0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 IDP
↳7 IDependencyGraphProof (⇔)
↳8 IDP
↳9 UsableRulesProof (⇔)
↳10 IDP
↳11 IDPtoQDPProof (⇒)
↳12 QDP
↳13 UsableRulesProof (⇔)
↳14 QDP
↳15 QReductionProof (⇔)
↳16 QDP
↳17 Instantiation (⇔)
↳18 QDP
↳19 Induction-Processor (⇒)
↳20 AND
↳21 QDP
↳22 DependencyGraphProof (⇔)
↳23 TRUE
↳24 QTRS
↳25 QTRSRRRProof (⇔)
↳26 QTRS
↳27 RisEmptyProof (⇔)
↳28 YES
public class DivWithoutMinus{
// adaption of the algorithm from [Kolbe 95]
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
int z = y;
int res = 0;
while (z > 0 && (y == 0 || y > 0 && x > 0)) {
if (y == 0) {
res++;
y = z;
}
else {
x--;
y--;
}
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 27 rules for P and 8 rules for R.
Combined rules. Obtained 2 rules for P and 1 rules for R.
Filtered ground terms:
983_0_main_LE(x1, x2, x3, x4, x5) → 983_0_main_LE(x2, x3, x4, x5)
Cond_983_0_main_LE1(x1, x2, x3, x4, x5, x6) → Cond_983_0_main_LE1(x1, x3, x5, x6)
Cond_983_0_main_LE(x1, x2, x3, x4, x5, x6) → Cond_983_0_main_LE(x1, x3, x4, x5, x6)
986_0_main_Return(x1) → 986_0_main_Return
Filtered duplicate args:
983_0_main_LE(x1, x2, x3, x4) → 983_0_main_LE(x1, x2, x4)
Cond_983_0_main_LE1(x1, x2, x3, x4) → Cond_983_0_main_LE1(x1, x2, x4)
Cond_983_0_main_LE(x1, x2, x3, x4, x5) → Cond_983_0_main_LE(x1, x2, x3, x5)
Combined rules. Obtained 2 rules for P and 1 rules for R.
Finished conversion. Obtained 2 rules for P and 1 rules for R. System has predefined symbols.
| != | ~ | Neq: (Integer, Integer) -> Boolean |
| * | ~ | Mul: (Integer, Integer) -> Integer |
| >= | ~ | Ge: (Integer, Integer) -> Boolean |
| -1 | ~ | UnaryMinus: (Integer) -> Integer |
| | | ~ | Bwor: (Integer, Integer) -> Integer |
| / | ~ | Div: (Integer, Integer) -> Integer |
| = | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer | |
| || | ~ | Lor: (Boolean, Boolean) -> Boolean |
| ! | ~ | Lnot: (Boolean) -> Boolean |
| < | ~ | Lt: (Integer, Integer) -> Boolean |
| - | ~ | Sub: (Integer, Integer) -> Integer |
| <= | ~ | Le: (Integer, Integer) -> Boolean |
| > | ~ | Gt: (Integer, Integer) -> Boolean |
| ~ | ~ | Bwnot: (Integer) -> Integer |
| % | ~ | Mod: (Integer, Integer) -> Integer |
| & | ~ | Bwand: (Integer, Integer) -> Integer |
| + | ~ | Add: (Integer, Integer) -> Integer |
| && | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(0) -> (1), if ((x2[0] > 0 && x1[0] > 0 && x0[0] > 0 →* TRUE)∧(x0[0] →* x0[1])∧(x1[0] →* x1[1])∧(x2[0] →* x2[1]))
(1) -> (0), if ((x0[1] + -1 →* x0[0])∧(x1[1] + -1 →* x1[0])∧(x2[1] →* x2[0]))
(1) -> (2), if ((x0[1] + -1 →* x0[2])∧(x1[1] + -1 →* 0)∧(x2[1] →* x2[2]))
(2) -> (3), if ((x2[2] > 0 →* TRUE)∧(x0[2] →* x0[3])∧(x2[2] →* x2[3]))
(3) -> (0), if ((x0[3] →* x0[0])∧(x2[3] →* x1[0])∧(x2[3] →* x2[0]))
(3) -> (2), if ((x0[3] →* x0[2])∧(x2[3] →* 0)∧(x2[3] →* x2[2]))
(1) (&&(&&(>(x2[0], 0), >(x1[0], 0)), >(x0[0], 0))=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1]∧x2[0]=x2[1] ⇒ 983_0_MAIN_LE(x0[0], x1[0], x2[0])≥NonInfC∧983_0_MAIN_LE(x0[0], x1[0], x2[0])≥COND_983_0_MAIN_LE(&&(&&(>(x2[0], 0), >(x1[0], 0)), >(x0[0], 0)), x0[0], x1[0], x2[0])∧(UIncreasing(COND_983_0_MAIN_LE(&&(&&(>(x2[0], 0), >(x1[0], 0)), >(x0[0], 0)), x0[0], x1[0], x2[0])), ≥))
(2) (>(x0[0], 0)=TRUE∧>(x2[0], 0)=TRUE∧>(x1[0], 0)=TRUE ⇒ 983_0_MAIN_LE(x0[0], x1[0], x2[0])≥NonInfC∧983_0_MAIN_LE(x0[0], x1[0], x2[0])≥COND_983_0_MAIN_LE(&&(&&(>(x2[0], 0), >(x1[0], 0)), >(x0[0], 0)), x0[0], x1[0], x2[0])∧(UIncreasing(COND_983_0_MAIN_LE(&&(&&(>(x2[0], 0), >(x1[0], 0)), >(x0[0], 0)), x0[0], x1[0], x2[0])), ≥))
(3) (x0[0] + [-1] ≥ 0∧x2[0] + [-1] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_983_0_MAIN_LE(&&(&&(>(x2[0], 0), >(x1[0], 0)), >(x0[0], 0)), x0[0], x1[0], x2[0])), ≥)∧[(2)bni_30 + (-1)Bound*bni_30] + [bni_30]x0[0] ≥ 0∧[1 + (-1)bso_31] ≥ 0)
(4) (x0[0] + [-1] ≥ 0∧x2[0] + [-1] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_983_0_MAIN_LE(&&(&&(>(x2[0], 0), >(x1[0], 0)), >(x0[0], 0)), x0[0], x1[0], x2[0])), ≥)∧[(2)bni_30 + (-1)Bound*bni_30] + [bni_30]x0[0] ≥ 0∧[1 + (-1)bso_31] ≥ 0)
(5) (x0[0] + [-1] ≥ 0∧x2[0] + [-1] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_983_0_MAIN_LE(&&(&&(>(x2[0], 0), >(x1[0], 0)), >(x0[0], 0)), x0[0], x1[0], x2[0])), ≥)∧[(2)bni_30 + (-1)Bound*bni_30] + [bni_30]x0[0] ≥ 0∧[1 + (-1)bso_31] ≥ 0)
(6) (x0[0] ≥ 0∧x2[0] + [-1] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_983_0_MAIN_LE(&&(&&(>(x2[0], 0), >(x1[0], 0)), >(x0[0], 0)), x0[0], x1[0], x2[0])), ≥)∧[(3)bni_30 + (-1)Bound*bni_30] + [bni_30]x0[0] ≥ 0∧[1 + (-1)bso_31] ≥ 0)
(7) (x0[0] ≥ 0∧x2[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_983_0_MAIN_LE(&&(&&(>(x2[0], 0), >(x1[0], 0)), >(x0[0], 0)), x0[0], x1[0], x2[0])), ≥)∧[(3)bni_30 + (-1)Bound*bni_30] + [bni_30]x0[0] ≥ 0∧[1 + (-1)bso_31] ≥ 0)
(8) (x0[0] ≥ 0∧x2[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_983_0_MAIN_LE(&&(&&(>(x2[0], 0), >(x1[0], 0)), >(x0[0], 0)), x0[0], x1[0], x2[0])), ≥)∧[(3)bni_30 + (-1)Bound*bni_30] + [bni_30]x0[0] ≥ 0∧[1 + (-1)bso_31] ≥ 0)
(9) (&&(&&(>(x2[0], 0), >(x1[0], 0)), >(x0[0], 0))=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1]∧x2[0]=x2[1]∧+(x0[1], -1)=x0[0]1∧+(x1[1], -1)=x1[0]1∧x2[1]=x2[0]1 ⇒ COND_983_0_MAIN_LE(TRUE, x0[1], x1[1], x2[1])≥NonInfC∧COND_983_0_MAIN_LE(TRUE, x0[1], x1[1], x2[1])≥983_0_MAIN_LE(+(x0[1], -1), +(x1[1], -1), x2[1])∧(UIncreasing(983_0_MAIN_LE(+(x0[1], -1), +(x1[1], -1), x2[1])), ≥))
(10) (>(x0[0], 0)=TRUE∧>(x2[0], 0)=TRUE∧>(x1[0], 0)=TRUE ⇒ COND_983_0_MAIN_LE(TRUE, x0[0], x1[0], x2[0])≥NonInfC∧COND_983_0_MAIN_LE(TRUE, x0[0], x1[0], x2[0])≥983_0_MAIN_LE(+(x0[0], -1), +(x1[0], -1), x2[0])∧(UIncreasing(983_0_MAIN_LE(+(x0[1], -1), +(x1[1], -1), x2[1])), ≥))
(11) (x0[0] + [-1] ≥ 0∧x2[0] + [-1] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(983_0_MAIN_LE(+(x0[1], -1), +(x1[1], -1), x2[1])), ≥)∧[bni_32 + (-1)Bound*bni_32] + [bni_32]x0[0] ≥ 0∧[(-1)bso_33] ≥ 0)
(12) (x0[0] + [-1] ≥ 0∧x2[0] + [-1] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(983_0_MAIN_LE(+(x0[1], -1), +(x1[1], -1), x2[1])), ≥)∧[bni_32 + (-1)Bound*bni_32] + [bni_32]x0[0] ≥ 0∧[(-1)bso_33] ≥ 0)
(13) (x0[0] + [-1] ≥ 0∧x2[0] + [-1] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(983_0_MAIN_LE(+(x0[1], -1), +(x1[1], -1), x2[1])), ≥)∧[bni_32 + (-1)Bound*bni_32] + [bni_32]x0[0] ≥ 0∧[(-1)bso_33] ≥ 0)
(14) (x0[0] ≥ 0∧x2[0] + [-1] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(983_0_MAIN_LE(+(x0[1], -1), +(x1[1], -1), x2[1])), ≥)∧[(2)bni_32 + (-1)Bound*bni_32] + [bni_32]x0[0] ≥ 0∧[(-1)bso_33] ≥ 0)
(15) (x0[0] ≥ 0∧x2[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(983_0_MAIN_LE(+(x0[1], -1), +(x1[1], -1), x2[1])), ≥)∧[(2)bni_32 + (-1)Bound*bni_32] + [bni_32]x0[0] ≥ 0∧[(-1)bso_33] ≥ 0)
(16) (x0[0] ≥ 0∧x2[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(983_0_MAIN_LE(+(x0[1], -1), +(x1[1], -1), x2[1])), ≥)∧[(2)bni_32 + (-1)Bound*bni_32] + [bni_32]x0[0] ≥ 0∧[(-1)bso_33] ≥ 0)
(17) (&&(&&(>(x2[0], 0), >(x1[0], 0)), >(x0[0], 0))=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1]∧x2[0]=x2[1]∧+(x0[1], -1)=x0[2]∧+(x1[1], -1)=0∧x2[1]=x2[2] ⇒ COND_983_0_MAIN_LE(TRUE, x0[1], x1[1], x2[1])≥NonInfC∧COND_983_0_MAIN_LE(TRUE, x0[1], x1[1], x2[1])≥983_0_MAIN_LE(+(x0[1], -1), +(x1[1], -1), x2[1])∧(UIncreasing(983_0_MAIN_LE(+(x0[1], -1), +(x1[1], -1), x2[1])), ≥))
(18) (+(x1[0], -1)=0∧>(x0[0], 0)=TRUE∧>(x2[0], 0)=TRUE∧>(x1[0], 0)=TRUE ⇒ COND_983_0_MAIN_LE(TRUE, x0[0], x1[0], x2[0])≥NonInfC∧COND_983_0_MAIN_LE(TRUE, x0[0], x1[0], x2[0])≥983_0_MAIN_LE(+(x0[0], -1), +(x1[0], -1), x2[0])∧(UIncreasing(983_0_MAIN_LE(+(x0[1], -1), +(x1[1], -1), x2[1])), ≥))
(19) (x1[0] + [-1] ≥ 0∧x0[0] + [-1] ≥ 0∧x2[0] + [-1] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(983_0_MAIN_LE(+(x0[1], -1), +(x1[1], -1), x2[1])), ≥)∧[bni_32 + (-1)Bound*bni_32] + [bni_32]x0[0] ≥ 0∧[(-1)bso_33] ≥ 0)
(20) (x1[0] + [-1] ≥ 0∧x0[0] + [-1] ≥ 0∧x2[0] + [-1] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(983_0_MAIN_LE(+(x0[1], -1), +(x1[1], -1), x2[1])), ≥)∧[bni_32 + (-1)Bound*bni_32] + [bni_32]x0[0] ≥ 0∧[(-1)bso_33] ≥ 0)
(21) (x1[0] + [-1] ≥ 0∧x0[0] + [-1] ≥ 0∧x2[0] + [-1] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(983_0_MAIN_LE(+(x0[1], -1), +(x1[1], -1), x2[1])), ≥)∧[bni_32 + (-1)Bound*bni_32] + [bni_32]x0[0] ≥ 0∧[(-1)bso_33] ≥ 0)
(22) (x1[0] ≥ 0∧x0[0] + [-1] ≥ 0∧x2[0] + [-1] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(983_0_MAIN_LE(+(x0[1], -1), +(x1[1], -1), x2[1])), ≥)∧[bni_32 + (-1)Bound*bni_32] + [bni_32]x0[0] ≥ 0∧[(-1)bso_33] ≥ 0)
(23) (x1[0] ≥ 0∧x0[0] ≥ 0∧x2[0] + [-1] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(983_0_MAIN_LE(+(x0[1], -1), +(x1[1], -1), x2[1])), ≥)∧[(2)bni_32 + (-1)Bound*bni_32] + [bni_32]x0[0] ≥ 0∧[(-1)bso_33] ≥ 0)
(24) (x1[0] ≥ 0∧x0[0] ≥ 0∧x2[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(983_0_MAIN_LE(+(x0[1], -1), +(x1[1], -1), x2[1])), ≥)∧[(2)bni_32 + (-1)Bound*bni_32] + [bni_32]x0[0] ≥ 0∧[(-1)bso_33] ≥ 0)
(25) (>(x2[2], 0)=TRUE∧x0[2]=x0[3]∧x2[2]=x2[3] ⇒ 983_0_MAIN_LE(x0[2], 0, x2[2])≥NonInfC∧983_0_MAIN_LE(x0[2], 0, x2[2])≥COND_983_0_MAIN_LE1(>(x2[2], 0), x0[2], 0, x2[2])∧(UIncreasing(COND_983_0_MAIN_LE1(>(x2[2], 0), x0[2], 0, x2[2])), ≥))
(26) (>(x2[2], 0)=TRUE ⇒ 983_0_MAIN_LE(x0[2], 0, x2[2])≥NonInfC∧983_0_MAIN_LE(x0[2], 0, x2[2])≥COND_983_0_MAIN_LE1(>(x2[2], 0), x0[2], 0, x2[2])∧(UIncreasing(COND_983_0_MAIN_LE1(>(x2[2], 0), x0[2], 0, x2[2])), ≥))
(27) (x2[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_983_0_MAIN_LE1(>(x2[2], 0), x0[2], 0, x2[2])), ≥)∧[(2)bni_34 + (-1)Bound*bni_34] + [bni_34]x0[2] ≥ 0∧[(-1)bso_35] ≥ 0)
(28) (x2[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_983_0_MAIN_LE1(>(x2[2], 0), x0[2], 0, x2[2])), ≥)∧[(2)bni_34 + (-1)Bound*bni_34] + [bni_34]x0[2] ≥ 0∧[(-1)bso_35] ≥ 0)
(29) (x2[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_983_0_MAIN_LE1(>(x2[2], 0), x0[2], 0, x2[2])), ≥)∧[(2)bni_34 + (-1)Bound*bni_34] + [bni_34]x0[2] ≥ 0∧[(-1)bso_35] ≥ 0)
(30) (x2[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_983_0_MAIN_LE1(>(x2[2], 0), x0[2], 0, x2[2])), ≥)∧[bni_34] = 0∧[(2)bni_34 + (-1)Bound*bni_34] ≥ 0∧0 = 0∧[(-1)bso_35] ≥ 0)
(31) (x2[2] ≥ 0 ⇒ (UIncreasing(COND_983_0_MAIN_LE1(>(x2[2], 0), x0[2], 0, x2[2])), ≥)∧[bni_34] = 0∧[(2)bni_34 + (-1)Bound*bni_34] ≥ 0∧0 = 0∧[(-1)bso_35] ≥ 0)
(32) (x0[3]=x0[0]∧x2[3]=x1[0]∧x2[3]=x2[0] ⇒ COND_983_0_MAIN_LE1(TRUE, x0[3], 0, x2[3])≥NonInfC∧COND_983_0_MAIN_LE1(TRUE, x0[3], 0, x2[3])≥983_0_MAIN_LE(x0[3], x2[3], x2[3])∧(UIncreasing(983_0_MAIN_LE(x0[3], x2[3], x2[3])), ≥))
(33) (COND_983_0_MAIN_LE1(TRUE, x0[3], 0, x2[3])≥NonInfC∧COND_983_0_MAIN_LE1(TRUE, x0[3], 0, x2[3])≥983_0_MAIN_LE(x0[3], x2[3], x2[3])∧(UIncreasing(983_0_MAIN_LE(x0[3], x2[3], x2[3])), ≥))
(34) ((UIncreasing(983_0_MAIN_LE(x0[3], x2[3], x2[3])), ≥)∧[(-1)bso_37] ≥ 0)
(35) ((UIncreasing(983_0_MAIN_LE(x0[3], x2[3], x2[3])), ≥)∧[(-1)bso_37] ≥ 0)
(36) ((UIncreasing(983_0_MAIN_LE(x0[3], x2[3], x2[3])), ≥)∧[(-1)bso_37] ≥ 0)
(37) ((UIncreasing(983_0_MAIN_LE(x0[3], x2[3], x2[3])), ≥)∧0 = 0∧0 = 0∧[(-1)bso_37] ≥ 0)
(38) (x0[3]=x0[2]∧x2[3]=0∧x2[3]=x2[2] ⇒ COND_983_0_MAIN_LE1(TRUE, x0[3], 0, x2[3])≥NonInfC∧COND_983_0_MAIN_LE1(TRUE, x0[3], 0, x2[3])≥983_0_MAIN_LE(x0[3], x2[3], x2[3])∧(UIncreasing(983_0_MAIN_LE(x0[3], x2[3], x2[3])), ≥))
(39) (COND_983_0_MAIN_LE1(TRUE, x0[3], 0, 0)≥NonInfC∧COND_983_0_MAIN_LE1(TRUE, x0[3], 0, 0)≥983_0_MAIN_LE(x0[3], 0, 0)∧(UIncreasing(983_0_MAIN_LE(x0[3], x2[3], x2[3])), ≥))
(40) ((UIncreasing(983_0_MAIN_LE(x0[3], x2[3], x2[3])), ≥)∧[(-1)bso_37] ≥ 0)
(41) ((UIncreasing(983_0_MAIN_LE(x0[3], x2[3], x2[3])), ≥)∧[(-1)bso_37] ≥ 0)
(42) ((UIncreasing(983_0_MAIN_LE(x0[3], x2[3], x2[3])), ≥)∧[(-1)bso_37] ≥ 0)
(43) ((UIncreasing(983_0_MAIN_LE(x0[3], x2[3], x2[3])), ≥)∧0 = 0∧[(-1)bso_37] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(983_0_main_LE(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x2 + [-1]x1
POL(Cond_983_0_main_LE(x1, x2, x3, x4)) = [-1] + [-1]x4 + [-1]x3 + [-1]x2 + [-1]x1
POL(<=(x1, x2)) = [-1]
POL(0) = 0
POL(986_0_main_Return) = [-1]
POL(983_0_MAIN_LE(x1, x2, x3)) = [2] + x1
POL(COND_983_0_MAIN_LE(x1, x2, x3, x4)) = [1] + x2 + [-1]x1
POL(&&(x1, x2)) = 0
POL(>(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(COND_983_0_MAIN_LE1(x1, x2, x3, x4)) = [2] + [-1]x3 + x2
983_0_MAIN_LE(x0[0], x1[0], x2[0]) → COND_983_0_MAIN_LE(&&(&&(>(x2[0], 0), >(x1[0], 0)), >(x0[0], 0)), x0[0], x1[0], x2[0])
983_0_MAIN_LE(x0[0], x1[0], x2[0]) → COND_983_0_MAIN_LE(&&(&&(>(x2[0], 0), >(x1[0], 0)), >(x0[0], 0)), x0[0], x1[0], x2[0])
COND_983_0_MAIN_LE(TRUE, x0[1], x1[1], x2[1]) → 983_0_MAIN_LE(+(x0[1], -1), +(x1[1], -1), x2[1])
COND_983_0_MAIN_LE(TRUE, x0[1], x1[1], x2[1]) → 983_0_MAIN_LE(+(x0[1], -1), +(x1[1], -1), x2[1])
983_0_MAIN_LE(x0[2], 0, x2[2]) → COND_983_0_MAIN_LE1(>(x2[2], 0), x0[2], 0, x2[2])
COND_983_0_MAIN_LE1(TRUE, x0[3], 0, x2[3]) → 983_0_MAIN_LE(x0[3], x2[3], x2[3])
&&(TRUE, TRUE)1 ↔ TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(FALSE, FALSE)1 ↔ FALSE1
| != | ~ | Neq: (Integer, Integer) -> Boolean |
| * | ~ | Mul: (Integer, Integer) -> Integer |
| >= | ~ | Ge: (Integer, Integer) -> Boolean |
| -1 | ~ | UnaryMinus: (Integer) -> Integer |
| | | ~ | Bwor: (Integer, Integer) -> Integer |
| / | ~ | Div: (Integer, Integer) -> Integer |
| = | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer | |
| || | ~ | Lor: (Boolean, Boolean) -> Boolean |
| ! | ~ | Lnot: (Boolean) -> Boolean |
| < | ~ | Lt: (Integer, Integer) -> Boolean |
| - | ~ | Sub: (Integer, Integer) -> Integer |
| <= | ~ | Le: (Integer, Integer) -> Boolean |
| > | ~ | Gt: (Integer, Integer) -> Boolean |
| ~ | ~ | Bwnot: (Integer) -> Integer |
| % | ~ | Mod: (Integer, Integer) -> Integer |
| & | ~ | Bwand: (Integer, Integer) -> Integer |
| + | ~ | Add: (Integer, Integer) -> Integer |
| && | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(1) -> (2), if ((x0[1] + -1 →* x0[2])∧(x1[1] + -1 →* 0)∧(x2[1] →* x2[2]))
(3) -> (2), if ((x0[3] →* x0[2])∧(x2[3] →* 0)∧(x2[3] →* x2[2]))
(2) -> (3), if ((x2[2] > 0 →* TRUE)∧(x0[2] →* x0[3])∧(x2[2] →* x2[3]))
| != | ~ | Neq: (Integer, Integer) -> Boolean |
| * | ~ | Mul: (Integer, Integer) -> Integer |
| >= | ~ | Ge: (Integer, Integer) -> Boolean |
| -1 | ~ | UnaryMinus: (Integer) -> Integer |
| | | ~ | Bwor: (Integer, Integer) -> Integer |
| / | ~ | Div: (Integer, Integer) -> Integer |
| = | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer | |
| || | ~ | Lor: (Boolean, Boolean) -> Boolean |
| ! | ~ | Lnot: (Boolean) -> Boolean |
| < | ~ | Lt: (Integer, Integer) -> Boolean |
| - | ~ | Sub: (Integer, Integer) -> Integer |
| <= | ~ | Le: (Integer, Integer) -> Boolean |
| > | ~ | Gt: (Integer, Integer) -> Boolean |
| ~ | ~ | Bwnot: (Integer) -> Integer |
| % | ~ | Mod: (Integer, Integer) -> Integer |
| & | ~ | Bwand: (Integer, Integer) -> Integer |
| + | ~ | Add: (Integer, Integer) -> Integer |
| && | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(3) -> (2), if ((x0[3] →* x0[2])∧(x2[3] →* 0)∧(x2[3] →* x2[2]))
(2) -> (3), if ((x2[2] > 0 →* TRUE)∧(x0[2] →* x0[3])∧(x2[2] →* x2[3]))
| != | ~ | Neq: (Integer, Integer) -> Boolean |
| * | ~ | Mul: (Integer, Integer) -> Integer |
| >= | ~ | Ge: (Integer, Integer) -> Boolean |
| -1 | ~ | UnaryMinus: (Integer) -> Integer |
| | | ~ | Bwor: (Integer, Integer) -> Integer |
| / | ~ | Div: (Integer, Integer) -> Integer |
| = | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer | |
| || | ~ | Lor: (Boolean, Boolean) -> Boolean |
| ! | ~ | Lnot: (Boolean) -> Boolean |
| < | ~ | Lt: (Integer, Integer) -> Boolean |
| - | ~ | Sub: (Integer, Integer) -> Integer |
| <= | ~ | Le: (Integer, Integer) -> Boolean |
| > | ~ | Gt: (Integer, Integer) -> Boolean |
| ~ | ~ | Bwnot: (Integer) -> Integer |
| % | ~ | Mod: (Integer, Integer) -> Integer |
| & | ~ | Bwand: (Integer, Integer) -> Integer |
| + | ~ | Add: (Integer, Integer) -> Integer |
| && | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(3) -> (2), if ((x0[3] →* x0[2])∧(x2[3] →* 0)∧(x2[3] →* x2[2]))
(2) -> (3), if ((x2[2] > 0 →* TRUE)∧(x0[2] →* x0[3])∧(x2[2] →* x2[3]))
COND_983_0_MAIN_LE1(true, x0[3], pos(01), x2[3]) → 983_0_MAIN_LE(x0[3], x2[3], x2[3])
983_0_MAIN_LE(x0[2], pos(01), x2[2]) → COND_983_0_MAIN_LE1(greater_int(x2[2], pos(01)), x0[2], pos(01), x2[2])
greater_int(pos(01), pos(01)) → false
greater_int(pos(01), neg(01)) → false
greater_int(neg(01), pos(01)) → false
greater_int(neg(01), neg(01)) → false
greater_int(pos(01), pos(s(y))) → false
greater_int(neg(01), pos(s(y))) → false
greater_int(pos(01), neg(s(y))) → true
greater_int(neg(01), neg(s(y))) → true
greater_int(pos(s(x)), pos(01)) → true
greater_int(neg(s(x)), pos(01)) → false
greater_int(pos(s(x)), neg(01)) → true
greater_int(neg(s(x)), neg(01)) → false
greater_int(pos(s(x)), neg(s(y))) → true
greater_int(neg(s(x)), pos(s(y))) → false
greater_int(pos(s(x)), pos(s(y))) → greater_int(pos(x), pos(y))
greater_int(neg(s(x)), neg(s(y))) → greater_int(neg(x), neg(y))
983_0_main_LE(x0, x1, x2)
Cond_983_0_main_LE(true, x0, x1, x2)
greater_int(pos(01), pos(01))
greater_int(pos(01), neg(01))
greater_int(neg(01), pos(01))
greater_int(neg(01), neg(01))
greater_int(pos(01), pos(s(x0)))
greater_int(neg(01), pos(s(x0)))
greater_int(pos(01), neg(s(x0)))
greater_int(neg(01), neg(s(x0)))
greater_int(pos(s(x0)), pos(01))
greater_int(neg(s(x0)), pos(01))
greater_int(pos(s(x0)), neg(01))
greater_int(neg(s(x0)), neg(01))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
COND_983_0_MAIN_LE1(true, x0[3], pos(01), x2[3]) → 983_0_MAIN_LE(x0[3], x2[3], x2[3])
983_0_MAIN_LE(x0[2], pos(01), x2[2]) → COND_983_0_MAIN_LE1(greater_int(x2[2], pos(01)), x0[2], pos(01), x2[2])
greater_int(pos(01), pos(01)) → false
greater_int(neg(01), pos(01)) → false
greater_int(pos(s(x)), pos(01)) → true
greater_int(neg(s(x)), pos(01)) → false
983_0_main_LE(x0, x1, x2)
Cond_983_0_main_LE(true, x0, x1, x2)
greater_int(pos(01), pos(01))
greater_int(pos(01), neg(01))
greater_int(neg(01), pos(01))
greater_int(neg(01), neg(01))
greater_int(pos(01), pos(s(x0)))
greater_int(neg(01), pos(s(x0)))
greater_int(pos(01), neg(s(x0)))
greater_int(neg(01), neg(s(x0)))
greater_int(pos(s(x0)), pos(01))
greater_int(neg(s(x0)), pos(01))
greater_int(pos(s(x0)), neg(01))
greater_int(neg(s(x0)), neg(01))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
983_0_main_LE(x0, x1, x2)
Cond_983_0_main_LE(true, x0, x1, x2)
COND_983_0_MAIN_LE1(true, x0[3], pos(01), x2[3]) → 983_0_MAIN_LE(x0[3], x2[3], x2[3])
983_0_MAIN_LE(x0[2], pos(01), x2[2]) → COND_983_0_MAIN_LE1(greater_int(x2[2], pos(01)), x0[2], pos(01), x2[2])
greater_int(pos(01), pos(01)) → false
greater_int(neg(01), pos(01)) → false
greater_int(pos(s(x)), pos(01)) → true
greater_int(neg(s(x)), pos(01)) → false
greater_int(pos(01), pos(01))
greater_int(pos(01), neg(01))
greater_int(neg(01), pos(01))
greater_int(neg(01), neg(01))
greater_int(pos(01), pos(s(x0)))
greater_int(neg(01), pos(s(x0)))
greater_int(pos(01), neg(s(x0)))
greater_int(neg(01), neg(s(x0)))
greater_int(pos(s(x0)), pos(01))
greater_int(neg(s(x0)), pos(01))
greater_int(pos(s(x0)), neg(01))
greater_int(neg(s(x0)), neg(01))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
983_0_MAIN_LE(z0, pos(01), pos(01)) → COND_983_0_MAIN_LE1(greater_int(pos(01), pos(01)), z0, pos(01), pos(01))
COND_983_0_MAIN_LE1(true, x0[3], pos(01), x2[3]) → 983_0_MAIN_LE(x0[3], x2[3], x2[3])
983_0_MAIN_LE(z0, pos(01), pos(01)) → COND_983_0_MAIN_LE1(greater_int(pos(01), pos(01)), z0, pos(01), pos(01))
greater_int(pos(01), pos(01)) → false
greater_int(neg(01), pos(01)) → false
greater_int(pos(s(x)), pos(01)) → true
greater_int(neg(s(x)), pos(01)) → false
greater_int(pos(01), pos(01))
greater_int(pos(01), neg(01))
greater_int(neg(01), pos(01))
greater_int(neg(01), neg(01))
greater_int(pos(01), pos(s(x0)))
greater_int(neg(01), pos(s(x0)))
greater_int(pos(01), neg(s(x0)))
greater_int(neg(01), neg(s(x0)))
greater_int(pos(s(x0)), pos(01))
greater_int(neg(s(x0)), pos(01))
greater_int(pos(s(x0)), neg(01))
greater_int(neg(s(x0)), neg(01))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
POL(01) = 0
POL(983_0_MAIN_LE(x1, x2, x3)) = 1 + x1
POL(COND_983_0_MAIN_LE1(x1, x2, x3, x4)) = x1 + x2 + x4
POL(false) = 0
POL(greater_int(x1, x2)) = 1 + x1
POL(neg(x1)) = 1
POL(pos(x1)) = x1
POL(s(x1)) = 1
POL(true) = 1
POL(witness_sort[a9]) = 1
proof of internal
# AProVE Commit ID: 5e8c0853704aa87c1e40fe40458b477b7af98181 cotto 20110121
Partial correctness of the following Program
[x, x0, x1, x2, x5]
equal_bool(true, false) -> false
equal_bool(false, true) -> false
equal_bool(true, true) -> true
equal_bool(false, false) -> true
true and x -> x
false and x -> false
true or x -> true
false or x -> x
not(false) -> true
not(true) -> false
isa_true(true) -> true
isa_true(false) -> false
isa_false(true) -> false
isa_false(false) -> true
equal_sort[a0](witness_sort[a0], witness_sort[a0]) -> true
equal_sort[a2](witness_sort[a2], witness_sort[a2]) -> true
equal_sort[a9](pos(x0), pos(x1)) -> equal_sort[a9](x0, x1)
equal_sort[a9](pos(x0), neg(x1)) -> false
equal_sort[a9](pos(x0), witness_sort[a9]) -> false
equal_sort[a9](neg(x0), pos(x1)) -> false
equal_sort[a9](neg(x0), neg(x1)) -> equal_sort[a9](x0, x1)
equal_sort[a9](neg(x0), witness_sort[a9]) -> false
equal_sort[a9](witness_sort[a9], pos(x0)) -> false
equal_sort[a9](witness_sort[a9], neg(x0)) -> false
equal_sort[a9](witness_sort[a9], witness_sort[a9]) -> true
equal_sort[a10](01, 01) -> true
equal_sort[a10](01, s(x0)) -> false
equal_sort[a10](s(x0), 01) -> false
equal_sort[a10](s(x0), s(x1)) -> equal_sort[a10](x0, x1)
equal_sort[a21](witness_sort[a21], witness_sort[a21]) -> true
greater_int'(pos(01), pos(01)) -> true
greater_int'(neg(01), pos(01)) -> true
greater_int'(pos(s(x2)), pos(01)) -> true
greater_int'(neg(s(x5)), pos(01)) -> true
greater_int'(pos(01), pos(s(x1))) -> false
greater_int'(pos(01), neg(x0)) -> false
greater_int'(pos(01), witness_sort[a9]) -> false
greater_int'(pos(s(x0)), x1) -> false
greater_int'(neg(01), pos(s(x1))) -> false
greater_int'(neg(01), neg(x0)) -> false
greater_int'(neg(01), witness_sort[a9]) -> false
greater_int'(neg(s(x0)), pos(s(x1))) -> false
greater_int'(neg(s(x0)), neg(x2)) -> false
greater_int'(neg(s(x0)), witness_sort[a9]) -> false
greater_int'(witness_sort[a9], x1) -> false
greater_int(pos(01), pos(01)) -> false
greater_int(neg(01), pos(01)) -> false
greater_int(pos(s(x2)), pos(01)) -> true
greater_int(neg(s(x5)), pos(01)) -> false
greater_int(pos(01), pos(s(x1))) -> false
greater_int(pos(01), neg(x0)) -> false
greater_int(pos(01), witness_sort[a9]) -> false
greater_int(pos(s(x0)), x1) -> false
greater_int(neg(01), pos(s(x1))) -> false
greater_int(neg(01), neg(x0)) -> false
greater_int(neg(01), witness_sort[a9]) -> false
greater_int(neg(s(x0)), pos(s(x1))) -> false
greater_int(neg(s(x0)), neg(x2)) -> false
greater_int(neg(s(x0)), witness_sort[a9]) -> false
greater_int(witness_sort[a9], x1) -> false
using the following formula:
z0:sort[a9].(z0=pos(01)->greater_int'(z0, z0)=true)
could be successfully shown:
(0) Formula
(1) Induction by data structure [EQUIVALENT]
(2) AND
(3) Formula
(4) Symbolic evaluation [EQUIVALENT]
(5) Formula
(6) Induction by data structure [EQUIVALENT]
(7) AND
(8) Formula
(9) Symbolic evaluation [EQUIVALENT]
(10) YES
(11) Formula
(12) Symbolic evaluation [EQUIVALENT]
(13) YES
(14) Formula
(15) Symbolic evaluation [EQUIVALENT]
(16) YES
(17) Formula
(18) Symbolic evaluation [EQUIVALENT]
(19) YES
----------------------------------------
(0)
Obligation:
Formula:
z0:sort[a9].(z0=pos(01)->greater_int'(z0, z0)=true)
There are no hypotheses.
----------------------------------------
(1) Induction by data structure (EQUIVALENT)
Induction by data structure sort[a9] generates the following cases:
1. Base Case:
Formula:
(witness_sort[a9]=pos(01)->greater_int'(witness_sort[a9], witness_sort[a9])=true)
There are no hypotheses.
1. Step Case:
Formula:
n:sort[a10].(pos(n)=pos(01)->greater_int'(pos(n), pos(n))=true)
There are no hypotheses.
1. Step Case:
Formula:
n:sort[a10].(neg(n)=pos(01)->greater_int'(neg(n), neg(n))=true)
There are no hypotheses.
----------------------------------------
(2)
Complex Obligation (AND)
----------------------------------------
(3)
Obligation:
Formula:
n:sort[a10].(pos(n)=pos(01)->greater_int'(pos(n), pos(n))=true)
There are no hypotheses.
----------------------------------------
(4) Symbolic evaluation (EQUIVALENT)
Could be reduced to the following new obligation by simple symbolic evaluation:
n:sort[a10].(n=01->greater_int'(pos(n), pos(n))=true)
----------------------------------------
(5)
Obligation:
Formula:
n:sort[a10].(n=01->greater_int'(pos(n), pos(n))=true)
There are no hypotheses.
----------------------------------------
(6) Induction by data structure (EQUIVALENT)
Induction by data structure sort[a10] generates the following cases:
1. Base Case:
Formula:
(01=01->greater_int'(pos(01), pos(01))=true)
There are no hypotheses.
1. Step Case:
Formula:
n':sort[a0].(s(n')=01->greater_int'(pos(s(n')), pos(s(n')))=true)
There are no hypotheses.
----------------------------------------
(7)
Complex Obligation (AND)
----------------------------------------
(8)
Obligation:
Formula:
(01=01->greater_int'(pos(01), pos(01))=true)
There are no hypotheses.
----------------------------------------
(9) Symbolic evaluation (EQUIVALENT)
Could be reduced to the following new obligation by simple symbolic evaluation:
True
----------------------------------------
(10)
YES
----------------------------------------
(11)
Obligation:
Formula:
n':sort[a0].(s(n')=01->greater_int'(pos(s(n')), pos(s(n')))=true)
There are no hypotheses.
----------------------------------------
(12) Symbolic evaluation (EQUIVALENT)
Could be reduced to the following new obligation by simple symbolic evaluation:
True
----------------------------------------
(13)
YES
----------------------------------------
(14)
Obligation:
Formula:
n:sort[a10].(neg(n)=pos(01)->greater_int'(neg(n), neg(n))=true)
There are no hypotheses.
----------------------------------------
(15) Symbolic evaluation (EQUIVALENT)
Could be reduced to the following new obligation by simple symbolic evaluation:
True
----------------------------------------
(16)
YES
----------------------------------------
(17)
Obligation:
Formula:
(witness_sort[a9]=pos(01)->greater_int'(witness_sort[a9], witness_sort[a9])=true)
There are no hypotheses.
----------------------------------------
(18) Symbolic evaluation (EQUIVALENT)
Could be reduced to the following new obligation by simple symbolic evaluation:
True
----------------------------------------
(19)
YES
COND_983_0_MAIN_LE1(true, x0[3], pos(01), x2[3]) → 983_0_MAIN_LE(x0[3], x2[3], x2[3])
greater_int(pos(01), pos(01)) → false
greater_int(neg(01), pos(01)) → false
greater_int(pos(s(x)), pos(01)) → true
greater_int(neg(s(x)), pos(01)) → false
greater_int(pos(01), pos(01))
greater_int(pos(01), neg(01))
greater_int(neg(01), pos(01))
greater_int(neg(01), neg(01))
greater_int(pos(01), pos(s(x0)))
greater_int(neg(01), pos(s(x0)))
greater_int(pos(01), neg(s(x0)))
greater_int(neg(01), neg(s(x0)))
greater_int(pos(s(x0)), pos(01))
greater_int(neg(s(x0)), pos(01))
greater_int(pos(s(x0)), neg(01))
greater_int(neg(s(x0)), neg(01))
greater_int(pos(s(x0)), neg(s(x1)))
greater_int(neg(s(x0)), pos(s(x1)))
greater_int(pos(s(x0)), pos(s(x1)))
greater_int(neg(s(x0)), neg(s(x1)))
greater_int'(pos(01), pos(01)) → true
greater_int'(neg(01), pos(01)) → true
greater_int'(pos(s(x2)), pos(01)) → true
greater_int'(neg(s(x5)), pos(01)) → true
greater_int'(pos(01), pos(s(x1))) → false
greater_int'(pos(01), neg(x0)) → false
greater_int'(pos(01), witness_sort[a9]) → false
greater_int'(pos(s(x0)), x1) → false
greater_int'(neg(01), pos(s(x1))) → false
greater_int'(neg(01), neg(x0)) → false
greater_int'(neg(01), witness_sort[a9]) → false
greater_int'(neg(s(x0)), pos(s(x1))) → false
greater_int'(neg(s(x0)), neg(x2)) → false
greater_int'(neg(s(x0)), witness_sort[a9]) → false
greater_int'(witness_sort[a9], x1) → false
greater_int(pos(01), pos(01)) → false
greater_int(neg(01), pos(01)) → false
greater_int(pos(s(x2)), pos(01)) → true
greater_int(neg(s(x5)), pos(01)) → false
greater_int(pos(01), pos(s(x1))) → false
greater_int(pos(01), neg(x0)) → false
greater_int(pos(01), witness_sort[a9]) → false
greater_int(pos(s(x0)), x1) → false
greater_int(neg(01), pos(s(x1))) → false
greater_int(neg(01), neg(x0)) → false
greater_int(neg(01), witness_sort[a9]) → false
greater_int(neg(s(x0)), pos(s(x1))) → false
greater_int(neg(s(x0)), neg(x2)) → false
greater_int(neg(s(x0)), witness_sort[a9]) → false
greater_int(witness_sort[a9], x1) → false
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(false) → true
not(true) → false
isa_true(true) → true
isa_true(false) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a0](witness_sort[a0], witness_sort[a0]) → true
equal_sort[a2](witness_sort[a2], witness_sort[a2]) → true
equal_sort[a9](pos(x0), pos(x1)) → equal_sort[a9](x0, x1)
equal_sort[a9](pos(x0), neg(x1)) → false
equal_sort[a9](pos(x0), witness_sort[a9]) → false
equal_sort[a9](neg(x0), pos(x1)) → false
equal_sort[a9](neg(x0), neg(x1)) → equal_sort[a9](x0, x1)
equal_sort[a9](neg(x0), witness_sort[a9]) → false
equal_sort[a9](witness_sort[a9], pos(x0)) → false
equal_sort[a9](witness_sort[a9], neg(x0)) → false
equal_sort[a9](witness_sort[a9], witness_sort[a9]) → true
equal_sort[a10](01, 01) → true
equal_sort[a10](01, s(x0)) → false
equal_sort[a10](s(x0), 01) → false
equal_sort[a10](s(x0), s(x1)) → equal_sort[a10](x0, x1)
equal_sort[a21](witness_sort[a21], witness_sort[a21]) → true
greaterint'2 > [false, and2] > [01, true, s1, witnesssort[a9], isatrue1, witnesssort[a0]]
greaterint2 > [false, and2] > [01, true, s1, witnesssort[a9], isatrue1, witnesssort[a0]]
equalbool2 > [false, and2] > [01, true, s1, witnesssort[a9], isatrue1, witnesssort[a0]]
or2 > [01, true, s1, witnesssort[a9], isatrue1, witnesssort[a0]]
not1 > [false, and2] > [01, true, s1, witnesssort[a9], isatrue1, witnesssort[a0]]
isafalse1 > [false, and2] > [01, true, s1, witnesssort[a9], isatrue1, witnesssort[a0]]
equalsort[a0]2 > [01, true, s1, witnesssort[a9], isatrue1, witnesssort[a0]]
equalsort[a2]2 > [01, true, s1, witnesssort[a9], isatrue1, witnesssort[a0]]
equalsort[a9]2 > [false, and2] > [01, true, s1, witnesssort[a9], isatrue1, witnesssort[a0]]
equalsort[a10]2 > [false, and2] > [01, true, s1, witnesssort[a9], isatrue1, witnesssort[a0]]
equalsort[a21]2 > [01, true, s1, witnesssort[a9], isatrue1, witnesssort[a0]]
greaterint'2: multiset
pos1: multiset
01: multiset
true: multiset
neg1: multiset
s1: [1]
false: multiset
witnesssort[a9]: multiset
greaterint2: [2,1]
equalbool2: [2,1]
and2: multiset
or2: [2,1]
not1: multiset
isatrue1: [1]
isafalse1: [1]
equalsort[a0]2: [1,2]
witnesssort[a0]: multiset
equalsort[a2]2: multiset
witnesssort[a2]: multiset
equalsort[a9]2: [2,1]
equalsort[a10]2: multiset
equalsort[a21]2: [2,1]
witnesssort[a21]: multiset
greater_int'(pos(01), pos(01)) → true
greater_int'(neg(01), pos(01)) → true
greater_int'(pos(s(x2)), pos(01)) → true
greater_int'(neg(s(x5)), pos(01)) → true
greater_int'(pos(01), pos(s(x1))) → false
greater_int'(pos(01), neg(x0)) → false
greater_int'(pos(01), witness_sort[a9]) → false
greater_int'(pos(s(x0)), x1) → false
greater_int'(neg(01), pos(s(x1))) → false
greater_int'(neg(01), neg(x0)) → false
greater_int'(neg(01), witness_sort[a9]) → false
greater_int'(neg(s(x0)), pos(s(x1))) → false
greater_int'(neg(s(x0)), neg(x2)) → false
greater_int'(neg(s(x0)), witness_sort[a9]) → false
greater_int'(witness_sort[a9], x1) → false
greater_int(pos(01), pos(01)) → false
greater_int(neg(01), pos(01)) → false
greater_int(pos(s(x2)), pos(01)) → true
greater_int(neg(s(x5)), pos(01)) → false
greater_int(pos(01), pos(s(x1))) → false
greater_int(pos(01), neg(x0)) → false
greater_int(pos(01), witness_sort[a9]) → false
greater_int(pos(s(x0)), x1) → false
greater_int(neg(01), pos(s(x1))) → false
greater_int(neg(01), neg(x0)) → false
greater_int(neg(01), witness_sort[a9]) → false
greater_int(neg(s(x0)), pos(s(x1))) → false
greater_int(neg(s(x0)), neg(x2)) → false
greater_int(neg(s(x0)), witness_sort[a9]) → false
greater_int(witness_sort[a9], x1) → false
equal_bool(true, false) → false
equal_bool(false, true) → false
equal_bool(true, true) → true
equal_bool(false, false) → true
and(true, x) → x
and(false, x) → false
or(true, x) → true
or(false, x) → x
not(false) → true
not(true) → false
isa_true(true) → true
isa_true(false) → false
isa_false(true) → false
isa_false(false) → true
equal_sort[a0](witness_sort[a0], witness_sort[a0]) → true
equal_sort[a2](witness_sort[a2], witness_sort[a2]) → true
equal_sort[a9](pos(x0), pos(x1)) → equal_sort[a9](x0, x1)
equal_sort[a9](pos(x0), neg(x1)) → false
equal_sort[a9](pos(x0), witness_sort[a9]) → false
equal_sort[a9](neg(x0), pos(x1)) → false
equal_sort[a9](neg(x0), neg(x1)) → equal_sort[a9](x0, x1)
equal_sort[a9](neg(x0), witness_sort[a9]) → false
equal_sort[a9](witness_sort[a9], pos(x0)) → false
equal_sort[a9](witness_sort[a9], neg(x0)) → false
equal_sort[a9](witness_sort[a9], witness_sort[a9]) → true
equal_sort[a10](01, 01) → true
equal_sort[a10](01, s(x0)) → false
equal_sort[a10](s(x0), 01) → false
equal_sort[a10](s(x0), s(x1)) → equal_sort[a10](x0, x1)
equal_sort[a21](witness_sort[a21], witness_sort[a21]) → true