(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_20 (Sun Microsystems Inc.) Main-Class: AG313
public class AG313 {
public static void main(String[] args) {
int x, y;
x = args[0].length();
y = args[1].length() + 1;
quot(x,y);

}


public static int quot(int x, int y) {
int i = 0;
if(x==0) return 0;
while (x > 0 && y > 0) {
i += 1;
x = (x - 1)- (y - 1);

}
return i;
}
}


(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
AG313.main([Ljava/lang/String;)V: Graph of 157 nodes with 1 SCC.


(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Logs:


Log for SCC 0:

Generated 16 rules for P and 5 rules for R.


Combined rules. Obtained 1 rules for P and 1 rules for R.


Filtered ground terms:


898_0_quot_LE(x1, x2, x3, x4) → 898_0_quot_LE(x2, x3, x4)
911_0_main_Return(x1) → 911_0_main_Return

Filtered duplicate args:


898_0_quot_LE(x1, x2, x3) → 898_0_quot_LE(x2, x3)

Combined rules. Obtained 1 rules for P and 1 rules for R.


Finished conversion. Obtained 1 rules for P and 1 rules for R. System has predefined symbols.


(4) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


The ITRS R consists of the following rules:
898_1_main_InvokeMethod(898_0_quot_LE(x1, x0), x1) → Cond_898_1_main_InvokeMethod(x0 <= 0, 898_0_quot_LE(x1, x0), x1)
Cond_898_1_main_InvokeMethod(TRUE, 898_0_quot_LE(x1, x0), x1) → 911_0_main_Return

The integer pair graph contains the following rules and edges:
(0): 898_1_MAIN_INVOKEMETHOD(898_0_quot_LE(x1[0], x0[0]), x1[0]) → COND_898_1_MAIN_INVOKEMETHOD(x1[0] > 0 && x0[0] > 0 && 0 <= x1[0] - 1 && 0 <= x0[0] - 1, 898_0_quot_LE(x1[0], x0[0]), x1[0])
(1): COND_898_1_MAIN_INVOKEMETHOD(TRUE, 898_0_quot_LE(x1[1], x0[1]), x1[1]) → 898_1_MAIN_INVOKEMETHOD(898_0_quot_LE(x1[1], x0[1] - 1 - x1[1] - 1), x1[1])

(0) -> (1), if ((x1[0] > 0 && x0[0] > 0 && 0 <= x1[0] - 1 && 0 <= x0[0] - 1* TRUE)∧(898_0_quot_LE(x1[0], x0[0]) →* 898_0_quot_LE(x1[1], x0[1]))∧(x1[0]* x1[1]))


(1) -> (0), if ((898_0_quot_LE(x1[1], x0[1] - 1 - x1[1] - 1) →* 898_0_quot_LE(x1[0], x0[0]))∧(x1[1]* x1[0]))



The set Q consists of the following terms:
898_1_main_InvokeMethod(898_0_quot_LE(x0, x1), x0)
Cond_898_1_main_InvokeMethod(TRUE, 898_0_quot_LE(x0, x1), x0)

(5) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 898_1_MAIN_INVOKEMETHOD(898_0_quot_LE(x1, x0), x1) → COND_898_1_MAIN_INVOKEMETHOD(&&(&&(&&(>(x1, 0), >(x0, 0)), <=(0, -(x1, 1))), <=(0, -(x0, 1))), 898_0_quot_LE(x1, x0), x1) the following chains were created:
  • We consider the chain 898_1_MAIN_INVOKEMETHOD(898_0_quot_LE(x1[0], x0[0]), x1[0]) → COND_898_1_MAIN_INVOKEMETHOD(&&(&&(&&(>(x1[0], 0), >(x0[0], 0)), <=(0, -(x1[0], 1))), <=(0, -(x0[0], 1))), 898_0_quot_LE(x1[0], x0[0]), x1[0]), COND_898_1_MAIN_INVOKEMETHOD(TRUE, 898_0_quot_LE(x1[1], x0[1]), x1[1]) → 898_1_MAIN_INVOKEMETHOD(898_0_quot_LE(x1[1], -(-(x0[1], 1), -(x1[1], 1))), x1[1]) which results in the following constraint:

    (1)    (&&(&&(&&(>(x1[0], 0), >(x0[0], 0)), <=(0, -(x1[0], 1))), <=(0, -(x0[0], 1)))=TRUE898_0_quot_LE(x1[0], x0[0])=898_0_quot_LE(x1[1], x0[1])∧x1[0]=x1[1]898_1_MAIN_INVOKEMETHOD(898_0_quot_LE(x1[0], x0[0]), x1[0])≥NonInfC∧898_1_MAIN_INVOKEMETHOD(898_0_quot_LE(x1[0], x0[0]), x1[0])≥COND_898_1_MAIN_INVOKEMETHOD(&&(&&(&&(>(x1[0], 0), >(x0[0], 0)), <=(0, -(x1[0], 1))), <=(0, -(x0[0], 1))), 898_0_quot_LE(x1[0], x0[0]), x1[0])∧(UIncreasing(COND_898_1_MAIN_INVOKEMETHOD(&&(&&(&&(>(x1[0], 0), >(x0[0], 0)), <=(0, -(x1[0], 1))), <=(0, -(x0[0], 1))), 898_0_quot_LE(x1[0], x0[0]), x1[0])), ≥))



    We simplified constraint (1) using rules (I), (II), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (<=(0, -(x0[0], 1))=TRUE<=(0, -(x1[0], 1))=TRUE>(x1[0], 0)=TRUE>(x0[0], 0)=TRUE898_1_MAIN_INVOKEMETHOD(898_0_quot_LE(x1[0], x0[0]), x1[0])≥NonInfC∧898_1_MAIN_INVOKEMETHOD(898_0_quot_LE(x1[0], x0[0]), x1[0])≥COND_898_1_MAIN_INVOKEMETHOD(&&(&&(&&(>(x1[0], 0), >(x0[0], 0)), <=(0, -(x1[0], 1))), <=(0, -(x0[0], 1))), 898_0_quot_LE(x1[0], x0[0]), x1[0])∧(UIncreasing(COND_898_1_MAIN_INVOKEMETHOD(&&(&&(&&(>(x1[0], 0), >(x0[0], 0)), <=(0, -(x1[0], 1))), <=(0, -(x0[0], 1))), 898_0_quot_LE(x1[0], x0[0]), x1[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x0[0] + [-1] ≥ 0∧x1[0] + [-1] ≥ 0∧x1[0] + [-1] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_898_1_MAIN_INVOKEMETHOD(&&(&&(&&(>(x1[0], 0), >(x0[0], 0)), <=(0, -(x1[0], 1))), <=(0, -(x0[0], 1))), 898_0_quot_LE(x1[0], x0[0]), x1[0])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x0[0] ≥ 0∧[(-1)bso_25] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x0[0] + [-1] ≥ 0∧x1[0] + [-1] ≥ 0∧x1[0] + [-1] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_898_1_MAIN_INVOKEMETHOD(&&(&&(&&(>(x1[0], 0), >(x0[0], 0)), <=(0, -(x1[0], 1))), <=(0, -(x0[0], 1))), 898_0_quot_LE(x1[0], x0[0]), x1[0])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x0[0] ≥ 0∧[(-1)bso_25] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x0[0] + [-1] ≥ 0∧x1[0] + [-1] ≥ 0∧x1[0] + [-1] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_898_1_MAIN_INVOKEMETHOD(&&(&&(&&(>(x1[0], 0), >(x0[0], 0)), <=(0, -(x1[0], 1))), <=(0, -(x0[0], 1))), 898_0_quot_LE(x1[0], x0[0]), x1[0])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x0[0] ≥ 0∧[(-1)bso_25] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x0[0] ≥ 0∧x1[0] + [-1] ≥ 0∧x1[0] + [-1] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_898_1_MAIN_INVOKEMETHOD(&&(&&(&&(>(x1[0], 0), >(x0[0], 0)), <=(0, -(x1[0], 1))), <=(0, -(x0[0], 1))), 898_0_quot_LE(x1[0], x0[0]), x1[0])), ≥)∧[(-1)Bound*bni_24] + [bni_24]x0[0] ≥ 0∧[(-1)bso_25] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (7)    (x0[0] ≥ 0∧x1[0] ≥ 0∧x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_898_1_MAIN_INVOKEMETHOD(&&(&&(&&(>(x1[0], 0), >(x0[0], 0)), <=(0, -(x1[0], 1))), <=(0, -(x0[0], 1))), 898_0_quot_LE(x1[0], x0[0]), x1[0])), ≥)∧[(-1)Bound*bni_24] + [bni_24]x0[0] ≥ 0∧[(-1)bso_25] ≥ 0)







For Pair COND_898_1_MAIN_INVOKEMETHOD(TRUE, 898_0_quot_LE(x1, x0), x1) → 898_1_MAIN_INVOKEMETHOD(898_0_quot_LE(x1, -(-(x0, 1), -(x1, 1))), x1) the following chains were created:
  • We consider the chain 898_1_MAIN_INVOKEMETHOD(898_0_quot_LE(x1[0], x0[0]), x1[0]) → COND_898_1_MAIN_INVOKEMETHOD(&&(&&(&&(>(x1[0], 0), >(x0[0], 0)), <=(0, -(x1[0], 1))), <=(0, -(x0[0], 1))), 898_0_quot_LE(x1[0], x0[0]), x1[0]), COND_898_1_MAIN_INVOKEMETHOD(TRUE, 898_0_quot_LE(x1[1], x0[1]), x1[1]) → 898_1_MAIN_INVOKEMETHOD(898_0_quot_LE(x1[1], -(-(x0[1], 1), -(x1[1], 1))), x1[1]), 898_1_MAIN_INVOKEMETHOD(898_0_quot_LE(x1[0], x0[0]), x1[0]) → COND_898_1_MAIN_INVOKEMETHOD(&&(&&(&&(>(x1[0], 0), >(x0[0], 0)), <=(0, -(x1[0], 1))), <=(0, -(x0[0], 1))), 898_0_quot_LE(x1[0], x0[0]), x1[0]) which results in the following constraint:

    (8)    (&&(&&(&&(>(x1[0], 0), >(x0[0], 0)), <=(0, -(x1[0], 1))), <=(0, -(x0[0], 1)))=TRUE898_0_quot_LE(x1[0], x0[0])=898_0_quot_LE(x1[1], x0[1])∧x1[0]=x1[1]898_0_quot_LE(x1[1], -(-(x0[1], 1), -(x1[1], 1)))=898_0_quot_LE(x1[0]1, x0[0]1)∧x1[1]=x1[0]1COND_898_1_MAIN_INVOKEMETHOD(TRUE, 898_0_quot_LE(x1[1], x0[1]), x1[1])≥NonInfC∧COND_898_1_MAIN_INVOKEMETHOD(TRUE, 898_0_quot_LE(x1[1], x0[1]), x1[1])≥898_1_MAIN_INVOKEMETHOD(898_0_quot_LE(x1[1], -(-(x0[1], 1), -(x1[1], 1))), x1[1])∧(UIncreasing(898_1_MAIN_INVOKEMETHOD(898_0_quot_LE(x1[1], -(-(x0[1], 1), -(x1[1], 1))), x1[1])), ≥))



    We simplified constraint (8) using rules (I), (II), (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (9)    (<=(0, -(x0[0], 1))=TRUE<=(0, -(x1[0], 1))=TRUE>(x1[0], 0)=TRUE>(x0[0], 0)=TRUECOND_898_1_MAIN_INVOKEMETHOD(TRUE, 898_0_quot_LE(x1[0], x0[0]), x1[0])≥NonInfC∧COND_898_1_MAIN_INVOKEMETHOD(TRUE, 898_0_quot_LE(x1[0], x0[0]), x1[0])≥898_1_MAIN_INVOKEMETHOD(898_0_quot_LE(x1[0], -(-(x0[0], 1), -(x1[0], 1))), x1[0])∧(UIncreasing(898_1_MAIN_INVOKEMETHOD(898_0_quot_LE(x1[1], -(-(x0[1], 1), -(x1[1], 1))), x1[1])), ≥))



    We simplified constraint (9) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (10)    (x0[0] + [-1] ≥ 0∧x1[0] + [-1] ≥ 0∧x1[0] + [-1] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(898_1_MAIN_INVOKEMETHOD(898_0_quot_LE(x1[1], -(-(x0[1], 1), -(x1[1], 1))), x1[1])), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [bni_26]x0[0] ≥ 0∧[(-1)bso_27] + x1[0] ≥ 0)



    We simplified constraint (10) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (11)    (x0[0] + [-1] ≥ 0∧x1[0] + [-1] ≥ 0∧x1[0] + [-1] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(898_1_MAIN_INVOKEMETHOD(898_0_quot_LE(x1[1], -(-(x0[1], 1), -(x1[1], 1))), x1[1])), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [bni_26]x0[0] ≥ 0∧[(-1)bso_27] + x1[0] ≥ 0)



    We simplified constraint (11) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (12)    (x0[0] + [-1] ≥ 0∧x1[0] + [-1] ≥ 0∧x1[0] + [-1] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(898_1_MAIN_INVOKEMETHOD(898_0_quot_LE(x1[1], -(-(x0[1], 1), -(x1[1], 1))), x1[1])), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [bni_26]x0[0] ≥ 0∧[(-1)bso_27] + x1[0] ≥ 0)



    We simplified constraint (12) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (13)    (x0[0] ≥ 0∧x1[0] + [-1] ≥ 0∧x1[0] + [-1] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(898_1_MAIN_INVOKEMETHOD(898_0_quot_LE(x1[1], -(-(x0[1], 1), -(x1[1], 1))), x1[1])), ≥)∧[(-1)Bound*bni_26] + [bni_26]x0[0] ≥ 0∧[(-1)bso_27] + x1[0] ≥ 0)



    We simplified constraint (13) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (14)    (x0[0] ≥ 0∧x1[0] ≥ 0∧x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(898_1_MAIN_INVOKEMETHOD(898_0_quot_LE(x1[1], -(-(x0[1], 1), -(x1[1], 1))), x1[1])), ≥)∧[(-1)Bound*bni_26] + [bni_26]x0[0] ≥ 0∧[1 + (-1)bso_27] + x1[0] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 898_1_MAIN_INVOKEMETHOD(898_0_quot_LE(x1, x0), x1) → COND_898_1_MAIN_INVOKEMETHOD(&&(&&(&&(>(x1, 0), >(x0, 0)), <=(0, -(x1, 1))), <=(0, -(x0, 1))), 898_0_quot_LE(x1, x0), x1)
    • (x0[0] ≥ 0∧x1[0] ≥ 0∧x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_898_1_MAIN_INVOKEMETHOD(&&(&&(&&(>(x1[0], 0), >(x0[0], 0)), <=(0, -(x1[0], 1))), <=(0, -(x0[0], 1))), 898_0_quot_LE(x1[0], x0[0]), x1[0])), ≥)∧[(-1)Bound*bni_24] + [bni_24]x0[0] ≥ 0∧[(-1)bso_25] ≥ 0)

  • COND_898_1_MAIN_INVOKEMETHOD(TRUE, 898_0_quot_LE(x1, x0), x1) → 898_1_MAIN_INVOKEMETHOD(898_0_quot_LE(x1, -(-(x0, 1), -(x1, 1))), x1)
    • (x0[0] ≥ 0∧x1[0] ≥ 0∧x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(898_1_MAIN_INVOKEMETHOD(898_0_quot_LE(x1[1], -(-(x0[1], 1), -(x1[1], 1))), x1[1])), ≥)∧[(-1)Bound*bni_26] + [bni_26]x0[0] ≥ 0∧[1 + (-1)bso_27] + x1[0] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(898_1_main_InvokeMethod(x1, x2)) = [-1] + [-1]x2 + [-1]x1   
POL(898_0_quot_LE(x1, x2)) = [-1]x2 + [-1]x1   
POL(Cond_898_1_main_InvokeMethod(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x2 + [-1]x1   
POL(<=(x1, x2)) = [-1]   
POL(0) = 0   
POL(911_0_main_Return) = [-1]   
POL(898_1_MAIN_INVOKEMETHOD(x1, x2)) = [-1] + [-1]x2 + [-1]x1   
POL(COND_898_1_MAIN_INVOKEMETHOD(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x2 + [-1]x1   
POL(&&(x1, x2)) = 0   
POL(>(x1, x2)) = [-1]   
POL(-(x1, x2)) = x1 + [-1]x2   
POL(1) = [1]   

The following pairs are in P>:

COND_898_1_MAIN_INVOKEMETHOD(TRUE, 898_0_quot_LE(x1[1], x0[1]), x1[1]) → 898_1_MAIN_INVOKEMETHOD(898_0_quot_LE(x1[1], -(-(x0[1], 1), -(x1[1], 1))), x1[1])

The following pairs are in Pbound:

898_1_MAIN_INVOKEMETHOD(898_0_quot_LE(x1[0], x0[0]), x1[0]) → COND_898_1_MAIN_INVOKEMETHOD(&&(&&(&&(>(x1[0], 0), >(x0[0], 0)), <=(0, -(x1[0], 1))), <=(0, -(x0[0], 1))), 898_0_quot_LE(x1[0], x0[0]), x1[0])
COND_898_1_MAIN_INVOKEMETHOD(TRUE, 898_0_quot_LE(x1[1], x0[1]), x1[1]) → 898_1_MAIN_INVOKEMETHOD(898_0_quot_LE(x1[1], -(-(x0[1], 1), -(x1[1], 1))), x1[1])

The following pairs are in P:

898_1_MAIN_INVOKEMETHOD(898_0_quot_LE(x1[0], x0[0]), x1[0]) → COND_898_1_MAIN_INVOKEMETHOD(&&(&&(&&(>(x1[0], 0), >(x0[0], 0)), <=(0, -(x1[0], 1))), <=(0, -(x0[0], 1))), 898_0_quot_LE(x1[0], x0[0]), x1[0])

At least the following rules have been oriented under context sensitive arithmetic replacement:

&&(TRUE, TRUE)1TRUE1
&&(TRUE, FALSE)1FALSE1
&&(FALSE, TRUE)1FALSE1
&&(FALSE, FALSE)1FALSE1

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


The ITRS R consists of the following rules:
898_1_main_InvokeMethod(898_0_quot_LE(x1, x0), x1) → Cond_898_1_main_InvokeMethod(x0 <= 0, 898_0_quot_LE(x1, x0), x1)
Cond_898_1_main_InvokeMethod(TRUE, 898_0_quot_LE(x1, x0), x1) → 911_0_main_Return

The integer pair graph contains the following rules and edges:
(0): 898_1_MAIN_INVOKEMETHOD(898_0_quot_LE(x1[0], x0[0]), x1[0]) → COND_898_1_MAIN_INVOKEMETHOD(x1[0] > 0 && x0[0] > 0 && 0 <= x1[0] - 1 && 0 <= x0[0] - 1, 898_0_quot_LE(x1[0], x0[0]), x1[0])


The set Q consists of the following terms:
898_1_main_InvokeMethod(898_0_quot_LE(x0, x1), x0)
Cond_898_1_main_InvokeMethod(TRUE, 898_0_quot_LE(x0, x1), x0)

(7) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(8) TRUE