0 JBC
↳1 JBCToGraph (⇒, 300 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 290 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 650 ms)
↳8 AND
↳9 IDP
↳10 IDependencyGraphProof (⇔, 0 ms)
↳11 IDP
↳12 UsableRulesProof (⇔, 0 ms)
↳13 IDP
↳14 IDPNonInfProof (⇒, 270 ms)
↳15 IDP
↳16 IDependencyGraphProof (⇔, 0 ms)
↳17 IDP
↳18 IDPNonInfProof (⇒, 230 ms)
↳19 IDP
↳20 IDependencyGraphProof (⇔, 0 ms)
↳21 TRUE
↳22 IDP
↳23 IDependencyGraphProof (⇔, 0 ms)
↳24 IDP
↳25 UsableRulesProof (⇔, 0 ms)
↳26 IDP
↳27 IDPNonInfProof (⇒, 350 ms)
↳28 IDP
↳29 IDependencyGraphProof (⇔, 0 ms)
↳30 IDP
↳31 IDPNonInfProof (⇒, 140 ms)
↳32 IDP
↳33 IDependencyGraphProof (⇔, 0 ms)
↳34 TRUE
public class Test1 {
public static void main(String[] args) {
rec(args.length, args.length % 5, args.length % 4);
}
private static void rec(int x, int y, int z) {
if (x + y + 3 * z < 0)
return;
else if (x > y)
rec(x - 1, y, z);
else if (y > z)
rec (x, y - 2, z);
else
rec (x, y, z - 1);
}
}
Generated 45 rules for P and 31 rules for R.
P rules:
1351_0_rec_Load(EOS(STATIC_1351), i122, i437, i251, i122) → 1352_0_rec_IntArithmetic(EOS(STATIC_1352), i122, i437, i251, i122, i437)
1352_0_rec_IntArithmetic(EOS(STATIC_1352), i122, i437, i251, i122, i437) → 1354_0_rec_ConstantStackPush(EOS(STATIC_1354), i122, i437, i251, +(i122, i437))
1354_0_rec_ConstantStackPush(EOS(STATIC_1354), i122, i437, i251, i438) → 1355_0_rec_Load(EOS(STATIC_1355), i122, i437, i251, i438, 3)
1355_0_rec_Load(EOS(STATIC_1355), i122, i437, i251, i438, matching1) → 1357_0_rec_IntArithmetic(EOS(STATIC_1357), i122, i437, i251, i438, 3, i251) | =(matching1, 3)
1357_0_rec_IntArithmetic(EOS(STATIC_1357), i122, i437, i251, i438, matching1, i251) → 1358_0_rec_IntArithmetic(EOS(STATIC_1358), i122, i437, i251, i438, *(3, i251)) | =(matching1, 3)
1358_0_rec_IntArithmetic(EOS(STATIC_1358), i122, i437, i251, i438, i439) → 1360_0_rec_GE(EOS(STATIC_1360), i122, i437, i251, +(i438, i439))
1360_0_rec_GE(EOS(STATIC_1360), i122, i437, i251, i444) → 1363_0_rec_GE(EOS(STATIC_1363), i122, i437, i251, i444)
1363_0_rec_GE(EOS(STATIC_1363), i122, i437, i251, i444) → 1366_0_rec_Load(EOS(STATIC_1366), i122, i437, i251) | >=(i444, 0)
1366_0_rec_Load(EOS(STATIC_1366), i122, i437, i251) → 1368_0_rec_Load(EOS(STATIC_1368), i122, i437, i251, i122)
1368_0_rec_Load(EOS(STATIC_1368), i122, i437, i251, i122) → 1373_0_rec_LE(EOS(STATIC_1373), i122, i437, i251, i122, i437)
1373_0_rec_LE(EOS(STATIC_1373), i122, i437, i251, i122, i437) → 1377_0_rec_LE(EOS(STATIC_1377), i122, i437, i251, i122, i437)
1373_0_rec_LE(EOS(STATIC_1373), i122, i437, i251, i122, i437) → 1378_0_rec_LE(EOS(STATIC_1378), i122, i437, i251, i122, i437)
1377_0_rec_LE(EOS(STATIC_1377), i122, i437, i251, i122, i437) → 1379_0_rec_Load(EOS(STATIC_1379), i122, i437, i251) | <=(i122, i437)
1379_0_rec_Load(EOS(STATIC_1379), i122, i437, i251) → 1382_0_rec_Load(EOS(STATIC_1382), i122, i437, i251, i437)
1382_0_rec_Load(EOS(STATIC_1382), i122, i437, i251, i437) → 1385_0_rec_LE(EOS(STATIC_1385), i122, i437, i251, i437, i251)
1385_0_rec_LE(EOS(STATIC_1385), i122, i437, i251, i437, i251) → 1388_0_rec_LE(EOS(STATIC_1388), i122, i437, i251, i437, i251)
1385_0_rec_LE(EOS(STATIC_1385), i122, i437, i251, i437, i251) → 1389_0_rec_LE(EOS(STATIC_1389), i122, i437, i251, i437, i251)
1388_0_rec_LE(EOS(STATIC_1388), i122, i437, i251, i437, i251) → 1392_0_rec_Load(EOS(STATIC_1392), i122, i437, i251) | <=(i437, i251)
1392_0_rec_Load(EOS(STATIC_1392), i122, i437, i251) → 1397_0_rec_Load(EOS(STATIC_1397), i437, i251, i122)
1397_0_rec_Load(EOS(STATIC_1397), i437, i251, i122) → 1401_0_rec_Load(EOS(STATIC_1401), i251, i122, i437)
1401_0_rec_Load(EOS(STATIC_1401), i251, i122, i437) → 1406_0_rec_ConstantStackPush(EOS(STATIC_1406), i122, i437, i251)
1406_0_rec_ConstantStackPush(EOS(STATIC_1406), i122, i437, i251) → 1410_0_rec_IntArithmetic(EOS(STATIC_1410), i122, i437, i251, 1)
1410_0_rec_IntArithmetic(EOS(STATIC_1410), i122, i437, i251, matching1) → 1414_0_rec_InvokeMethod(EOS(STATIC_1414), i122, i437, -(i251, 1)) | =(matching1, 1)
1414_0_rec_InvokeMethod(EOS(STATIC_1414), i122, i437, i453) → 1420_1_rec_InvokeMethod(1420_0_rec_Load(EOS(STATIC_1420), i122, i437, i453), i122, i437, i453)
1420_0_rec_Load(EOS(STATIC_1420), i122, i437, i453) → 1424_0_rec_Load(EOS(STATIC_1424), i122, i437, i453)
1424_0_rec_Load(EOS(STATIC_1424), i122, i437, i453) → 1349_0_rec_Load(EOS(STATIC_1349), i122, i437, i453)
1349_0_rec_Load(EOS(STATIC_1349), i122, i437, i251) → 1351_0_rec_Load(EOS(STATIC_1351), i122, i437, i251, i122)
1389_0_rec_LE(EOS(STATIC_1389), i122, i437, i251, i437, i251) → 1394_0_rec_Load(EOS(STATIC_1394), i122, i437, i251) | >(i437, i251)
1394_0_rec_Load(EOS(STATIC_1394), i122, i437, i251) → 1398_0_rec_Load(EOS(STATIC_1398), i437, i251, i122)
1398_0_rec_Load(EOS(STATIC_1398), i437, i251, i122) → 1403_0_rec_ConstantStackPush(EOS(STATIC_1403), i251, i122, i437)
1403_0_rec_ConstantStackPush(EOS(STATIC_1403), i251, i122, i437) → 1407_0_rec_IntArithmetic(EOS(STATIC_1407), i251, i122, i437, 2)
1407_0_rec_IntArithmetic(EOS(STATIC_1407), i251, i122, i437, matching1) → 1412_0_rec_Load(EOS(STATIC_1412), i251, i122, -(i437, 2)) | =(matching1, 2)
1412_0_rec_Load(EOS(STATIC_1412), i251, i122, i452) → 1415_0_rec_InvokeMethod(EOS(STATIC_1415), i122, i452, i251)
1415_0_rec_InvokeMethod(EOS(STATIC_1415), i122, i452, i251) → 1421_1_rec_InvokeMethod(1421_0_rec_Load(EOS(STATIC_1421), i122, i452, i251), i122, i452, i251)
1421_0_rec_Load(EOS(STATIC_1421), i122, i452, i251) → 1425_0_rec_Load(EOS(STATIC_1425), i122, i452, i251)
1425_0_rec_Load(EOS(STATIC_1425), i122, i452, i251) → 1349_0_rec_Load(EOS(STATIC_1349), i122, i452, i251)
1378_0_rec_LE(EOS(STATIC_1378), i122, i437, i251, i122, i437) → 1381_0_rec_Load(EOS(STATIC_1381), i122, i437, i251) | >(i122, i437)
1381_0_rec_Load(EOS(STATIC_1381), i122, i437, i251) → 1383_0_rec_ConstantStackPush(EOS(STATIC_1383), i437, i251, i122)
1383_0_rec_ConstantStackPush(EOS(STATIC_1383), i437, i251, i122) → 1387_0_rec_IntArithmetic(EOS(STATIC_1387), i437, i251, i122, 1)
1387_0_rec_IntArithmetic(EOS(STATIC_1387), i437, i251, i122, matching1) → 1391_0_rec_Load(EOS(STATIC_1391), i437, i251, -(i122, 1)) | =(matching1, 1)
1391_0_rec_Load(EOS(STATIC_1391), i437, i251, i451) → 1395_0_rec_Load(EOS(STATIC_1395), i251, i451, i437)
1395_0_rec_Load(EOS(STATIC_1395), i251, i451, i437) → 1400_0_rec_InvokeMethod(EOS(STATIC_1400), i451, i437, i251)
1400_0_rec_InvokeMethod(EOS(STATIC_1400), i451, i437, i251) → 1404_1_rec_InvokeMethod(1404_0_rec_Load(EOS(STATIC_1404), i451, i437, i251), i451, i437, i251)
1404_0_rec_Load(EOS(STATIC_1404), i451, i437, i251) → 1409_0_rec_Load(EOS(STATIC_1409), i451, i437, i251)
1409_0_rec_Load(EOS(STATIC_1409), i451, i437, i251) → 1349_0_rec_Load(EOS(STATIC_1349), i451, i437, i251)
R rules:
1360_0_rec_GE(EOS(STATIC_1360), i122, i437, i251, i443) → 1362_0_rec_GE(EOS(STATIC_1362), i122, i437, i251, i443)
1362_0_rec_GE(EOS(STATIC_1362), i122, i437, i251, i443) → 1364_0_rec_Return(EOS(STATIC_1364), i122, i437, i251) | <(i443, 0)
1404_1_rec_InvokeMethod(1364_0_rec_Return(EOS(STATIC_1364), i458, i459, i460), i458, i459, i460) → 1422_0_rec_Return(EOS(STATIC_1422), i458, i459, i460, i458, i459, i460)
1404_1_rec_InvokeMethod(1448_0_rec_Return(EOS(STATIC_1448)), i521, i522, i523) → 1486_0_rec_Return(EOS(STATIC_1486), i521, i522, i523)
1404_1_rec_InvokeMethod(1482_0_rec_Return(EOS(STATIC_1482)), i565, i566, i567) → 1503_0_rec_Return(EOS(STATIC_1503), i565, i566, i567)
1420_1_rec_InvokeMethod(1364_0_rec_Return(EOS(STATIC_1364), i466, i467, i468), i466, i467, i468) → 1437_0_rec_Return(EOS(STATIC_1437), i466, i467, i468, i466, i467, i468)
1420_1_rec_InvokeMethod(1448_0_rec_Return(EOS(STATIC_1448)), i525, i526, i527) → 1488_0_rec_Return(EOS(STATIC_1488), i525, i526, i527)
1420_1_rec_InvokeMethod(1482_0_rec_Return(EOS(STATIC_1482)), i570, i571, i572) → 1505_0_rec_Return(EOS(STATIC_1505), i570, i571, i572)
1421_1_rec_InvokeMethod(1364_0_rec_Return(EOS(STATIC_1364), i476, i477, i478), i476, i477, i478) → 1438_0_rec_Return(EOS(STATIC_1438), i476, i477, i478, i476, i477, i478)
1421_1_rec_InvokeMethod(1448_0_rec_Return(EOS(STATIC_1448)), i531, i532, i533) → 1490_0_rec_Return(EOS(STATIC_1490), i531, i532, i533)
1421_1_rec_InvokeMethod(1482_0_rec_Return(EOS(STATIC_1482)), i576, i577, i578) → 1507_0_rec_Return(EOS(STATIC_1507), i576, i577, i578)
1422_0_rec_Return(EOS(STATIC_1422), i458, i459, i460, i458, i459, i460) → 1427_0_rec_JMP(EOS(STATIC_1427))
1427_0_rec_JMP(EOS(STATIC_1427)) → 1462_0_rec_JMP(EOS(STATIC_1462))
1437_0_rec_Return(EOS(STATIC_1437), i466, i467, i468, i466, i467, i468) → 1448_0_rec_Return(EOS(STATIC_1448))
1438_0_rec_Return(EOS(STATIC_1438), i476, i477, i478, i476, i477, i478) → 1450_0_rec_JMP(EOS(STATIC_1450))
1448_0_rec_Return(EOS(STATIC_1448)) → 1458_0_rec_Return(EOS(STATIC_1458))
1450_0_rec_JMP(EOS(STATIC_1450)) → 1467_0_rec_JMP(EOS(STATIC_1467))
1452_0_rec_Return(EOS(STATIC_1452), i484, i485, i486) → 1462_0_rec_JMP(EOS(STATIC_1462))
1453_0_rec_Return(EOS(STATIC_1453), i489, i491, i492) → 1465_0_rec_Return(EOS(STATIC_1465))
1455_0_rec_Return(EOS(STATIC_1455), i495, i497, i498) → 1467_0_rec_JMP(EOS(STATIC_1467))
1458_0_rec_Return(EOS(STATIC_1458)) → 1465_0_rec_Return(EOS(STATIC_1465))
1462_0_rec_JMP(EOS(STATIC_1462)) → 1480_0_rec_Return(EOS(STATIC_1480))
1465_0_rec_Return(EOS(STATIC_1465)) → 1480_0_rec_Return(EOS(STATIC_1480))
1467_0_rec_JMP(EOS(STATIC_1467)) → 1482_0_rec_Return(EOS(STATIC_1482))
1480_0_rec_Return(EOS(STATIC_1480)) → 1482_0_rec_Return(EOS(STATIC_1482))
1486_0_rec_Return(EOS(STATIC_1486), i521, i522, i523) → 1452_0_rec_Return(EOS(STATIC_1452), i521, i522, i523)
1488_0_rec_Return(EOS(STATIC_1488), i525, i526, i527) → 1453_0_rec_Return(EOS(STATIC_1453), i525, i526, i527)
1490_0_rec_Return(EOS(STATIC_1490), i531, i532, i533) → 1455_0_rec_Return(EOS(STATIC_1455), i531, i532, i533)
1503_0_rec_Return(EOS(STATIC_1503), i565, i566, i567) → 1452_0_rec_Return(EOS(STATIC_1452), i565, i566, i567)
1505_0_rec_Return(EOS(STATIC_1505), i570, i571, i572) → 1453_0_rec_Return(EOS(STATIC_1453), i570, i571, i572)
1507_0_rec_Return(EOS(STATIC_1507), i576, i577, i578) → 1455_0_rec_Return(EOS(STATIC_1455), i576, i577, i578)
Combined rules. Obtained 3 conditional rules for P and 9 conditional rules for R.
P rules:
1351_0_rec_Load(EOS(STATIC_1351), x0, x1, x2, x0) → 1420_1_rec_InvokeMethod(1351_0_rec_Load(EOS(STATIC_1351), x0, x1, -(x2, 1), x0), x0, x1, -(x2, 1)) | &&(&&(>=(x2, x1), >=(x1, x0)), <=(0, +(+(x0, x1), *(3, x2))))
1351_0_rec_Load(EOS(STATIC_1351), x0, x1, x2, x0) → 1421_1_rec_InvokeMethod(1351_0_rec_Load(EOS(STATIC_1351), x0, -(x1, 2), x2, x0), x0, -(x1, 2), x2) | &&(&&(<(x2, x1), >=(x1, x0)), <=(0, +(+(x0, x1), *(3, x2))))
1351_0_rec_Load(EOS(STATIC_1351), x0, x1, x2, x0) → 1404_1_rec_InvokeMethod(1351_0_rec_Load(EOS(STATIC_1351), -(x0, 1), x1, x2, -(x0, 1)), -(x0, 1), x1, x2) | &&(<(x1, x0), <=(0, +(+(x0, x1), *(3, x2))))
R rules:
1421_1_rec_InvokeMethod(1364_0_rec_Return(EOS(STATIC_1364), x0, x1, x2), x0, x1, x2) → 1482_0_rec_Return(EOS(STATIC_1482))
1404_1_rec_InvokeMethod(1364_0_rec_Return(EOS(STATIC_1364), x0, x1, x2), x0, x1, x2) → 1482_0_rec_Return(EOS(STATIC_1482))
1420_1_rec_InvokeMethod(1364_0_rec_Return(EOS(STATIC_1364), x0, x1, x2), x0, x1, x2) → 1482_0_rec_Return(EOS(STATIC_1482))
1404_1_rec_InvokeMethod(1448_0_rec_Return(EOS(STATIC_1448)), x0, x1, x2) → 1482_0_rec_Return(EOS(STATIC_1482))
1404_1_rec_InvokeMethod(1482_0_rec_Return(EOS(STATIC_1482)), x0, x1, x2) → 1482_0_rec_Return(EOS(STATIC_1482))
1420_1_rec_InvokeMethod(1448_0_rec_Return(EOS(STATIC_1448)), x0, x1, x2) → 1482_0_rec_Return(EOS(STATIC_1482))
1420_1_rec_InvokeMethod(1482_0_rec_Return(EOS(STATIC_1482)), x0, x1, x2) → 1482_0_rec_Return(EOS(STATIC_1482))
1421_1_rec_InvokeMethod(1448_0_rec_Return(EOS(STATIC_1448)), x0, x1, x2) → 1482_0_rec_Return(EOS(STATIC_1482))
1421_1_rec_InvokeMethod(1482_0_rec_Return(EOS(STATIC_1482)), x0, x1, x2) → 1482_0_rec_Return(EOS(STATIC_1482))
Filtered ground terms:
1351_0_rec_Load(x1, x2, x3, x4, x5) → 1351_0_rec_Load(x2, x3, x4, x5)
Cond_1351_0_rec_Load2(x1, x2, x3, x4, x5, x6) → Cond_1351_0_rec_Load2(x1, x3, x4, x5, x6)
Cond_1351_0_rec_Load1(x1, x2, x3, x4, x5, x6) → Cond_1351_0_rec_Load1(x1, x3, x4, x5, x6)
Cond_1351_0_rec_Load(x1, x2, x3, x4, x5, x6) → Cond_1351_0_rec_Load(x1, x3, x4, x5, x6)
1482_0_rec_Return(x1) → 1482_0_rec_Return
1448_0_rec_Return(x1) → 1448_0_rec_Return
1364_0_rec_Return(x1, x2, x3, x4) → 1364_0_rec_Return(x2, x3, x4)
Filtered duplicate args:
1351_0_rec_Load(x1, x2, x3, x4) → 1351_0_rec_Load(x2, x3, x4)
Cond_1351_0_rec_Load(x1, x2, x3, x4, x5) → Cond_1351_0_rec_Load(x1, x3, x4, x5)
Cond_1351_0_rec_Load1(x1, x2, x3, x4, x5) → Cond_1351_0_rec_Load1(x1, x3, x4, x5)
Cond_1351_0_rec_Load2(x1, x2, x3, x4, x5) → Cond_1351_0_rec_Load2(x1, x3, x4, x5)
Filtered unneeded arguments:
1420_1_rec_InvokeMethod(x1, x2, x3, x4) → 1420_1_rec_InvokeMethod(x1)
1421_1_rec_InvokeMethod(x1, x2, x3, x4) → 1421_1_rec_InvokeMethod(x1)
1404_1_rec_InvokeMethod(x1, x2, x3, x4) → 1404_1_rec_InvokeMethod(x1)
Combined rules. Obtained 3 conditional rules for P and 9 conditional rules for R.
P rules:
1351_0_rec_Load(x1, x2, x0) → 1420_1_rec_InvokeMethod(1351_0_rec_Load(x1, -(x2, 1), x0)) | &&(&&(>=(x2, x1), >=(x1, x0)), <=(0, +(+(x0, x1), *(3, x2))))
1351_0_rec_Load(x1, x2, x0) → 1421_1_rec_InvokeMethod(1351_0_rec_Load(-(x1, 2), x2, x0)) | &&(&&(<(x2, x1), >=(x1, x0)), <=(0, +(+(x0, x1), *(3, x2))))
1351_0_rec_Load(x1, x2, x0) → 1404_1_rec_InvokeMethod(1351_0_rec_Load(x1, x2, -(x0, 1))) | &&(<(x1, x0), <=(0, +(+(x0, x1), *(3, x2))))
R rules:
1421_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2)) → 1482_0_rec_Return
1404_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2)) → 1482_0_rec_Return
1420_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2)) → 1482_0_rec_Return
1404_1_rec_InvokeMethod(1448_0_rec_Return) → 1482_0_rec_Return
1404_1_rec_InvokeMethod(1482_0_rec_Return) → 1482_0_rec_Return
1420_1_rec_InvokeMethod(1448_0_rec_Return) → 1482_0_rec_Return
1420_1_rec_InvokeMethod(1482_0_rec_Return) → 1482_0_rec_Return
1421_1_rec_InvokeMethod(1448_0_rec_Return) → 1482_0_rec_Return
1421_1_rec_InvokeMethod(1482_0_rec_Return) → 1482_0_rec_Return
Performed bisimulation on rules. Used the following equivalence classes: {[1482_0_rec_Return, 1448_0_rec_Return]=1482_0_rec_Return}
Finished conversion. Obtained 6 rules for P and 6 rules for R. System has predefined symbols.
P rules:
1351_0_REC_LOAD(x1, x2, x0) → COND_1351_0_REC_LOAD(&&(&&(>=(x2, x1), >=(x1, x0)), <=(0, +(+(x0, x1), *(3, x2)))), x1, x2, x0)
COND_1351_0_REC_LOAD(TRUE, x1, x2, x0) → 1351_0_REC_LOAD(x1, -(x2, 1), x0)
1351_0_REC_LOAD(x1, x2, x0) → COND_1351_0_REC_LOAD1(&&(&&(<(x2, x1), >=(x1, x0)), <=(0, +(+(x0, x1), *(3, x2)))), x1, x2, x0)
COND_1351_0_REC_LOAD1(TRUE, x1, x2, x0) → 1351_0_REC_LOAD(-(x1, 2), x2, x0)
1351_0_REC_LOAD(x1, x2, x0) → COND_1351_0_REC_LOAD2(&&(<(x1, x0), <=(0, +(+(x0, x1), *(3, x2)))), x1, x2, x0)
COND_1351_0_REC_LOAD2(TRUE, x1, x2, x0) → 1351_0_REC_LOAD(x1, x2, -(x0, 1))
R rules:
1421_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2)) → 1482_0_rec_Return
1404_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2)) → 1482_0_rec_Return
1420_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2)) → 1482_0_rec_Return
1404_1_rec_InvokeMethod(1482_0_rec_Return) → 1482_0_rec_Return
1420_1_rec_InvokeMethod(1482_0_rec_Return) → 1482_0_rec_Return
1421_1_rec_InvokeMethod(1482_0_rec_Return) → 1482_0_rec_Return
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if (x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0] ∧x1[0] →* x1[1]∧x2[0] →* x2[1]∧x0[0] →* x0[1])
(1) -> (0), if (x1[1] →* x1[0]∧x2[1] - 1 →* x2[0]∧x0[1] →* x0[0])
(1) -> (2), if (x1[1] →* x1[2]∧x2[1] - 1 →* x2[2]∧x0[1] →* x0[2])
(1) -> (4), if (x1[1] →* x1[4]∧x2[1] - 1 →* x2[4]∧x0[1] →* x0[4])
(2) -> (3), if (x2[2] < x1[2] && x1[2] >= x0[2] && 0 <= x0[2] + x1[2] + 3 * x2[2] ∧x1[2] →* x1[3]∧x2[2] →* x2[3]∧x0[2] →* x0[3])
(3) -> (0), if (x1[3] - 2 →* x1[0]∧x2[3] →* x2[0]∧x0[3] →* x0[0])
(3) -> (2), if (x1[3] - 2 →* x1[2]∧x2[3] →* x2[2]∧x0[3] →* x0[2])
(3) -> (4), if (x1[3] - 2 →* x1[4]∧x2[3] →* x2[4]∧x0[3] →* x0[4])
(4) -> (5), if (x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4] ∧x1[4] →* x1[5]∧x2[4] →* x2[5]∧x0[4] →* x0[5])
(5) -> (0), if (x1[5] →* x1[0]∧x2[5] →* x2[0]∧x0[5] - 1 →* x0[0])
(5) -> (2), if (x1[5] →* x1[2]∧x2[5] →* x2[2]∧x0[5] - 1 →* x0[2])
(5) -> (4), if (x1[5] →* x1[4]∧x2[5] →* x2[4]∧x0[5] - 1 →* x0[4])
(1) (&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0]))))=TRUE∧x1[0]=x1[1]∧x2[0]=x2[1]∧x0[0]=x0[1] ⇒ 1351_0_REC_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1351_0_REC_LOAD(x1[0], x2[0], x0[0])≥COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥))
(2) (<=(0, +(+(x0[0], x1[0]), *(3, x2[0])))=TRUE∧>=(x2[0], x1[0])=TRUE∧>=(x1[0], x0[0])=TRUE ⇒ 1351_0_REC_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1351_0_REC_LOAD(x1[0], x2[0], x0[0])≥COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥))
(3) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_19 + (-1)Bound*bni_19] + [(2)bni_19]x1[0] ≥ 0∧[(-1)bso_20] ≥ 0)
(4) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_19 + (-1)Bound*bni_19] + [(2)bni_19]x1[0] ≥ 0∧[(-1)bso_20] ≥ 0)
(5) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_19 + (-1)Bound*bni_19] + [(2)bni_19]x1[0] ≥ 0∧[(-1)bso_20] ≥ 0)
(6) (x0[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧[2]x1[0] + [3]x2[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_19 + (-1)Bound*bni_19] + [(2)bni_19]x1[0] ≥ 0∧[(-1)bso_20] ≥ 0)
(7) (x0[0] ≥ 0∧x1[0] ≥ 0∧[5]x2[0] + [-2]x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_19 + (-1)Bound*bni_19] + [(2)bni_19]x2[0] + [(-2)bni_19]x1[0] ≥ 0∧[(-1)bso_20] ≥ 0)
(8) (COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1])≥1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])∧(UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥))
(9) ((UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[bni_21] = 0∧[(-1)bso_22] ≥ 0)
(10) ((UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[bni_21] = 0∧[(-1)bso_22] ≥ 0)
(11) ((UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[bni_21] = 0∧[(-1)bso_22] ≥ 0)
(12) ((UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[bni_21] = 0∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_22] ≥ 0)
(13) (&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2]))))=TRUE∧x1[2]=x1[3]∧x2[2]=x2[3]∧x0[2]=x0[3] ⇒ 1351_0_REC_LOAD(x1[2], x2[2], x0[2])≥NonInfC∧1351_0_REC_LOAD(x1[2], x2[2], x0[2])≥COND_1351_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])∧(UIncreasing(COND_1351_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥))
(14) (<=(0, +(+(x0[2], x1[2]), *(3, x2[2])))=TRUE∧<(x2[2], x1[2])=TRUE∧>=(x1[2], x0[2])=TRUE ⇒ 1351_0_REC_LOAD(x1[2], x2[2], x0[2])≥NonInfC∧1351_0_REC_LOAD(x1[2], x2[2], x0[2])≥COND_1351_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])∧(UIncreasing(COND_1351_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥))
(15) (x0[2] + x1[2] + [3]x2[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [(2)bni_23]x1[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(16) (x0[2] + x1[2] + [3]x2[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [(2)bni_23]x1[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(17) (x0[2] + x1[2] + [3]x2[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [(2)bni_23]x1[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(18) (x0[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧[2]x1[2] + [3]x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [(2)bni_23]x1[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(19) (x0[2] ≥ 0∧x1[2] ≥ 0∧[2] + [5]x2[2] + [2]x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[bni_23 + (-1)Bound*bni_23] + [(2)bni_23]x2[2] + [(2)bni_23]x1[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(20) (x0[2] ≥ 0∧x1[2] ≥ 0∧[2] + [-5]x2[2] + [2]x1[2] + [-1]x0[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[bni_23 + (-1)Bound*bni_23] + [(-2)bni_23]x2[2] + [(2)bni_23]x1[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(21) (x0[2] ≥ 0∧x1[2] ≥ 0∧[2] + [5]x2[2] + [2]x1[2] + [-1]x0[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[bni_23 + (-1)Bound*bni_23] + [(2)bni_23]x2[2] + [(2)bni_23]x1[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(22) (COND_1351_0_REC_LOAD1(TRUE, x1[3], x2[3], x0[3])≥NonInfC∧COND_1351_0_REC_LOAD1(TRUE, x1[3], x2[3], x0[3])≥1351_0_REC_LOAD(-(x1[3], 2), x2[3], x0[3])∧(UIncreasing(1351_0_REC_LOAD(-(x1[3], 2), x2[3], x0[3])), ≥))
(23) ((UIncreasing(1351_0_REC_LOAD(-(x1[3], 2), x2[3], x0[3])), ≥)∧[bni_25] = 0∧[4 + (-1)bso_26] ≥ 0)
(24) ((UIncreasing(1351_0_REC_LOAD(-(x1[3], 2), x2[3], x0[3])), ≥)∧[bni_25] = 0∧[4 + (-1)bso_26] ≥ 0)
(25) ((UIncreasing(1351_0_REC_LOAD(-(x1[3], 2), x2[3], x0[3])), ≥)∧[bni_25] = 0∧[4 + (-1)bso_26] ≥ 0)
(26) ((UIncreasing(1351_0_REC_LOAD(-(x1[3], 2), x2[3], x0[3])), ≥)∧[bni_25] = 0∧0 = 0∧0 = 0∧0 = 0∧[4 + (-1)bso_26] ≥ 0)
(27) (&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4]))))=TRUE∧x1[4]=x1[5]∧x2[4]=x2[5]∧x0[4]=x0[5] ⇒ 1351_0_REC_LOAD(x1[4], x2[4], x0[4])≥NonInfC∧1351_0_REC_LOAD(x1[4], x2[4], x0[4])≥COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])∧(UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥))
(28) (<(x1[4], x0[4])=TRUE∧<=(0, +(+(x0[4], x1[4]), *(3, x2[4])))=TRUE ⇒ 1351_0_REC_LOAD(x1[4], x2[4], x0[4])≥NonInfC∧1351_0_REC_LOAD(x1[4], x2[4], x0[4])≥COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])∧(UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥))
(29) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [(2)bni_27]x1[4] ≥ 0∧[(-1)bso_28] ≥ 0)
(30) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [(2)bni_27]x1[4] ≥ 0∧[(-1)bso_28] ≥ 0)
(31) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [(2)bni_27]x1[4] ≥ 0∧[(-1)bso_28] ≥ 0)
(32) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [(2)bni_27]x1[4] ≥ 0∧[(-1)bso_28] ≥ 0)
(33) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [(2)bni_27]x1[4] ≥ 0∧[(-1)bso_28] ≥ 0)
(34) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [(-2)bni_27]x1[4] ≥ 0∧[(-1)bso_28] ≥ 0)
(35) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [(2)bni_27]x1[4] ≥ 0∧[(-1)bso_28] ≥ 0)
(36) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [(2)bni_27]x1[4] ≥ 0∧[(-1)bso_28] ≥ 0)
(37) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [(-2)bni_27]x1[4] ≥ 0∧[(-1)bso_28] ≥ 0)
(38) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [(-2)bni_27]x1[4] ≥ 0∧[(-1)bso_28] ≥ 0)
(39) (COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5])≥NonInfC∧COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5])≥1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))∧(UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥))
(40) ((UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[bni_29] = 0∧[(-1)bso_30] ≥ 0)
(41) ((UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[bni_29] = 0∧[(-1)bso_30] ≥ 0)
(42) ((UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[bni_29] = 0∧[(-1)bso_30] ≥ 0)
(43) ((UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[bni_29] = 0∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_30] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(1421_1_rec_InvokeMethod(x1)) = [-1]
POL(1364_0_rec_Return(x1, x2, x3)) = [-1]
POL(1482_0_rec_Return) = [-1]
POL(1404_1_rec_InvokeMethod(x1)) = [-1]
POL(1420_1_rec_InvokeMethod(x1)) = [-1]
POL(1351_0_REC_LOAD(x1, x2, x3)) = [-1] + [2]x1
POL(COND_1351_0_REC_LOAD(x1, x2, x3, x4)) = [-1] + [2]x2
POL(&&(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(<=(x1, x2)) = [-1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
POL(*(x1, x2)) = x1·x2
POL(3) = [3]
POL(-(x1, x2)) = x1 + [-1]x2
POL(1) = [1]
POL(COND_1351_0_REC_LOAD1(x1, x2, x3, x4)) = [-1] + [2]x2
POL(<(x1, x2)) = [-1]
POL(2) = [2]
POL(COND_1351_0_REC_LOAD2(x1, x2, x3, x4)) = [-1] + [2]x2
COND_1351_0_REC_LOAD1(TRUE, x1[3], x2[3], x0[3]) → 1351_0_REC_LOAD(-(x1[3], 2), x2[3], x0[3])
1351_0_REC_LOAD(x1[2], x2[2], x0[2]) → COND_1351_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])
1351_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])
COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])
1351_0_REC_LOAD(x1[2], x2[2], x0[2]) → COND_1351_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])
1351_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])
COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(1) -> (0), if (x1[1] →* x1[0]∧x2[1] - 1 →* x2[0]∧x0[1] →* x0[0])
(5) -> (0), if (x1[5] →* x1[0]∧x2[5] →* x2[0]∧x0[5] - 1 →* x0[0])
(0) -> (1), if (x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0] ∧x1[0] →* x1[1]∧x2[0] →* x2[1]∧x0[0] →* x0[1])
(1) -> (2), if (x1[1] →* x1[2]∧x2[1] - 1 →* x2[2]∧x0[1] →* x0[2])
(5) -> (2), if (x1[5] →* x1[2]∧x2[5] →* x2[2]∧x0[5] - 1 →* x0[2])
(1) -> (4), if (x1[1] →* x1[4]∧x2[1] - 1 →* x2[4]∧x0[1] →* x0[4])
(5) -> (4), if (x1[5] →* x1[4]∧x2[5] →* x2[4]∧x0[5] - 1 →* x0[4])
(4) -> (5), if (x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4] ∧x1[4] →* x1[5]∧x2[4] →* x2[5]∧x0[4] →* x0[5])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(1) -> (0), if (x1[1] →* x1[0]∧x2[1] - 1 →* x2[0]∧x0[1] →* x0[0])
(5) -> (0), if (x1[5] →* x1[0]∧x2[5] →* x2[0]∧x0[5] - 1 →* x0[0])
(0) -> (1), if (x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0] ∧x1[0] →* x1[1]∧x2[0] →* x2[1]∧x0[0] →* x0[1])
(1) -> (4), if (x1[1] →* x1[4]∧x2[1] - 1 →* x2[4]∧x0[1] →* x0[4])
(5) -> (4), if (x1[5] →* x1[4]∧x2[5] →* x2[4]∧x0[5] - 1 →* x0[4])
(4) -> (5), if (x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4] ∧x1[4] →* x1[5]∧x2[4] →* x2[5]∧x0[4] →* x0[5])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(1) -> (0), if (x1[1] →* x1[0]∧x2[1] - 1 →* x2[0]∧x0[1] →* x0[0])
(5) -> (0), if (x1[5] →* x1[0]∧x2[5] →* x2[0]∧x0[5] - 1 →* x0[0])
(0) -> (1), if (x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0] ∧x1[0] →* x1[1]∧x2[0] →* x2[1]∧x0[0] →* x0[1])
(1) -> (4), if (x1[1] →* x1[4]∧x2[1] - 1 →* x2[4]∧x0[1] →* x0[4])
(5) -> (4), if (x1[5] →* x1[4]∧x2[5] →* x2[4]∧x0[5] - 1 →* x0[4])
(4) -> (5), if (x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4] ∧x1[4] →* x1[5]∧x2[4] →* x2[5]∧x0[4] →* x0[5])
(1) (COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5])≥NonInfC∧COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5])≥1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))∧(UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥))
(2) ((UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[bni_13] = 0∧[(-1)bso_14] ≥ 0)
(3) ((UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[bni_13] = 0∧[(-1)bso_14] ≥ 0)
(4) ((UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[bni_13] = 0∧[(-1)bso_14] ≥ 0)
(5) ((UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[bni_13] = 0∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_14] ≥ 0)
(6) (&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4]))))=TRUE∧x1[4]=x1[5]∧x2[4]=x2[5]∧x0[4]=x0[5] ⇒ 1351_0_REC_LOAD(x1[4], x2[4], x0[4])≥NonInfC∧1351_0_REC_LOAD(x1[4], x2[4], x0[4])≥COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])∧(UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥))
(7) (<(x1[4], x0[4])=TRUE∧<=(0, +(+(x0[4], x1[4]), *(3, x2[4])))=TRUE ⇒ 1351_0_REC_LOAD(x1[4], x2[4], x0[4])≥NonInfC∧1351_0_REC_LOAD(x1[4], x2[4], x0[4])≥COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])∧(UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥))
(8) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_15 + (-1)Bound*bni_15] + [(2)bni_15]x2[4] + [(-1)bni_15]x1[4] ≥ 0∧[(-1)bso_16] ≥ 0)
(9) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_15 + (-1)Bound*bni_15] + [(2)bni_15]x2[4] + [(-1)bni_15]x1[4] ≥ 0∧[(-1)bso_16] ≥ 0)
(10) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_15 + (-1)Bound*bni_15] + [(2)bni_15]x2[4] + [(-1)bni_15]x1[4] ≥ 0∧[(-1)bso_16] ≥ 0)
(11) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_15 + (-1)Bound*bni_15] + [(2)bni_15]x2[4] + [(-1)bni_15]x1[4] ≥ 0∧[(-1)bso_16] ≥ 0)
(12) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_15 + (-1)Bound*bni_15] + [(2)bni_15]x2[4] + [(-1)bni_15]x1[4] ≥ 0∧[(-1)bso_16] ≥ 0)
(13) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_15 + (-1)Bound*bni_15] + [(2)bni_15]x2[4] + [bni_15]x1[4] ≥ 0∧[(-1)bso_16] ≥ 0)
(14) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_15 + (-1)Bound*bni_15] + [(2)bni_15]x2[4] + [(-1)bni_15]x1[4] ≥ 0∧[(-1)bso_16] ≥ 0)
(15) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_15 + (-1)Bound*bni_15] + [(-2)bni_15]x2[4] + [(-1)bni_15]x1[4] ≥ 0∧[(-1)bso_16] ≥ 0)
(16) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_15 + (-1)Bound*bni_15] + [(2)bni_15]x2[4] + [bni_15]x1[4] ≥ 0∧[(-1)bso_16] ≥ 0)
(17) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_15 + (-1)Bound*bni_15] + [(-2)bni_15]x2[4] + [bni_15]x1[4] ≥ 0∧[(-1)bso_16] ≥ 0)
(18) (COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1])≥1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])∧(UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥))
(19) ((UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[bni_17] = 0∧[(-1)bso_18] ≥ 0)
(20) ((UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[bni_17] = 0∧[(-1)bso_18] ≥ 0)
(21) ((UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[bni_17] = 0∧[(-1)bso_18] ≥ 0)
(22) ((UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[bni_17] = 0∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_18] ≥ 0)
(23) (&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0]))))=TRUE∧x1[0]=x1[1]∧x2[0]=x2[1]∧x0[0]=x0[1] ⇒ 1351_0_REC_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1351_0_REC_LOAD(x1[0], x2[0], x0[0])≥COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥))
(24) (<=(0, +(+(x0[0], x1[0]), *(3, x2[0])))=TRUE∧>=(x2[0], x1[0])=TRUE∧>=(x1[0], x0[0])=TRUE ⇒ 1351_0_REC_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1351_0_REC_LOAD(x1[0], x2[0], x0[0])≥COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥))
(25) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(2)bni_19 + (-1)Bound*bni_19] + [(2)bni_19]x2[0] + [(-1)bni_19]x1[0] ≥ 0∧[2 + (-1)bso_20] ≥ 0)
(26) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(2)bni_19 + (-1)Bound*bni_19] + [(2)bni_19]x2[0] + [(-1)bni_19]x1[0] ≥ 0∧[2 + (-1)bso_20] ≥ 0)
(27) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(2)bni_19 + (-1)Bound*bni_19] + [(2)bni_19]x2[0] + [(-1)bni_19]x1[0] ≥ 0∧[2 + (-1)bso_20] ≥ 0)
(28) (x0[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧[2]x1[0] + [3]x2[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(2)bni_19 + (-1)Bound*bni_19] + [(2)bni_19]x2[0] + [(-1)bni_19]x1[0] ≥ 0∧[2 + (-1)bso_20] ≥ 0)
(29) (x0[0] ≥ 0∧x1[0] ≥ 0∧[5]x2[0] + [-2]x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(2)bni_19 + (-1)Bound*bni_19] + [bni_19]x2[0] + [bni_19]x1[0] ≥ 0∧[2 + (-1)bso_20] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_1351_0_REC_LOAD2(x1, x2, x3, x4)) = [2] + [2]x3 + [-1]x2
POL(1351_0_REC_LOAD(x1, x2, x3)) = [2] + [2]x2 + [-1]x1
POL(-(x1, x2)) = x1 + [-1]x2
POL(1) = [1]
POL(&&(x1, x2)) = [-1]
POL(<(x1, x2)) = [-1]
POL(<=(x1, x2)) = [-1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
POL(*(x1, x2)) = x1·x2
POL(3) = [3]
POL(COND_1351_0_REC_LOAD(x1, x2, x3, x4)) = [-1]x2 + [2]x3
POL(>=(x1, x2)) = [-1]
1351_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])
1351_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])
COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))
1351_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])
COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(1) -> (4), if (x1[1] →* x1[4]∧x2[1] - 1 →* x2[4]∧x0[1] →* x0[4])
(5) -> (4), if (x1[5] →* x1[4]∧x2[5] →* x2[4]∧x0[5] - 1 →* x0[4])
(4) -> (5), if (x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4] ∧x1[4] →* x1[5]∧x2[4] →* x2[5]∧x0[4] →* x0[5])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(5) -> (4), if (x1[5] →* x1[4]∧x2[5] →* x2[4]∧x0[5] - 1 →* x0[4])
(4) -> (5), if (x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4] ∧x1[4] →* x1[5]∧x2[4] →* x2[5]∧x0[4] →* x0[5])
(1) (&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4]))))=TRUE∧x1[4]=x1[5]∧x2[4]=x2[5]∧x0[4]=x0[5] ⇒ 1351_0_REC_LOAD(x1[4], x2[4], x0[4])≥NonInfC∧1351_0_REC_LOAD(x1[4], x2[4], x0[4])≥COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])∧(UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥))
(2) (<(x1[4], x0[4])=TRUE∧<=(0, +(+(x0[4], x1[4]), *(3, x2[4])))=TRUE ⇒ 1351_0_REC_LOAD(x1[4], x2[4], x0[4])≥NonInfC∧1351_0_REC_LOAD(x1[4], x2[4], x0[4])≥COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])∧(UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥))
(3) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_8] + [bni_8]x0[4] + [(-1)bni_8]x1[4] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(4) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_8] + [bni_8]x0[4] + [(-1)bni_8]x1[4] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(5) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_8] + [bni_8]x0[4] + [(-1)bni_8]x1[4] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(6) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_8 + bni_8] + [bni_8]x0[4] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(7) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_8 + bni_8] + [bni_8]x0[4] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(8) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_8 + bni_8] + [bni_8]x0[4] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(9) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_8 + bni_8] + [bni_8]x0[4] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(10) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_8 + bni_8] + [bni_8]x0[4] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(11) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_8 + bni_8] + [bni_8]x0[4] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(12) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_8 + bni_8] + [bni_8]x0[4] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
(13) (COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5])≥NonInfC∧COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5])≥1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))∧(UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥))
(14) ((UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[bni_10] = 0∧[(-1)bso_11] ≥ 0)
(15) ((UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[bni_10] = 0∧[(-1)bso_11] ≥ 0)
(16) ((UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[bni_10] = 0∧[(-1)bso_11] ≥ 0)
(17) ((UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[bni_10] = 0∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_11] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(1351_0_REC_LOAD(x1, x2, x3)) = x3 + [-1]x1
POL(COND_1351_0_REC_LOAD2(x1, x2, x3, x4)) = [-1] + x4 + [-1]x2
POL(&&(x1, x2)) = [-1]
POL(<(x1, x2)) = [-1]
POL(<=(x1, x2)) = [-1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
POL(*(x1, x2)) = x1·x2
POL(3) = [3]
POL(-(x1, x2)) = x1 + [-1]x2
POL(1) = [1]
1351_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])
1351_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])
COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(1) -> (0), if (x1[1] →* x1[0]∧x2[1] - 1 →* x2[0]∧x0[1] →* x0[0])
(3) -> (0), if (x1[3] - 2 →* x1[0]∧x2[3] →* x2[0]∧x0[3] →* x0[0])
(5) -> (0), if (x1[5] →* x1[0]∧x2[5] →* x2[0]∧x0[5] - 1 →* x0[0])
(0) -> (1), if (x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0] ∧x1[0] →* x1[1]∧x2[0] →* x2[1]∧x0[0] →* x0[1])
(1) -> (4), if (x1[1] →* x1[4]∧x2[1] - 1 →* x2[4]∧x0[1] →* x0[4])
(3) -> (4), if (x1[3] - 2 →* x1[4]∧x2[3] →* x2[4]∧x0[3] →* x0[4])
(5) -> (4), if (x1[5] →* x1[4]∧x2[5] →* x2[4]∧x0[5] - 1 →* x0[4])
(4) -> (5), if (x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4] ∧x1[4] →* x1[5]∧x2[4] →* x2[5]∧x0[4] →* x0[5])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(1) -> (0), if (x1[1] →* x1[0]∧x2[1] - 1 →* x2[0]∧x0[1] →* x0[0])
(5) -> (0), if (x1[5] →* x1[0]∧x2[5] →* x2[0]∧x0[5] - 1 →* x0[0])
(0) -> (1), if (x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0] ∧x1[0] →* x1[1]∧x2[0] →* x2[1]∧x0[0] →* x0[1])
(1) -> (4), if (x1[1] →* x1[4]∧x2[1] - 1 →* x2[4]∧x0[1] →* x0[4])
(5) -> (4), if (x1[5] →* x1[4]∧x2[5] →* x2[4]∧x0[5] - 1 →* x0[4])
(4) -> (5), if (x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4] ∧x1[4] →* x1[5]∧x2[4] →* x2[5]∧x0[4] →* x0[5])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(1) -> (0), if (x1[1] →* x1[0]∧x2[1] - 1 →* x2[0]∧x0[1] →* x0[0])
(5) -> (0), if (x1[5] →* x1[0]∧x2[5] →* x2[0]∧x0[5] - 1 →* x0[0])
(0) -> (1), if (x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0] ∧x1[0] →* x1[1]∧x2[0] →* x2[1]∧x0[0] →* x0[1])
(1) -> (4), if (x1[1] →* x1[4]∧x2[1] - 1 →* x2[4]∧x0[1] →* x0[4])
(5) -> (4), if (x1[5] →* x1[4]∧x2[5] →* x2[4]∧x0[5] - 1 →* x0[4])
(4) -> (5), if (x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4] ∧x1[4] →* x1[5]∧x2[4] →* x2[5]∧x0[4] →* x0[5])
(1) (COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5])≥NonInfC∧COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5])≥1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))∧(UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥))
(2) ((UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[bni_10] = 0∧[(-1)bso_11] ≥ 0)
(3) ((UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[bni_10] = 0∧[(-1)bso_11] ≥ 0)
(4) ((UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[bni_10] = 0∧[(-1)bso_11] ≥ 0)
(5) ((UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[bni_10] = 0∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_11] ≥ 0)
(6) (&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4]))))=TRUE∧x1[4]=x1[5]∧x2[4]=x2[5]∧x0[4]=x0[5] ⇒ 1351_0_REC_LOAD(x1[4], x2[4], x0[4])≥NonInfC∧1351_0_REC_LOAD(x1[4], x2[4], x0[4])≥COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])∧(UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥))
(7) (<(x1[4], x0[4])=TRUE∧<=(0, +(+(x0[4], x1[4]), *(3, x2[4])))=TRUE ⇒ 1351_0_REC_LOAD(x1[4], x2[4], x0[4])≥NonInfC∧1351_0_REC_LOAD(x1[4], x2[4], x0[4])≥COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])∧(UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥))
(8) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_12] + [bni_12]x0[4] + [(-1)bni_12]x1[4] ≥ 0∧[1 + (-1)bso_13] ≥ 0)
(9) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_12] + [bni_12]x0[4] + [(-1)bni_12]x1[4] ≥ 0∧[1 + (-1)bso_13] ≥ 0)
(10) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_12] + [bni_12]x0[4] + [(-1)bni_12]x1[4] ≥ 0∧[1 + (-1)bso_13] ≥ 0)
(11) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_12 + bni_12] + [bni_12]x0[4] ≥ 0∧[1 + (-1)bso_13] ≥ 0)
(12) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_12 + bni_12] + [bni_12]x0[4] ≥ 0∧[1 + (-1)bso_13] ≥ 0)
(13) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_12 + bni_12] + [bni_12]x0[4] ≥ 0∧[1 + (-1)bso_13] ≥ 0)
(14) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_12 + bni_12] + [bni_12]x0[4] ≥ 0∧[1 + (-1)bso_13] ≥ 0)
(15) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_12 + bni_12] + [bni_12]x0[4] ≥ 0∧[1 + (-1)bso_13] ≥ 0)
(16) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_12 + bni_12] + [bni_12]x0[4] ≥ 0∧[1 + (-1)bso_13] ≥ 0)
(17) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_12 + bni_12] + [bni_12]x0[4] ≥ 0∧[1 + (-1)bso_13] ≥ 0)
(18) (COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1])≥1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])∧(UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥))
(19) ((UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[bni_14] = 0∧[(-1)bso_15] ≥ 0)
(20) ((UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[bni_14] = 0∧[(-1)bso_15] ≥ 0)
(21) ((UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[bni_14] = 0∧[(-1)bso_15] ≥ 0)
(22) ((UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[bni_14] = 0∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_15] ≥ 0)
(23) (&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0]))))=TRUE∧x1[0]=x1[1]∧x2[0]=x2[1]∧x0[0]=x0[1] ⇒ 1351_0_REC_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1351_0_REC_LOAD(x1[0], x2[0], x0[0])≥COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥))
(24) (<=(0, +(+(x0[0], x1[0]), *(3, x2[0])))=TRUE∧>=(x2[0], x1[0])=TRUE∧>=(x1[0], x0[0])=TRUE ⇒ 1351_0_REC_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1351_0_REC_LOAD(x1[0], x2[0], x0[0])≥COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥))
(25) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[0] + [(-1)bni_16]x1[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(26) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[0] + [(-1)bni_16]x1[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(27) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[0] + [(-1)bni_16]x1[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(28) (x0[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧[2]x1[0] + [3]x2[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(-1)Bound*bni_16] + [(-3)bni_16]x2[0] + [(-2)bni_16]x1[0] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(29) (x0[0] ≥ 0∧x1[0] ≥ 0∧[5]x2[0] + [-2]x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(-1)Bound*bni_16] + [(-5)bni_16]x2[0] + [(2)bni_16]x1[0] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_1351_0_REC_LOAD2(x1, x2, x3, x4)) = [-1] + x4 + [-1]x2
POL(1351_0_REC_LOAD(x1, x2, x3)) = x3 + [-1]x1
POL(-(x1, x2)) = x1 + [-1]x2
POL(1) = [1]
POL(&&(x1, x2)) = [1]
POL(<(x1, x2)) = [-1]
POL(<=(x1, x2)) = [-1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
POL(*(x1, x2)) = x1·x2
POL(3) = [3]
POL(COND_1351_0_REC_LOAD(x1, x2, x3, x4)) = x4 + [-1]x2
POL(>=(x1, x2)) = [-1]
1351_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])
1351_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])
COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))
COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])
1351_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(1) -> (0), if (x1[1] →* x1[0]∧x2[1] - 1 →* x2[0]∧x0[1] →* x0[0])
(5) -> (0), if (x1[5] →* x1[0]∧x2[5] →* x2[0]∧x0[5] - 1 →* x0[0])
(0) -> (1), if (x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0] ∧x1[0] →* x1[1]∧x2[0] →* x2[1]∧x0[0] →* x0[1])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(1) -> (0), if (x1[1] →* x1[0]∧x2[1] - 1 →* x2[0]∧x0[1] →* x0[0])
(0) -> (1), if (x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0] ∧x1[0] →* x1[1]∧x2[0] →* x2[1]∧x0[0] →* x0[1])
(1) (COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1])≥1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])∧(UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥))
(2) ((UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[bni_8] = 0∧[(-1)bso_9] ≥ 0)
(3) ((UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[bni_8] = 0∧[(-1)bso_9] ≥ 0)
(4) ((UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[bni_8] = 0∧[(-1)bso_9] ≥ 0)
(5) ((UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[bni_8] = 0∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_9] ≥ 0)
(6) (&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0]))))=TRUE∧x1[0]=x1[1]∧x2[0]=x2[1]∧x0[0]=x0[1] ⇒ 1351_0_REC_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1351_0_REC_LOAD(x1[0], x2[0], x0[0])≥COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥))
(7) (<=(0, +(+(x0[0], x1[0]), *(3, x2[0])))=TRUE∧>=(x2[0], x1[0])=TRUE∧>=(x1[0], x0[0])=TRUE ⇒ 1351_0_REC_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1351_0_REC_LOAD(x1[0], x2[0], x0[0])≥COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥))
(8) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(2)bni_10 + (-1)Bound*bni_10] + [(2)bni_10]x2[0] + [(-1)bni_10]x0[0] + [(-1)bni_10]x1[0] ≥ 0∧[2 + (-1)bso_11] ≥ 0)
(9) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(2)bni_10 + (-1)Bound*bni_10] + [(2)bni_10]x2[0] + [(-1)bni_10]x0[0] + [(-1)bni_10]x1[0] ≥ 0∧[2 + (-1)bso_11] ≥ 0)
(10) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(2)bni_10 + (-1)Bound*bni_10] + [(2)bni_10]x2[0] + [(-1)bni_10]x0[0] + [(-1)bni_10]x1[0] ≥ 0∧[2 + (-1)bso_11] ≥ 0)
(11) (x0[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧[2]x1[0] + [3]x2[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(2)bni_10 + (-1)Bound*bni_10] + [(5)bni_10]x2[0] + [(-1)bni_10]x0[0] ≥ 0∧[2 + (-1)bso_11] ≥ 0)
(12) (x0[0] ≥ 0∧x1[0] ≥ 0∧[5]x2[0] + [-2]x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(2)bni_10 + (-1)Bound*bni_10] + [(5)bni_10]x2[0] + [(-1)bni_10]x0[0] ≥ 0∧[2 + (-1)bso_11] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_1351_0_REC_LOAD(x1, x2, x3, x4)) = [-1]x4 + [-1]x2 + [2]x3
POL(1351_0_REC_LOAD(x1, x2, x3)) = [2] + [2]x2 + [-1]x3 + [-1]x1
POL(-(x1, x2)) = x1 + [-1]x2
POL(1) = [1]
POL(&&(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(<=(x1, x2)) = [-1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
POL(*(x1, x2)) = x1·x2
POL(3) = [3]
1351_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])
1351_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])
COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer