) → 10624_0_CREATETREE_LE(+(x1[6], -1))
11286_1_CREATETREE_INVOKEMETHOD(3384_0_createNode_Return, x0[7], x1[7]) → COND_11286_1_CREATETREE_INVOKEMETHOD1(>(x1[7], 0), 3384_0_createNode_Return, x0[7], x1[7])

The following pairs are in Pbound:

10624_0_CREATETREE_LE(x2[0]) → COND_10624_0_CREATETREE_LE(>(x2[0], 0), x2[0])
10624_0_CREATETREE_LE(x1[3]) → COND_10624_0_CREATETREE_LE1(>(x1[3], 0), x1[3])
11286_1_CREATETREE_INVOKEMETHOD(3032_0_createNode_Return, x0[5], x1[5]) → COND_11286_1_CREATETREE_INVOKEMETHOD(>(x1[5], 0), 3032_0_createNode_Return, x0[5], x1[5])
11286_1_CREATETREE_INVOKEMETHOD(3384_0_createNode_Return, x0[7], x1[7]) → COND_11286_1_CREATETREE_INVOKEMETHOD1(>(x1[7], 0), 3384_0_createNode_Return, x0[7], x1[7])

The following pairs are in P:

COND_10624_0_CREATETREE_LE(TRUE, x2[1]) → 11187_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x1[1], x2[1])
11187_1_CREATETREE_INVOKEMETHOD(3032_0_createNode_Return, x0[2], x1[2]) → 11286_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x0[2], x1[2])
COND_10624_0_CREATETREE_LE1(TRUE, x1[4]) → 10624_0_CREATETREE_LE(+(x1[4], -1))
11286_1_CREATETREE_INVOKEMETHOD(3032_0_createNode_Return, x0[5], x1[5]) → COND_11286_1_CREATETREE_INVOKEMETHOD(>(x1[5], 0), 3032_0_createNode_Return, x0[5], x1[5])
COND_11286_1_CREATETREE_INVOKEMETHOD1(TRUE, 3384_0_createNode_Return, x0[8], x1[8]) → 10624_0_CREATETREE_LE(+(x1[8], -1))
11187_1_CREATETREE_INVOKEMETHOD(3384_0_createNode_Return, x0[9], x1[9]) → 11286_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x0[9], x1[9])

There are no usable rules.

(12) Complex Obligation (AND)

(13) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


The ITRS R consists of the following rules:
11187_0_createNode_InvokeMethod11290_0_createNode_InvokeMethod
11187_0_createNode_InvokeMethod11307_0_createNode_InvokeMethod
10624_0_createTree_LE(0) → 10721_0_createTree_Return
11187_0_createNode_InvokeMethod2546_1_createNode_InvokeMethod(2546_0_random_ArrayAccess(java.lang.Object(ARRAY(x0))))
11187_1_createTree_InvokeMethod(3291_0_createNode_InvokeMethod, x0, x1) → 11259_0_createTree_InvokeMethod(x0, x1)
11187_1_createTree_InvokeMethod(3338_0_createNode_InvokeMethod, x0, x1) → 11259_0_createTree_InvokeMethod(x0, x1)
11187_1_createTree_InvokeMethod(3660_0_createNode_InvokeMethod, x0, x1) → 11259_0_createTree_InvokeMethod(x0, x1)
11286_1_createTree_InvokeMethod(3338_0_createNode_InvokeMethod, x0, x1) → 11338_0_createTree_InvokeMethod(x0, x1)
11286_1_createTree_InvokeMethod(3660_0_createNode_InvokeMethod, x0, x1) → 11338_0_createTree_InvokeMethod(x0, x1)
11286_1_createTree_InvokeMethod(3338_0_createNode_InvokeMethod, x0, x1) → 11356_0_createTree_InvokeMethod(x0, x1)
11286_1_createTree_InvokeMethod(3660_0_createNode_InvokeMethod, x0, x1) → 11356_0_createTree_InvokeMethod(x0, x1)
2546_1_createNode_InvokeMethod(2546_0_random_ArrayAccess(java.lang.Object(ARRAY(x0)))) → 3338_0_createNode_InvokeMethod
2546_1_createNode_InvokeMethod(2546_0_random_ArrayAccess(java.lang.Object(ARRAY(x0)))) → 3291_0_createNode_InvokeMethod
2546_1_createNode_InvokeMethod(2546_0_random_ArrayAccess(java.lang.Object(ARRAY(x0)))) → 3660_0_createNode_InvokeMethod
2546_1_createNode_InvokeMethod(2546_0_random_ArrayAccess(java.lang.Object(ARRAY(x0)))) → 3032_0_createNode_Return
2546_1_createNode_InvokeMethod(2546_0_random_ArrayAccess(java.lang.Object(ARRAY(x0)))) → 3384_0_createNode_Return

The integer pair graph contains the following rules and edges:
(1): COND_10624_0_CREATETREE_LE(TRUE, x2[1]) → 11187_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x1[1], x2[1])
(2): 11187_1_CREATETREE_INVOKEMETHOD(3032_0_createNode_Return, x0[2], x1[2]) → 11286_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x0[2], x1[2])
(4): COND_10624_0_CREATETREE_LE1(TRUE, x1[4]) → 10624_0_CREATETREE_LE(x1[4] + -1)
(5): 11286_1_CREATETREE_INVOKEMETHOD(3032_0_createNode_Return, x0[5], x1[5]) → COND_11286_1_CREATETREE_INVOKEMETHOD(x1[5] > 0, 3032_0_createNode_Return, x0[5], x1[5])
(8): COND_11286_1_CREATETREE_INVOKEMETHOD1(TRUE, 3384_0_createNode_Return, x0[8], x1[8]) → 10624_0_CREATETREE_LE(x1[8] + -1)
(9): 11187_1_CREATETREE_INVOKEMETHOD(3384_0_createNode_Return, x0[9], x1[9]) → 11286_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x0[9], x1[9])

(1) -> (2), if ((11187_0_createNode_InvokeMethod* 3032_0_createNode_Return)∧(x1[1]* x0[2])∧(x2[1]* x1[2]))


(2) -> (5), if ((11187_0_createNode_InvokeMethod* 3032_0_createNode_Return)∧(x0[2]* x0[5])∧(x1[2]* x1[5]))


(9) -> (5), if ((11187_0_createNode_InvokeMethod* 3032_0_createNode_Return)∧(x0[9]* x0[5])∧(x1[9]* x1[5]))


(1) -> (9), if ((11187_0_createNode_InvokeMethod* 3384_0_createNode_Return)∧(x1[1]* x0[9])∧(x2[1]* x1[9]))



The set Q consists of the following terms:
11187_0_createNode_InvokeMethod
10624_0_createTree_LE(0)
11187_1_createTree_InvokeMethod(3291_0_createNode_InvokeMethod, x0, x1)
11187_1_createTree_InvokeMethod(3338_0_createNode_InvokeMethod, x0, x1)
11187_1_createTree_InvokeMethod(3660_0_createNode_InvokeMethod, x0, x1)
11286_1_createTree_InvokeMethod(3338_0_createNode_InvokeMethod, x0, x1)
11286_1_createTree_InvokeMethod(3660_0_createNode_InvokeMethod, x0, x1)
2546_1_createNode_InvokeMethod(2546_0_random_ArrayAccess(java.lang.Object(ARRAY(x0))))

(14) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 6 less nodes.

(15) TRUE

(16) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


The ITRS R consists of the following rules:
11187_0_createNode_InvokeMethod11290_0_createNode_InvokeMethod
11187_0_createNode_InvokeMethod11307_0_createNode_InvokeMethod
10624_0_createTree_LE(0) → 10721_0_createTree_Return
11187_0_createNode_InvokeMethod2546_1_createNode_InvokeMethod(2546_0_random_ArrayAccess(java.lang.Object(ARRAY(x0))))
11187_1_createTree_InvokeMethod(3291_0_createNode_InvokeMethod, x0, x1) → 11259_0_createTree_InvokeMethod(x0, x1)
11187_1_createTree_InvokeMethod(3338_0_createNode_InvokeMethod, x0, x1) → 11259_0_createTree_InvokeMethod(x0, x1)
11187_1_createTree_InvokeMethod(3660_0_createNode_InvokeMethod, x0, x1) → 11259_0_createTree_InvokeMethod(x0, x1)
11286_1_createTree_InvokeMethod(3338_0_createNode_InvokeMethod, x0, x1) → 11338_0_createTree_InvokeMethod(x0, x1)
11286_1_createTree_InvokeMethod(3660_0_createNode_InvokeMethod, x0, x1) → 11338_0_createTree_InvokeMethod(x0, x1)
11286_1_createTree_InvokeMethod(3338_0_createNode_InvokeMethod, x0, x1) → 11356_0_createTree_InvokeMethod(x0, x1)
11286_1_createTree_InvokeMethod(3660_0_createNode_InvokeMethod, x0, x1) → 11356_0_createTree_InvokeMethod(x0, x1)
2546_1_createNode_InvokeMethod(2546_0_random_ArrayAccess(java.lang.Object(ARRAY(x0)))) → 3338_0_createNode_InvokeMethod
2546_1_createNode_InvokeMethod(2546_0_random_ArrayAccess(java.lang.Object(ARRAY(x0)))) → 3291_0_createNode_InvokeMethod
2546_1_createNode_InvokeMethod(2546_0_random_ArrayAccess(java.lang.Object(ARRAY(x0)))) → 3660_0_createNode_InvokeMethod
2546_1_createNode_InvokeMethod(2546_0_random_ArrayAccess(java.lang.Object(ARRAY(x0)))) → 3032_0_createNode_Return
2546_1_createNode_InvokeMethod(2546_0_random_ArrayAccess(java.lang.Object(ARRAY(x0)))) → 3384_0_createNode_Return

The integer pair graph contains the following rules and edges:
(1): COND_10624_0_CREATETREE_LE(TRUE, x2[1]) → 11187_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x1[1], x2[1])
(2): 11187_1_CREATETREE_INVOKEMETHOD(3032_0_createNode_Return, x0[2], x1[2]) → 11286_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x0[2], x1[2])
(4): COND_10624_0_CREATETREE_LE1(TRUE, x1[4]) → 10624_0_CREATETREE_LE(x1[4] + -1)
(6): COND_11286_1_CREATETREE_INVOKEMETHOD(TRUE, 3032_0_createNode_Return, x0[6], x1[6]) → 10624_0_CREATETREE_LE(x1[6] + -1)
(8): COND_11286_1_CREATETREE_INVOKEMETHOD1(TRUE, 3384_0_createNode_Return, x0[8], x1[8]) → 10624_0_CREATETREE_LE(x1[8] + -1)
(9): 11187_1_CREATETREE_INVOKEMETHOD(3384_0_createNode_Return, x0[9], x1[9]) → 11286_1_CREATETREE_INVOKEMETHOD(11187_0_createNode_InvokeMethod, x0[9], x1[9])

(1) -> (2), if ((11187_0_createNode_InvokeMethod* 3032_0_createNode_Return)∧(x1[1]* x0[2])∧(x2[1]* x1[2]))


(1) -> (9), if ((11187_0_createNode_InvokeMethod* 3384_0_createNode_Return)∧(x1[1]* x0[9])∧(x2[1]* x1[9]))



The set Q consists of the following terms:
11187_0_createNode_InvokeMethod
10624_0_createTree_LE(0)
11187_1_createTree_InvokeMethod(3291_0_createNode_InvokeMethod, x0, x1)
11187_1_createTree_InvokeMethod(3338_0_createNode_InvokeMethod, x0, x1)
11187_1_createTree_InvokeMethod(3660_0_createNode_InvokeMethod, x0, x1)
11286_1_createTree_InvokeMethod(3338_0_createNode_InvokeMethod, x0, x1)
11286_1_createTree_InvokeMethod(3660_0_createNode_InvokeMethod, x0, x1)
2546_1_createNode_InvokeMethod(2546_0_random_ArrayAccess(java.lang.Object(ARRAY(x0))))

(17) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 6 less nodes.

(18) TRUE