0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 IDP
↳7 IDependencyGraphProof (⇔)
↳8 TRUE
/**
* Abstract class to provide some additional mathematical functions
* which are not provided by java.lang.Math.
*
* @author fuhs
*/
public abstract class AProVEMath {
/**
* Returns <code>base<sup>exponent</sup></code>.
* Works considerably faster than java.lang.Math.pow(double, double).
*
* @param base base of the power
* @param exponent non-negative exponent of the power
* @return base<sup>exponent</sup>
*/
public static int power (int base, int exponent) {
if (exponent == 0) {
return 1;
}
else if (exponent == 1) {
return base;
}
else if (base == 2) {
return base << (exponent-1);
}
else {
int result = 1;
while (exponent > 0) {
if (exponent % 2 == 1) {
result *= base;
}
base *= base;
exponent /= 2;
}
return result;
}
}
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
power(x, y);
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 29 rules for P and 6 rules for R.
Combined rules. Obtained 3 rules for P and 0 rules for R.
Filtered ground terms:
1127_0_power_LE(x1, x2, x3) → 1127_0_power_LE(x2, x3)
Filtered duplicate args:
1127_0_power_LE(x1, x2) → 1127_0_power_LE(x2)
Combined rules. Obtained 3 rules for P and 0 rules for R.
Finished conversion. Obtained 3 rules for P and 0 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((x0[0] > 1 && 0 = x0[0] % 2 →* TRUE)∧(1127_0_power_LE(x0[0]) →* 1127_0_power_LE(x0[1])))
(1) -> (0), if ((1127_0_power_LE(x0[1] / 2) →* 1127_0_power_LE(x0[0])))
(1) -> (2), if ((1127_0_power_LE(x0[1] / 2) →* 1127_0_power_LE(x0[2])))
(1) -> (3), if ((1127_0_power_LE(x0[1] / 2) →* 1127_0_power_LE(x0[3])))
(2) -> (1), if ((x0[2] > 1 && 1 = x0[2] % 2 →* TRUE)∧(1127_0_power_LE(x0[2]) →* 1127_0_power_LE(x0[1])))
(3) -> (1), if ((x0[3] > 1 && !(x0[3] % 2 = 1) →* TRUE)∧(1127_0_power_LE(x0[3]) →* 1127_0_power_LE(x0[1])))
(1) (&&(>(x0[0], 1), =(0, %(x0[0], 2)))=TRUE∧1127_0_power_LE(x0[0])=1127_0_power_LE(x0[1]) ⇒ 1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[0]))≥NonInfC∧1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[0]))≥COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), =(0, %(x0[0], 2))), 1127_0_power_LE(x0[0]))∧(UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), =(0, %(x0[0], 2))), 1127_0_power_LE(x0[0]))), ≥))
(2) (>(x0[0], 1)=TRUE∧>=(0, %(x0[0], 2))=TRUE∧<=(0, %(x0[0], 2))=TRUE ⇒ 1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[0]))≥NonInfC∧1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[0]))≥COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), =(0, %(x0[0], 2))), 1127_0_power_LE(x0[0]))∧(UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), =(0, %(x0[0], 2))), 1127_0_power_LE(x0[0]))), ≥))
(3) (x0[0] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), =(0, %(x0[0], 2))), 1127_0_power_LE(x0[0]))), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [bni_14]x0[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(4) (x0[0] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), =(0, %(x0[0], 2))), 1127_0_power_LE(x0[0]))), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [bni_14]x0[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(5) (x0[0] + [-2] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), =(0, %(x0[0], 2))), 1127_0_power_LE(x0[0]))), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [bni_14]x0[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(6) (x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), =(0, %(x0[0], 2))), 1127_0_power_LE(x0[0]))), ≥)∧[bni_14 + (-1)Bound*bni_14] + [bni_14]x0[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(7) (x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), =(0, %(x0[0], 2))), 1127_0_power_LE(x0[0]))), ≥)∧[bni_14 + (-1)Bound*bni_14] + [bni_14]x0[0] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(8) (&&(>(x0[0], 1), =(0, %(x0[0], 2)))=TRUE∧1127_0_power_LE(x0[0])=1127_0_power_LE(x0[1]) ⇒ COND_1127_1_MAIN_INVOKEMETHOD(TRUE, 1127_0_power_LE(x0[1]))≥NonInfC∧COND_1127_1_MAIN_INVOKEMETHOD(TRUE, 1127_0_power_LE(x0[1]))≥1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))∧(UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥))
(9) (>(x0[0], 1)=TRUE∧>=(0, %(x0[0], 2))=TRUE∧<=(0, %(x0[0], 2))=TRUE ⇒ COND_1127_1_MAIN_INVOKEMETHOD(TRUE, 1127_0_power_LE(x0[0]))≥NonInfC∧COND_1127_1_MAIN_INVOKEMETHOD(TRUE, 1127_0_power_LE(x0[0]))≥1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[0], 2)))∧(UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥))
(10) (x0[0] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-2)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_20] + x0[0] + [-1]max{x0[0], [-1]x0[0]} ≥ 0)
(11) (x0[0] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-2)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_20] + x0[0] + [-1]max{x0[0], [-1]x0[0]} ≥ 0)
(12) (x0[0] + [-2] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[2]x0[0] ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-2)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_20] ≥ 0)
(13) (x0[0] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[4] + [2]x0[0] ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_20] ≥ 0)
(14) (x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x0[0] ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_20] ≥ 0)
(15) (&&(>(x0[2], 1), =(1, %(x0[2], 2)))=TRUE∧1127_0_power_LE(x0[2])=1127_0_power_LE(x0[1]) ⇒ COND_1127_1_MAIN_INVOKEMETHOD(TRUE, 1127_0_power_LE(x0[1]))≥NonInfC∧COND_1127_1_MAIN_INVOKEMETHOD(TRUE, 1127_0_power_LE(x0[1]))≥1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))∧(UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥))
(16) (>(x0[2], 1)=TRUE∧>=(1, %(x0[2], 2))=TRUE∧<=(1, %(x0[2], 2))=TRUE ⇒ COND_1127_1_MAIN_INVOKEMETHOD(TRUE, 1127_0_power_LE(x0[2]))≥NonInfC∧COND_1127_1_MAIN_INVOKEMETHOD(TRUE, 1127_0_power_LE(x0[2]))≥1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[2], 2)))∧(UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥))
(17) (x0[2] + [-2] ≥ 0∧[1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-2)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[2] ≥ 0∧[(-1)bso_20] + x0[2] + [-1]max{x0[2], [-1]x0[2]} ≥ 0)
(18) (x0[2] + [-2] ≥ 0∧[1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-2)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[2] ≥ 0∧[(-1)bso_20] + x0[2] + [-1]max{x0[2], [-1]x0[2]} ≥ 0)
(19) (x0[2] + [-2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧[2]x0[2] ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-2)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[2] ≥ 0∧[(-1)bso_20] ≥ 0)
(20) (x0[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0∧[4] + [2]x0[2] ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[2] ≥ 0∧[(-1)bso_20] ≥ 0)
(21) (x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x0[2] ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[2] ≥ 0∧[(-1)bso_20] ≥ 0)
(22) (&&(>(x0[3], 1), !(=(%(x0[3], 2), 1)))=TRUE∧1127_0_power_LE(x0[3])=1127_0_power_LE(x0[1]) ⇒ COND_1127_1_MAIN_INVOKEMETHOD(TRUE, 1127_0_power_LE(x0[1]))≥NonInfC∧COND_1127_1_MAIN_INVOKEMETHOD(TRUE, 1127_0_power_LE(x0[1]))≥1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))∧(UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥))
(23) (>(x0[3], 1)=TRUE∧<(%(x0[3], 2), 1)=TRUE ⇒ COND_1127_1_MAIN_INVOKEMETHOD(TRUE, 1127_0_power_LE(x0[3]))≥NonInfC∧COND_1127_1_MAIN_INVOKEMETHOD(TRUE, 1127_0_power_LE(x0[3]))≥1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[3], 2)))∧(UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥))
(24) (>(x0[3], 1)=TRUE∧>(%(x0[3], 2), 1)=TRUE ⇒ COND_1127_1_MAIN_INVOKEMETHOD(TRUE, 1127_0_power_LE(x0[3]))≥NonInfC∧COND_1127_1_MAIN_INVOKEMETHOD(TRUE, 1127_0_power_LE(x0[3]))≥1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[3], 2)))∧(UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥))
(25) (x0[3] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-2)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[3] ≥ 0∧[(-1)bso_20] + x0[3] + [-1]max{x0[3], [-1]x0[3]} ≥ 0)
(26) (x0[3] + [-2] ≥ 0∧max{[2], [-2]} + [-2] ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-2)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[3] ≥ 0∧[(-1)bso_20] + x0[3] + [-1]max{x0[3], [-1]x0[3]} ≥ 0)
(27) (x0[3] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-2)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[3] ≥ 0∧[(-1)bso_20] + x0[3] + [-1]max{x0[3], [-1]x0[3]} ≥ 0)
(28) (x0[3] + [-2] ≥ 0∧max{[2], [-2]} + [-2] ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-2)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[3] ≥ 0∧[(-1)bso_20] + x0[3] + [-1]max{x0[3], [-1]x0[3]} ≥ 0)
(29) (x0[3] + [-2] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2]x0[3] ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-2)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[3] ≥ 0∧[(-1)bso_20] ≥ 0)
(30) (x0[3] + [-2] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[2]x0[3] ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-2)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[3] ≥ 0∧[(-1)bso_20] ≥ 0)
(31) (x0[3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[4] + [2]x0[3] ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[3] ≥ 0∧[(-1)bso_20] ≥ 0)
(32) (x0[3] ≥ 0∧[4] ≥ 0∧0 ≥ 0∧[4] + [2]x0[3] ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[3] ≥ 0∧[(-1)bso_20] ≥ 0)
(33) (x0[3] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2] + x0[3] ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[3] ≥ 0∧[(-1)bso_20] ≥ 0)
(34) (x0[3] ≥ 0∧0 ≥ 0∧[1] ≥ 0∧[2] + x0[3] ≥ 0 ⇒ (UIncreasing(1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[3] ≥ 0∧[(-1)bso_20] ≥ 0)
(35) (&&(>(x0[2], 1), =(1, %(x0[2], 2)))=TRUE∧1127_0_power_LE(x0[2])=1127_0_power_LE(x0[1]) ⇒ 1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[2]))≥NonInfC∧1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[2]))≥COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[2], 1), =(1, %(x0[2], 2))), 1127_0_power_LE(x0[2]))∧(UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[2], 1), =(1, %(x0[2], 2))), 1127_0_power_LE(x0[2]))), ≥))
(36) (>(x0[2], 1)=TRUE∧>=(1, %(x0[2], 2))=TRUE∧<=(1, %(x0[2], 2))=TRUE ⇒ 1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[2]))≥NonInfC∧1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[2]))≥COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[2], 1), =(1, %(x0[2], 2))), 1127_0_power_LE(x0[2]))∧(UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[2], 1), =(1, %(x0[2], 2))), 1127_0_power_LE(x0[2]))), ≥))
(37) (x0[2] + [-2] ≥ 0∧[1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[2], 1), =(1, %(x0[2], 2))), 1127_0_power_LE(x0[2]))), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]x0[2] ≥ 0∧[1 + (-1)bso_22] ≥ 0)
(38) (x0[2] + [-2] ≥ 0∧[1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[2], 1), =(1, %(x0[2], 2))), 1127_0_power_LE(x0[2]))), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]x0[2] ≥ 0∧[1 + (-1)bso_22] ≥ 0)
(39) (x0[2] + [-2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[2], 1), =(1, %(x0[2], 2))), 1127_0_power_LE(x0[2]))), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]x0[2] ≥ 0∧[1 + (-1)bso_22] ≥ 0)
(40) (x0[2] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[2], 1), =(1, %(x0[2], 2))), 1127_0_power_LE(x0[2]))), ≥)∧[bni_21 + (-1)Bound*bni_21] + [bni_21]x0[2] ≥ 0∧[1 + (-1)bso_22] ≥ 0)
(41) (x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[2], 1), =(1, %(x0[2], 2))), 1127_0_power_LE(x0[2]))), ≥)∧[bni_21 + (-1)Bound*bni_21] + [bni_21]x0[2] ≥ 0∧[1 + (-1)bso_22] ≥ 0)
(42) (&&(>(x0[3], 1), !(=(%(x0[3], 2), 1)))=TRUE∧1127_0_power_LE(x0[3])=1127_0_power_LE(x0[1]) ⇒ 1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[3]))≥NonInfC∧1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[3]))≥COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[3], 1), !(=(%(x0[3], 2), 1))), 1127_0_power_LE(x0[3]))∧(UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[3], 1), !(=(%(x0[3], 2), 1))), 1127_0_power_LE(x0[3]))), ≥))
(43) (>(x0[3], 1)=TRUE∧<(%(x0[3], 2), 1)=TRUE ⇒ 1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[3]))≥NonInfC∧1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[3]))≥COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[3], 1), !(=(%(x0[3], 2), 1))), 1127_0_power_LE(x0[3]))∧(UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[3], 1), !(=(%(x0[3], 2), 1))), 1127_0_power_LE(x0[3]))), ≥))
(44) (>(x0[3], 1)=TRUE∧>(%(x0[3], 2), 1)=TRUE ⇒ 1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[3]))≥NonInfC∧1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[3]))≥COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[3], 1), !(=(%(x0[3], 2), 1))), 1127_0_power_LE(x0[3]))∧(UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[3], 1), !(=(%(x0[3], 2), 1))), 1127_0_power_LE(x0[3]))), ≥))
(45) (x0[3] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[3], 1), !(=(%(x0[3], 2), 1))), 1127_0_power_LE(x0[3]))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[3] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(46) (x0[3] + [-2] ≥ 0∧max{[2], [-2]} + [-2] ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[3], 1), !(=(%(x0[3], 2), 1))), 1127_0_power_LE(x0[3]))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[3] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(47) (x0[3] + [-2] ≥ 0∧[-1]min{[2], [-2]} ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[3], 1), !(=(%(x0[3], 2), 1))), 1127_0_power_LE(x0[3]))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[3] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(48) (x0[3] + [-2] ≥ 0∧max{[2], [-2]} + [-2] ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[3], 1), !(=(%(x0[3], 2), 1))), 1127_0_power_LE(x0[3]))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[3] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(49) (x0[3] + [-2] ≥ 0∧[4] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[3], 1), !(=(%(x0[3], 2), 1))), 1127_0_power_LE(x0[3]))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[3] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(50) (x0[3] + [-2] ≥ 0∧[4] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[3], 1), !(=(%(x0[3], 2), 1))), 1127_0_power_LE(x0[3]))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[3] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(51) (x0[3] ≥ 0∧[4] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[3], 1), !(=(%(x0[3], 2), 1))), 1127_0_power_LE(x0[3]))), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]x0[3] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(52) (x0[3] ≥ 0∧[4] ≥ 0∧0 ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[3], 1), !(=(%(x0[3], 2), 1))), 1127_0_power_LE(x0[3]))), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]x0[3] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(53) (x0[3] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[3], 1), !(=(%(x0[3], 2), 1))), 1127_0_power_LE(x0[3]))), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]x0[3] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
(54) (x0[3] ≥ 0∧0 ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[3], 1), !(=(%(x0[3], 2), 1))), 1127_0_power_LE(x0[3]))), ≥)∧[bni_23 + (-1)Bound*bni_23] + [bni_23]x0[3] ≥ 0∧[1 + (-1)bso_24] ≥ 0)
POL(TRUE) = [1]
POL(FALSE) = [1]
POL(1127_1_MAIN_INVOKEMETHOD(x1)) = x1
POL(1127_0_power_LE(x1)) = [-1] + x1
POL(COND_1127_1_MAIN_INVOKEMETHOD(x1, x2)) = x2 + [-1]x1
POL(&&(x1, x2)) = [1]
POL(>(x1, x2)) = [-1]
POL(1) = [1]
POL(=(x1, x2)) = [-1]
POL(0) = 0
POL(2) = [2]
POL(!(x1)) = [-1]
Polynomial Interpretations with Context Sensitive Arithemetic Replacement
POL(TermCSAR-Mode @ Context)
POL(%(x1, 2)-1 @ {}) = min{x2, [-1]x2}
POL(%(x1, 2)1 @ {}) = max{x2, [-1]x2}
POL(/(x1, 2)1 @ {1127_1_MAIN_INVOKEMETHOD_1/0, 1127_0_power_LE_1/0}) = max{x1, [-1]x1} + [-1]
1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[0])) → COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), =(0, %(x0[0], 2))), 1127_0_power_LE(x0[0]))
1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[2])) → COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[2], 1), =(1, %(x0[2], 2))), 1127_0_power_LE(x0[2]))
1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[3])) → COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[3], 1), !(=(%(x0[3], 2), 1))), 1127_0_power_LE(x0[3]))
1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[0])) → COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[0], 1), =(0, %(x0[0], 2))), 1127_0_power_LE(x0[0]))
COND_1127_1_MAIN_INVOKEMETHOD(TRUE, 1127_0_power_LE(x0[1])) → 1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))
1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[2])) → COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[2], 1), =(1, %(x0[2], 2))), 1127_0_power_LE(x0[2]))
1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(x0[3])) → COND_1127_1_MAIN_INVOKEMETHOD(&&(>(x0[3], 1), !(=(%(x0[3], 2), 1))), 1127_0_power_LE(x0[3]))
COND_1127_1_MAIN_INVOKEMETHOD(TRUE, 1127_0_power_LE(x0[1])) → 1127_1_MAIN_INVOKEMETHOD(1127_0_power_LE(/(x0[1], 2)))
&&(TRUE, TRUE)1 ↔ TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(FALSE, FALSE)1 ↔ FALSE1
/1 →
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer