0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 AND
↳7 IDP
↳8 IDependencyGraphProof (⇔)
↳9 TRUE
↳10 IDP
↳11 IDependencyGraphProof (⇔)
↳12 TRUE
public class CountUpRound{
public static int round (int x) {
if (x % 2 == 0) return x;
else return x+1;
}
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
while (x > y) {
y = round(y+1);
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 25 rules for P and 2 rules for R.
Combined rules. Obtained 2 rules for P and 0 rules for R.
Filtered ground terms:
551_0_main_Load(x1, x2, x3, x4) → 551_0_main_Load(x2, x3, x4)
Cond_551_0_main_Load1(x1, x2, x3, x4, x5) → Cond_551_0_main_Load1(x1, x3, x4, x5)
Cond_551_0_main_Load(x1, x2, x3, x4, x5) → Cond_551_0_main_Load(x1, x3, x4, x5)
Filtered duplicate args:
551_0_main_Load(x1, x2, x3) → 551_0_main_Load(x2, x3)
Cond_551_0_main_Load1(x1, x2, x3, x4) → Cond_551_0_main_Load1(x1, x3, x4)
Cond_551_0_main_Load(x1, x2, x3, x4) → Cond_551_0_main_Load(x1, x3, x4)
Combined rules. Obtained 2 rules for P and 0 rules for R.
Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((x1[0] >= 0 && x1[0] < x0[0] && 0 < x1[0] + 1 && !(x1[0] + 1 % 2 = 0) →* TRUE)∧(x1[0] →* x1[1])∧(x0[0] →* x0[1]))
(1) -> (0), if ((x1[1] + 1 + 1 →* x1[0])∧(x0[1] →* x0[0]))
(1) -> (2), if ((x1[1] + 1 + 1 →* x1[2])∧(x0[1] →* x0[2]))
(2) -> (3), if ((x1[2] >= 0 && x1[2] < x0[2] && 0 = x1[2] + 1 % 2 →* TRUE)∧(x1[2] →* x1[3])∧(x0[2] →* x0[3]))
(3) -> (0), if ((x1[3] + 1 →* x1[0])∧(x0[3] →* x0[0]))
(3) -> (2), if ((x1[3] + 1 →* x1[2])∧(x0[3] →* x0[2]))
(1) (&&(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), <(0, +(x1[0], 1))), !(=(%(+(x1[0], 1), 2), 0)))=TRUE∧x1[0]=x1[1]∧x0[0]=x0[1] ⇒ 551_0_MAIN_LOAD(x1[0], x0[0])≥NonInfC∧551_0_MAIN_LOAD(x1[0], x0[0])≥COND_551_0_MAIN_LOAD(&&(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), <(0, +(x1[0], 1))), !(=(%(+(x1[0], 1), 2), 0))), x1[0], x0[0])∧(UIncreasing(COND_551_0_MAIN_LOAD(&&(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), <(0, +(x1[0], 1))), !(=(%(+(x1[0], 1), 2), 0))), x1[0], x0[0])), ≥))
(2) (<(0, +(x1[0], 1))=TRUE∧>=(x1[0], 0)=TRUE∧<(x1[0], x0[0])=TRUE∧<(%(+(x1[0], 1), 2), 0)=TRUE ⇒ 551_0_MAIN_LOAD(x1[0], x0[0])≥NonInfC∧551_0_MAIN_LOAD(x1[0], x0[0])≥COND_551_0_MAIN_LOAD(&&(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), <(0, +(x1[0], 1))), !(=(%(+(x1[0], 1), 2), 0))), x1[0], x0[0])∧(UIncreasing(COND_551_0_MAIN_LOAD(&&(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), <(0, +(x1[0], 1))), !(=(%(+(x1[0], 1), 2), 0))), x1[0], x0[0])), ≥))
(3) (<(0, +(x1[0], 1))=TRUE∧>=(x1[0], 0)=TRUE∧<(x1[0], x0[0])=TRUE∧>(%(+(x1[0], 1), 2), 0)=TRUE ⇒ 551_0_MAIN_LOAD(x1[0], x0[0])≥NonInfC∧551_0_MAIN_LOAD(x1[0], x0[0])≥COND_551_0_MAIN_LOAD(&&(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), <(0, +(x1[0], 1))), !(=(%(+(x1[0], 1), 2), 0))), x1[0], x0[0])∧(UIncreasing(COND_551_0_MAIN_LOAD(&&(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), <(0, +(x1[0], 1))), !(=(%(+(x1[0], 1), 2), 0))), x1[0], x0[0])), ≥))
(4) (x1[0] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0∧[-1] + [-1]min{[2], [-2]} ≥ 0 ⇒ (UIncreasing(COND_551_0_MAIN_LOAD(&&(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), <(0, +(x1[0], 1))), !(=(%(+(x1[0], 1), 2), 0))), x1[0], x0[0])), ≥)∧[(2)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] + [(-1)bni_13]x1[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(5) (x1[0] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(COND_551_0_MAIN_LOAD(&&(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), <(0, +(x1[0], 1))), !(=(%(+(x1[0], 1), 2), 0))), x1[0], x0[0])), ≥)∧[(2)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] + [(-1)bni_13]x1[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(6) (x1[0] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0∧[-1] + [-1]min{[2], [-2]} ≥ 0 ⇒ (UIncreasing(COND_551_0_MAIN_LOAD(&&(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), <(0, +(x1[0], 1))), !(=(%(+(x1[0], 1), 2), 0))), x1[0], x0[0])), ≥)∧[(2)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] + [(-1)bni_13]x1[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(7) (x1[0] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(COND_551_0_MAIN_LOAD(&&(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), <(0, +(x1[0], 1))), !(=(%(+(x1[0], 1), 2), 0))), x1[0], x0[0])), ≥)∧[(2)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] + [(-1)bni_13]x1[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(8) (x1[0] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0∧[4] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_551_0_MAIN_LOAD(&&(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), <(0, +(x1[0], 1))), !(=(%(+(x1[0], 1), 2), 0))), x1[0], x0[0])), ≥)∧[(2)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] + [(-1)bni_13]x1[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(9) (x1[0] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0∧[4] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_551_0_MAIN_LOAD(&&(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), <(0, +(x1[0], 1))), !(=(%(+(x1[0], 1), 2), 0))), x1[0], x0[0])), ≥)∧[(2)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] + [(-1)bni_13]x1[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(10) (x1[0] ≥ 0∧x1[0] ≥ 0∧x0[0] ≥ 0∧[4] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_551_0_MAIN_LOAD(&&(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), <(0, +(x1[0], 1))), !(=(%(+(x1[0], 1), 2), 0))), x1[0], x0[0])), ≥)∧[(3)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(11) (x1[0] ≥ 0∧x1[0] ≥ 0∧x0[0] ≥ 0∧[4] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_551_0_MAIN_LOAD(&&(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), <(0, +(x1[0], 1))), !(=(%(+(x1[0], 1), 2), 0))), x1[0], x0[0])), ≥)∧[(3)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(12) (x1[0] ≥ 0∧x1[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_551_0_MAIN_LOAD(&&(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), <(0, +(x1[0], 1))), !(=(%(+(x1[0], 1), 2), 0))), x1[0], x0[0])), ≥)∧[(3)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(13) (x1[0] ≥ 0∧x1[0] ≥ 0∧x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_551_0_MAIN_LOAD(&&(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), <(0, +(x1[0], 1))), !(=(%(+(x1[0], 1), 2), 0))), x1[0], x0[0])), ≥)∧[(3)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(14) (COND_551_0_MAIN_LOAD(TRUE, x1[1], x0[1])≥NonInfC∧COND_551_0_MAIN_LOAD(TRUE, x1[1], x0[1])≥551_0_MAIN_LOAD(+(+(x1[1], 1), 1), x0[1])∧(UIncreasing(551_0_MAIN_LOAD(+(+(x1[1], 1), 1), x0[1])), ≥))
(15) ((UIncreasing(551_0_MAIN_LOAD(+(+(x1[1], 1), 1), x0[1])), ≥)∧[1 + (-1)bso_16] ≥ 0)
(16) ((UIncreasing(551_0_MAIN_LOAD(+(+(x1[1], 1), 1), x0[1])), ≥)∧[1 + (-1)bso_16] ≥ 0)
(17) ((UIncreasing(551_0_MAIN_LOAD(+(+(x1[1], 1), 1), x0[1])), ≥)∧[1 + (-1)bso_16] ≥ 0)
(18) ((UIncreasing(551_0_MAIN_LOAD(+(+(x1[1], 1), 1), x0[1])), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_16] ≥ 0)
(19) (&&(&&(>=(x1[2], 0), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2)))=TRUE∧x1[2]=x1[3]∧x0[2]=x0[3] ⇒ 551_0_MAIN_LOAD(x1[2], x0[2])≥NonInfC∧551_0_MAIN_LOAD(x1[2], x0[2])≥COND_551_0_MAIN_LOAD1(&&(&&(>=(x1[2], 0), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])∧(UIncreasing(COND_551_0_MAIN_LOAD1(&&(&&(>=(x1[2], 0), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])), ≥))
(20) (>=(x1[2], 0)=TRUE∧<(x1[2], x0[2])=TRUE∧>=(0, %(+(x1[2], 1), 2))=TRUE∧<=(0, %(+(x1[2], 1), 2))=TRUE ⇒ 551_0_MAIN_LOAD(x1[2], x0[2])≥NonInfC∧551_0_MAIN_LOAD(x1[2], x0[2])≥COND_551_0_MAIN_LOAD1(&&(&&(>=(x1[2], 0), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])∧(UIncreasing(COND_551_0_MAIN_LOAD1(&&(&&(>=(x1[2], 0), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])), ≥))
(21) (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0 ⇒ (UIncreasing(COND_551_0_MAIN_LOAD1(&&(&&(>=(x1[2], 0), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])), ≥)∧[(2)bni_17 + (-1)Bound*bni_17] + [bni_17]x0[2] + [(-1)bni_17]x1[2] ≥ 0∧[(-1)bso_18] ≥ 0)
(22) (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0 ⇒ (UIncreasing(COND_551_0_MAIN_LOAD1(&&(&&(>=(x1[2], 0), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])), ≥)∧[(2)bni_17 + (-1)Bound*bni_17] + [bni_17]x0[2] + [(-1)bni_17]x1[2] ≥ 0∧[(-1)bso_18] ≥ 0)
(23) (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_551_0_MAIN_LOAD1(&&(&&(>=(x1[2], 0), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])), ≥)∧[(2)bni_17 + (-1)Bound*bni_17] + [bni_17]x0[2] + [(-1)bni_17]x1[2] ≥ 0∧[(-1)bso_18] ≥ 0)
(24) (x1[2] ≥ 0∧x0[2] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_551_0_MAIN_LOAD1(&&(&&(>=(x1[2], 0), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])), ≥)∧[(3)bni_17 + (-1)Bound*bni_17] + [bni_17]x0[2] ≥ 0∧[(-1)bso_18] ≥ 0)
(25) (x1[2] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_551_0_MAIN_LOAD1(&&(&&(>=(x1[2], 0), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])), ≥)∧[(3)bni_17 + (-1)Bound*bni_17] + [bni_17]x0[2] ≥ 0∧[(-1)bso_18] ≥ 0)
(26) (COND_551_0_MAIN_LOAD1(TRUE, x1[3], x0[3])≥NonInfC∧COND_551_0_MAIN_LOAD1(TRUE, x1[3], x0[3])≥551_0_MAIN_LOAD(+(x1[3], 1), x0[3])∧(UIncreasing(551_0_MAIN_LOAD(+(x1[3], 1), x0[3])), ≥))
(27) ((UIncreasing(551_0_MAIN_LOAD(+(x1[3], 1), x0[3])), ≥)∧[1 + (-1)bso_20] ≥ 0)
(28) ((UIncreasing(551_0_MAIN_LOAD(+(x1[3], 1), x0[3])), ≥)∧[1 + (-1)bso_20] ≥ 0)
(29) ((UIncreasing(551_0_MAIN_LOAD(+(x1[3], 1), x0[3])), ≥)∧[1 + (-1)bso_20] ≥ 0)
(30) ((UIncreasing(551_0_MAIN_LOAD(+(x1[3], 1), x0[3])), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_20] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(551_0_MAIN_LOAD(x1, x2)) = [2] + x2 + [-1]x1
POL(COND_551_0_MAIN_LOAD(x1, x2, x3)) = [1] + x3 + [-1]x2
POL(&&(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(0) = 0
POL(<(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
POL(!(x1)) = [-1]
POL(=(x1, x2)) = [-1]
POL(2) = [2]
POL(COND_551_0_MAIN_LOAD1(x1, x2, x3)) = [2] + x3 + [-1]x2
Polynomial Interpretations with Context Sensitive Arithemetic Replacement
POL(TermCSAR-Mode @ Context)
POL(%(x1, 2)-1 @ {}) = min{x2, [-1]x2}
POL(%(x1, 2)1 @ {}) = max{x2, [-1]x2}
551_0_MAIN_LOAD(x1[0], x0[0]) → COND_551_0_MAIN_LOAD(&&(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), <(0, +(x1[0], 1))), !(=(%(+(x1[0], 1), 2), 0))), x1[0], x0[0])
COND_551_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 551_0_MAIN_LOAD(+(+(x1[1], 1), 1), x0[1])
COND_551_0_MAIN_LOAD1(TRUE, x1[3], x0[3]) → 551_0_MAIN_LOAD(+(x1[3], 1), x0[3])
551_0_MAIN_LOAD(x1[0], x0[0]) → COND_551_0_MAIN_LOAD(&&(&&(&&(>=(x1[0], 0), <(x1[0], x0[0])), <(0, +(x1[0], 1))), !(=(%(+(x1[0], 1), 2), 0))), x1[0], x0[0])
551_0_MAIN_LOAD(x1[2], x0[2]) → COND_551_0_MAIN_LOAD1(&&(&&(>=(x1[2], 0), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])
551_0_MAIN_LOAD(x1[2], x0[2]) → COND_551_0_MAIN_LOAD1(&&(&&(>=(x1[2], 0), <(x1[2], x0[2])), =(0, %(+(x1[2], 1), 2))), x1[2], x0[2])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer