(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_20 (Apple Inc.) Main-Class: Test1
public class Test1 {
public static void main(String[] args) {
rec(args.length, args.length % 5, args.length % 4);
}

private static void rec(int x, int y, int z) {
if (x + y + 3 * z < 0)
return;
else if (x > y)
rec(x - 1, y, z);
else if (y > z)
rec (x, y - 2, z);
else
rec (x, y, z - 1);
}
}

(1) JBCToGraph (SOUND transformation)

Constructed TerminationGraph.

(2) Obligation:

Termination Graph based on JBC Program:
Test1.main([Ljava/lang/String;)V: Graph of 44 nodes with 0 SCCs.

Test1.rec(III)V: Graph of 68 nodes with 0 SCCs.


(3) TerminationGraphToSCCProof (SOUND transformation)

Splitted TerminationGraph to 1 SCCs.

(4) Obligation:

SCC of termination graph based on JBC Program.
SCC contains nodes from the following methods: Test1.rec(III)V
SCC calls the following helper methods: Test1.rec(III)V
Performed SCC analyses: UsedFieldsAnalysis

(5) SCCToIDPv1Proof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Log:

Generated 45 rules for P and 31 rules for R.


P rules:
1351_0_rec_Load(EOS(STATIC_1351), i122, i437, i251, i122) → 1352_0_rec_IntArithmetic(EOS(STATIC_1352), i122, i437, i251, i122, i437)
1352_0_rec_IntArithmetic(EOS(STATIC_1352), i122, i437, i251, i122, i437) → 1354_0_rec_ConstantStackPush(EOS(STATIC_1354), i122, i437, i251, +(i122, i437))
1354_0_rec_ConstantStackPush(EOS(STATIC_1354), i122, i437, i251, i438) → 1355_0_rec_Load(EOS(STATIC_1355), i122, i437, i251, i438, 3)
1355_0_rec_Load(EOS(STATIC_1355), i122, i437, i251, i438, matching1) → 1357_0_rec_IntArithmetic(EOS(STATIC_1357), i122, i437, i251, i438, 3, i251) | =(matching1, 3)
1357_0_rec_IntArithmetic(EOS(STATIC_1357), i122, i437, i251, i438, matching1, i251) → 1358_0_rec_IntArithmetic(EOS(STATIC_1358), i122, i437, i251, i438, *(3, i251)) | =(matching1, 3)
1358_0_rec_IntArithmetic(EOS(STATIC_1358), i122, i437, i251, i438, i439) → 1360_0_rec_GE(EOS(STATIC_1360), i122, i437, i251, +(i438, i439))
1360_0_rec_GE(EOS(STATIC_1360), i122, i437, i251, i444) → 1363_0_rec_GE(EOS(STATIC_1363), i122, i437, i251, i444)
1363_0_rec_GE(EOS(STATIC_1363), i122, i437, i251, i444) → 1366_0_rec_Load(EOS(STATIC_1366), i122, i437, i251) | >=(i444, 0)
1366_0_rec_Load(EOS(STATIC_1366), i122, i437, i251) → 1368_0_rec_Load(EOS(STATIC_1368), i122, i437, i251, i122)
1368_0_rec_Load(EOS(STATIC_1368), i122, i437, i251, i122) → 1373_0_rec_LE(EOS(STATIC_1373), i122, i437, i251, i122, i437)
1373_0_rec_LE(EOS(STATIC_1373), i122, i437, i251, i122, i437) → 1377_0_rec_LE(EOS(STATIC_1377), i122, i437, i251, i122, i437)
1373_0_rec_LE(EOS(STATIC_1373), i122, i437, i251, i122, i437) → 1378_0_rec_LE(EOS(STATIC_1378), i122, i437, i251, i122, i437)
1377_0_rec_LE(EOS(STATIC_1377), i122, i437, i251, i122, i437) → 1379_0_rec_Load(EOS(STATIC_1379), i122, i437, i251) | <=(i122, i437)
1379_0_rec_Load(EOS(STATIC_1379), i122, i437, i251) → 1382_0_rec_Load(EOS(STATIC_1382), i122, i437, i251, i437)
1382_0_rec_Load(EOS(STATIC_1382), i122, i437, i251, i437) → 1385_0_rec_LE(EOS(STATIC_1385), i122, i437, i251, i437, i251)
1385_0_rec_LE(EOS(STATIC_1385), i122, i437, i251, i437, i251) → 1388_0_rec_LE(EOS(STATIC_1388), i122, i437, i251, i437, i251)
1385_0_rec_LE(EOS(STATIC_1385), i122, i437, i251, i437, i251) → 1389_0_rec_LE(EOS(STATIC_1389), i122, i437, i251, i437, i251)
1388_0_rec_LE(EOS(STATIC_1388), i122, i437, i251, i437, i251) → 1392_0_rec_Load(EOS(STATIC_1392), i122, i437, i251) | <=(i437, i251)
1392_0_rec_Load(EOS(STATIC_1392), i122, i437, i251) → 1397_0_rec_Load(EOS(STATIC_1397), i437, i251, i122)
1397_0_rec_Load(EOS(STATIC_1397), i437, i251, i122) → 1401_0_rec_Load(EOS(STATIC_1401), i251, i122, i437)
1401_0_rec_Load(EOS(STATIC_1401), i251, i122, i437) → 1406_0_rec_ConstantStackPush(EOS(STATIC_1406), i122, i437, i251)
1406_0_rec_ConstantStackPush(EOS(STATIC_1406), i122, i437, i251) → 1410_0_rec_IntArithmetic(EOS(STATIC_1410), i122, i437, i251, 1)
1410_0_rec_IntArithmetic(EOS(STATIC_1410), i122, i437, i251, matching1) → 1414_0_rec_InvokeMethod(EOS(STATIC_1414), i122, i437, -(i251, 1)) | =(matching1, 1)
1414_0_rec_InvokeMethod(EOS(STATIC_1414), i122, i437, i453) → 1420_1_rec_InvokeMethod(1420_0_rec_Load(EOS(STATIC_1420), i122, i437, i453), i122, i437, i453)
1420_0_rec_Load(EOS(STATIC_1420), i122, i437, i453) → 1424_0_rec_Load(EOS(STATIC_1424), i122, i437, i453)
1424_0_rec_Load(EOS(STATIC_1424), i122, i437, i453) → 1349_0_rec_Load(EOS(STATIC_1349), i122, i437, i453)
1349_0_rec_Load(EOS(STATIC_1349), i122, i437, i251) → 1351_0_rec_Load(EOS(STATIC_1351), i122, i437, i251, i122)
1389_0_rec_LE(EOS(STATIC_1389), i122, i437, i251, i437, i251) → 1394_0_rec_Load(EOS(STATIC_1394), i122, i437, i251) | >(i437, i251)
1394_0_rec_Load(EOS(STATIC_1394), i122, i437, i251) → 1398_0_rec_Load(EOS(STATIC_1398), i437, i251, i122)
1398_0_rec_Load(EOS(STATIC_1398), i437, i251, i122) → 1403_0_rec_ConstantStackPush(EOS(STATIC_1403), i251, i122, i437)
1403_0_rec_ConstantStackPush(EOS(STATIC_1403), i251, i122, i437) → 1407_0_rec_IntArithmetic(EOS(STATIC_1407), i251, i122, i437, 2)
1407_0_rec_IntArithmetic(EOS(STATIC_1407), i251, i122, i437, matching1) → 1412_0_rec_Load(EOS(STATIC_1412), i251, i122, -(i437, 2)) | =(matching1, 2)
1412_0_rec_Load(EOS(STATIC_1412), i251, i122, i452) → 1415_0_rec_InvokeMethod(EOS(STATIC_1415), i122, i452, i251)
1415_0_rec_InvokeMethod(EOS(STATIC_1415), i122, i452, i251) → 1421_1_rec_InvokeMethod(1421_0_rec_Load(EOS(STATIC_1421), i122, i452, i251), i122, i452, i251)
1421_0_rec_Load(EOS(STATIC_1421), i122, i452, i251) → 1425_0_rec_Load(EOS(STATIC_1425), i122, i452, i251)
1425_0_rec_Load(EOS(STATIC_1425), i122, i452, i251) → 1349_0_rec_Load(EOS(STATIC_1349), i122, i452, i251)
1378_0_rec_LE(EOS(STATIC_1378), i122, i437, i251, i122, i437) → 1381_0_rec_Load(EOS(STATIC_1381), i122, i437, i251) | >(i122, i437)
1381_0_rec_Load(EOS(STATIC_1381), i122, i437, i251) → 1383_0_rec_ConstantStackPush(EOS(STATIC_1383), i437, i251, i122)
1383_0_rec_ConstantStackPush(EOS(STATIC_1383), i437, i251, i122) → 1387_0_rec_IntArithmetic(EOS(STATIC_1387), i437, i251, i122, 1)
1387_0_rec_IntArithmetic(EOS(STATIC_1387), i437, i251, i122, matching1) → 1391_0_rec_Load(EOS(STATIC_1391), i437, i251, -(i122, 1)) | =(matching1, 1)
1391_0_rec_Load(EOS(STATIC_1391), i437, i251, i451) → 1395_0_rec_Load(EOS(STATIC_1395), i251, i451, i437)
1395_0_rec_Load(EOS(STATIC_1395), i251, i451, i437) → 1400_0_rec_InvokeMethod(EOS(STATIC_1400), i451, i437, i251)
1400_0_rec_InvokeMethod(EOS(STATIC_1400), i451, i437, i251) → 1404_1_rec_InvokeMethod(1404_0_rec_Load(EOS(STATIC_1404), i451, i437, i251), i451, i437, i251)
1404_0_rec_Load(EOS(STATIC_1404), i451, i437, i251) → 1409_0_rec_Load(EOS(STATIC_1409), i451, i437, i251)
1409_0_rec_Load(EOS(STATIC_1409), i451, i437, i251) → 1349_0_rec_Load(EOS(STATIC_1349), i451, i437, i251)
R rules:
1360_0_rec_GE(EOS(STATIC_1360), i122, i437, i251, i443) → 1362_0_rec_GE(EOS(STATIC_1362), i122, i437, i251, i443)
1362_0_rec_GE(EOS(STATIC_1362), i122, i437, i251, i443) → 1364_0_rec_Return(EOS(STATIC_1364), i122, i437, i251) | <(i443, 0)
1404_1_rec_InvokeMethod(1364_0_rec_Return(EOS(STATIC_1364), i458, i459, i460), i458, i459, i460) → 1422_0_rec_Return(EOS(STATIC_1422), i458, i459, i460, i458, i459, i460)
1404_1_rec_InvokeMethod(1448_0_rec_Return(EOS(STATIC_1448)), i521, i522, i523) → 1486_0_rec_Return(EOS(STATIC_1486), i521, i522, i523)
1404_1_rec_InvokeMethod(1482_0_rec_Return(EOS(STATIC_1482)), i565, i566, i567) → 1503_0_rec_Return(EOS(STATIC_1503), i565, i566, i567)
1420_1_rec_InvokeMethod(1364_0_rec_Return(EOS(STATIC_1364), i466, i467, i468), i466, i467, i468) → 1437_0_rec_Return(EOS(STATIC_1437), i466, i467, i468, i466, i467, i468)
1420_1_rec_InvokeMethod(1448_0_rec_Return(EOS(STATIC_1448)), i525, i526, i527) → 1488_0_rec_Return(EOS(STATIC_1488), i525, i526, i527)
1420_1_rec_InvokeMethod(1482_0_rec_Return(EOS(STATIC_1482)), i570, i571, i572) → 1505_0_rec_Return(EOS(STATIC_1505), i570, i571, i572)
1421_1_rec_InvokeMethod(1364_0_rec_Return(EOS(STATIC_1364), i476, i477, i478), i476, i477, i478) → 1438_0_rec_Return(EOS(STATIC_1438), i476, i477, i478, i476, i477, i478)
1421_1_rec_InvokeMethod(1448_0_rec_Return(EOS(STATIC_1448)), i531, i532, i533) → 1490_0_rec_Return(EOS(STATIC_1490), i531, i532, i533)
1421_1_rec_InvokeMethod(1482_0_rec_Return(EOS(STATIC_1482)), i576, i577, i578) → 1507_0_rec_Return(EOS(STATIC_1507), i576, i577, i578)
1422_0_rec_Return(EOS(STATIC_1422), i458, i459, i460, i458, i459, i460) → 1427_0_rec_JMP(EOS(STATIC_1427))
1427_0_rec_JMP(EOS(STATIC_1427)) → 1462_0_rec_JMP(EOS(STATIC_1462))
1437_0_rec_Return(EOS(STATIC_1437), i466, i467, i468, i466, i467, i468) → 1448_0_rec_Return(EOS(STATIC_1448))
1438_0_rec_Return(EOS(STATIC_1438), i476, i477, i478, i476, i477, i478) → 1450_0_rec_JMP(EOS(STATIC_1450))
1448_0_rec_Return(EOS(STATIC_1448)) → 1458_0_rec_Return(EOS(STATIC_1458))
1450_0_rec_JMP(EOS(STATIC_1450)) → 1467_0_rec_JMP(EOS(STATIC_1467))
1452_0_rec_Return(EOS(STATIC_1452), i484, i485, i486) → 1462_0_rec_JMP(EOS(STATIC_1462))
1453_0_rec_Return(EOS(STATIC_1453), i489, i491, i492) → 1465_0_rec_Return(EOS(STATIC_1465))
1455_0_rec_Return(EOS(STATIC_1455), i495, i497, i498) → 1467_0_rec_JMP(EOS(STATIC_1467))
1458_0_rec_Return(EOS(STATIC_1458)) → 1465_0_rec_Return(EOS(STATIC_1465))
1462_0_rec_JMP(EOS(STATIC_1462)) → 1480_0_rec_Return(EOS(STATIC_1480))
1465_0_rec_Return(EOS(STATIC_1465)) → 1480_0_rec_Return(EOS(STATIC_1480))
1467_0_rec_JMP(EOS(STATIC_1467)) → 1482_0_rec_Return(EOS(STATIC_1482))
1480_0_rec_Return(EOS(STATIC_1480)) → 1482_0_rec_Return(EOS(STATIC_1482))
1486_0_rec_Return(EOS(STATIC_1486), i521, i522, i523) → 1452_0_rec_Return(EOS(STATIC_1452), i521, i522, i523)
1488_0_rec_Return(EOS(STATIC_1488), i525, i526, i527) → 1453_0_rec_Return(EOS(STATIC_1453), i525, i526, i527)
1490_0_rec_Return(EOS(STATIC_1490), i531, i532, i533) → 1455_0_rec_Return(EOS(STATIC_1455), i531, i532, i533)
1503_0_rec_Return(EOS(STATIC_1503), i565, i566, i567) → 1452_0_rec_Return(EOS(STATIC_1452), i565, i566, i567)
1505_0_rec_Return(EOS(STATIC_1505), i570, i571, i572) → 1453_0_rec_Return(EOS(STATIC_1453), i570, i571, i572)
1507_0_rec_Return(EOS(STATIC_1507), i576, i577, i578) → 1455_0_rec_Return(EOS(STATIC_1455), i576, i577, i578)

Combined rules. Obtained 3 conditional rules for P and 9 conditional rules for R.


P rules:
1351_0_rec_Load(EOS(STATIC_1351), x0, x1, x2, x0) → 1420_1_rec_InvokeMethod(1351_0_rec_Load(EOS(STATIC_1351), x0, x1, -(x2, 1), x0), x0, x1, -(x2, 1)) | &&(&&(>=(x2, x1), >=(x1, x0)), <=(0, +(+(x0, x1), *(3, x2))))
1351_0_rec_Load(EOS(STATIC_1351), x0, x1, x2, x0) → 1421_1_rec_InvokeMethod(1351_0_rec_Load(EOS(STATIC_1351), x0, -(x1, 2), x2, x0), x0, -(x1, 2), x2) | &&(&&(<(x2, x1), >=(x1, x0)), <=(0, +(+(x0, x1), *(3, x2))))
1351_0_rec_Load(EOS(STATIC_1351), x0, x1, x2, x0) → 1404_1_rec_InvokeMethod(1351_0_rec_Load(EOS(STATIC_1351), -(x0, 1), x1, x2, -(x0, 1)), -(x0, 1), x1, x2) | &&(<(x1, x0), <=(0, +(+(x0, x1), *(3, x2))))
R rules:
1421_1_rec_InvokeMethod(1364_0_rec_Return(EOS(STATIC_1364), x0, x1, x2), x0, x1, x2) → 1482_0_rec_Return(EOS(STATIC_1482))
1404_1_rec_InvokeMethod(1364_0_rec_Return(EOS(STATIC_1364), x0, x1, x2), x0, x1, x2) → 1482_0_rec_Return(EOS(STATIC_1482))
1420_1_rec_InvokeMethod(1364_0_rec_Return(EOS(STATIC_1364), x0, x1, x2), x0, x1, x2) → 1482_0_rec_Return(EOS(STATIC_1482))
1404_1_rec_InvokeMethod(1448_0_rec_Return(EOS(STATIC_1448)), x0, x1, x2) → 1482_0_rec_Return(EOS(STATIC_1482))
1404_1_rec_InvokeMethod(1482_0_rec_Return(EOS(STATIC_1482)), x0, x1, x2) → 1482_0_rec_Return(EOS(STATIC_1482))
1420_1_rec_InvokeMethod(1448_0_rec_Return(EOS(STATIC_1448)), x0, x1, x2) → 1482_0_rec_Return(EOS(STATIC_1482))
1420_1_rec_InvokeMethod(1482_0_rec_Return(EOS(STATIC_1482)), x0, x1, x2) → 1482_0_rec_Return(EOS(STATIC_1482))
1421_1_rec_InvokeMethod(1448_0_rec_Return(EOS(STATIC_1448)), x0, x1, x2) → 1482_0_rec_Return(EOS(STATIC_1482))
1421_1_rec_InvokeMethod(1482_0_rec_Return(EOS(STATIC_1482)), x0, x1, x2) → 1482_0_rec_Return(EOS(STATIC_1482))

Filtered ground terms:



1351_0_rec_Load(x1, x2, x3, x4, x5) → 1351_0_rec_Load(x2, x3, x4, x5)
Cond_1351_0_rec_Load2(x1, x2, x3, x4, x5, x6) → Cond_1351_0_rec_Load2(x1, x3, x4, x5, x6)
Cond_1351_0_rec_Load1(x1, x2, x3, x4, x5, x6) → Cond_1351_0_rec_Load1(x1, x3, x4, x5, x6)
Cond_1351_0_rec_Load(x1, x2, x3, x4, x5, x6) → Cond_1351_0_rec_Load(x1, x3, x4, x5, x6)
1482_0_rec_Return(x1) → 1482_0_rec_Return
1448_0_rec_Return(x1) → 1448_0_rec_Return
1364_0_rec_Return(x1, x2, x3, x4) → 1364_0_rec_Return(x2, x3, x4)

Filtered duplicate args:



1351_0_rec_Load(x1, x2, x3, x4) → 1351_0_rec_Load(x2, x3, x4)
Cond_1351_0_rec_Load(x1, x2, x3, x4, x5) → Cond_1351_0_rec_Load(x1, x3, x4, x5)
Cond_1351_0_rec_Load1(x1, x2, x3, x4, x5) → Cond_1351_0_rec_Load1(x1, x3, x4, x5)
Cond_1351_0_rec_Load2(x1, x2, x3, x4, x5) → Cond_1351_0_rec_Load2(x1, x3, x4, x5)

Filtered unneeded arguments:



1420_1_rec_InvokeMethod(x1, x2, x3, x4) → 1420_1_rec_InvokeMethod(x1)
1421_1_rec_InvokeMethod(x1, x2, x3, x4) → 1421_1_rec_InvokeMethod(x1)
1404_1_rec_InvokeMethod(x1, x2, x3, x4) → 1404_1_rec_InvokeMethod(x1)

Combined rules. Obtained 3 conditional rules for P and 9 conditional rules for R.


P rules:
1351_0_rec_Load(x1, x2, x0) → 1420_1_rec_InvokeMethod(1351_0_rec_Load(x1, -(x2, 1), x0)) | &&(&&(>=(x2, x1), >=(x1, x0)), <=(0, +(+(x0, x1), *(3, x2))))
1351_0_rec_Load(x1, x2, x0) → 1421_1_rec_InvokeMethod(1351_0_rec_Load(-(x1, 2), x2, x0)) | &&(&&(<(x2, x1), >=(x1, x0)), <=(0, +(+(x0, x1), *(3, x2))))
1351_0_rec_Load(x1, x2, x0) → 1404_1_rec_InvokeMethod(1351_0_rec_Load(x1, x2, -(x0, 1))) | &&(<(x1, x0), <=(0, +(+(x0, x1), *(3, x2))))
R rules:
1421_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2)) → 1482_0_rec_Return
1404_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2)) → 1482_0_rec_Return
1420_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2)) → 1482_0_rec_Return
1404_1_rec_InvokeMethod(1448_0_rec_Return) → 1482_0_rec_Return
1404_1_rec_InvokeMethod(1482_0_rec_Return) → 1482_0_rec_Return
1420_1_rec_InvokeMethod(1448_0_rec_Return) → 1482_0_rec_Return
1420_1_rec_InvokeMethod(1482_0_rec_Return) → 1482_0_rec_Return
1421_1_rec_InvokeMethod(1448_0_rec_Return) → 1482_0_rec_Return
1421_1_rec_InvokeMethod(1482_0_rec_Return) → 1482_0_rec_Return

Performed bisimulation on rules. Used the following equivalence classes: {[1482_0_rec_Return, 1448_0_rec_Return]=1482_0_rec_Return}


Finished conversion. Obtained 6 rules for P and 6 rules for R. System has predefined symbols.


P rules:
1351_0_REC_LOAD(x1, x2, x0) → COND_1351_0_REC_LOAD(&&(&&(>=(x2, x1), >=(x1, x0)), <=(0, +(+(x0, x1), *(3, x2)))), x1, x2, x0)
COND_1351_0_REC_LOAD(TRUE, x1, x2, x0) → 1351_0_REC_LOAD(x1, -(x2, 1), x0)
1351_0_REC_LOAD(x1, x2, x0) → COND_1351_0_REC_LOAD1(&&(&&(<(x2, x1), >=(x1, x0)), <=(0, +(+(x0, x1), *(3, x2)))), x1, x2, x0)
COND_1351_0_REC_LOAD1(TRUE, x1, x2, x0) → 1351_0_REC_LOAD(-(x1, 2), x2, x0)
1351_0_REC_LOAD(x1, x2, x0) → COND_1351_0_REC_LOAD2(&&(<(x1, x0), <=(0, +(+(x0, x1), *(3, x2)))), x1, x2, x0)
COND_1351_0_REC_LOAD2(TRUE, x1, x2, x0) → 1351_0_REC_LOAD(x1, x2, -(x0, 1))
R rules:
1421_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2)) → 1482_0_rec_Return
1404_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2)) → 1482_0_rec_Return
1420_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2)) → 1482_0_rec_Return
1404_1_rec_InvokeMethod(1482_0_rec_Return) → 1482_0_rec_Return
1420_1_rec_InvokeMethod(1482_0_rec_Return) → 1482_0_rec_Return
1421_1_rec_InvokeMethod(1482_0_rec_Return) → 1482_0_rec_Return

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


The ITRS R consists of the following rules:
1421_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2)) → 1482_0_rec_Return
1404_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2)) → 1482_0_rec_Return
1420_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2)) → 1482_0_rec_Return
1404_1_rec_InvokeMethod(1482_0_rec_Return) → 1482_0_rec_Return
1420_1_rec_InvokeMethod(1482_0_rec_Return) → 1482_0_rec_Return
1421_1_rec_InvokeMethod(1482_0_rec_Return) → 1482_0_rec_Return

The integer pair graph contains the following rules and edges:
(0): 1351_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1351_0_REC_LOAD(x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0], x1[0], x2[0], x0[0])
(1): COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1351_0_REC_LOAD(x1[1], x2[1] - 1, x0[1])
(2): 1351_0_REC_LOAD(x1[2], x2[2], x0[2]) → COND_1351_0_REC_LOAD1(x2[2] < x1[2] && x1[2] >= x0[2] && 0 <= x0[2] + x1[2] + 3 * x2[2], x1[2], x2[2], x0[2])
(3): COND_1351_0_REC_LOAD1(TRUE, x1[3], x2[3], x0[3]) → 1351_0_REC_LOAD(x1[3] - 2, x2[3], x0[3])
(4): 1351_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1351_0_REC_LOAD2(x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4], x1[4], x2[4], x0[4])
(5): COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1351_0_REC_LOAD(x1[5], x2[5], x0[5] - 1)

(0) -> (1), if (x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0]x1[0]* x1[1]x2[0]* x2[1]x0[0]* x0[1])


(1) -> (0), if (x1[1]* x1[0]x2[1] - 1* x2[0]x0[1]* x0[0])


(1) -> (2), if (x1[1]* x1[2]x2[1] - 1* x2[2]x0[1]* x0[2])


(1) -> (4), if (x1[1]* x1[4]x2[1] - 1* x2[4]x0[1]* x0[4])


(2) -> (3), if (x2[2] < x1[2] && x1[2] >= x0[2] && 0 <= x0[2] + x1[2] + 3 * x2[2]x1[2]* x1[3]x2[2]* x2[3]x0[2]* x0[3])


(3) -> (0), if (x1[3] - 2* x1[0]x2[3]* x2[0]x0[3]* x0[0])


(3) -> (2), if (x1[3] - 2* x1[2]x2[3]* x2[2]x0[3]* x0[2])


(3) -> (4), if (x1[3] - 2* x1[4]x2[3]* x2[4]x0[3]* x0[4])


(4) -> (5), if (x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4]x1[4]* x1[5]x2[4]* x2[5]x0[4]* x0[5])


(5) -> (0), if (x1[5]* x1[0]x2[5]* x2[0]x0[5] - 1* x0[0])


(5) -> (2), if (x1[5]* x1[2]x2[5]* x2[2]x0[5] - 1* x0[2])


(5) -> (4), if (x1[5]* x1[4]x2[5]* x2[4]x0[5] - 1* x0[4])



The set Q consists of the following terms:
1421_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2))
1404_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2))
1420_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2))
1404_1_rec_InvokeMethod(1482_0_rec_Return)
1420_1_rec_InvokeMethod(1482_0_rec_Return)
1421_1_rec_InvokeMethod(1482_0_rec_Return)

(7) IDPNonInfProof (SOUND transformation)

Used the following options for this NonInfProof:
IDPGPoloSolver: Range: [(-1,2)] IsNat: false Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpCand1ShapeHeuristic@518944a Constraint Generator: NonInfConstraintGenerator: PathGenerator: MetricPathGenerator: Max Left Steps: 0 Max Right Steps: 0

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 1351_0_REC_LOAD(x1, x2, x0) → COND_1351_0_REC_LOAD(&&(&&(>=(x2, x1), >=(x1, x0)), <=(0, +(+(x0, x1), *(3, x2)))), x1, x2, x0) the following chains were created:
  • We consider the chain 1351_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0]), COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1]) which results in the following constraint:

    (1)    (&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0]))))=TRUEx1[0]=x1[1]x2[0]=x2[1]x0[0]=x0[1]1351_0_REC_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1351_0_REC_LOAD(x1[0], x2[0], x0[0])≥COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥))



    We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (<=(0, +(+(x0[0], x1[0]), *(3, x2[0])))=TRUE>=(x2[0], x1[0])=TRUE>=(x1[0], x0[0])=TRUE1351_0_REC_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1351_0_REC_LOAD(x1[0], x2[0], x0[0])≥COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_19 + (-1)Bound*bni_19] + [(2)bni_19]x1[0] ≥ 0∧[(-1)bso_20] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_19 + (-1)Bound*bni_19] + [(2)bni_19]x1[0] ≥ 0∧[(-1)bso_20] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_19 + (-1)Bound*bni_19] + [(2)bni_19]x1[0] ≥ 0∧[(-1)bso_20] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x0[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧[2]x1[0] + [3]x2[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_19 + (-1)Bound*bni_19] + [(2)bni_19]x1[0] ≥ 0∧[(-1)bso_20] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (7)    (x0[0] ≥ 0∧x1[0] ≥ 0∧[5]x2[0] + [-2]x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_19 + (-1)Bound*bni_19] + [(2)bni_19]x2[0] + [(-2)bni_19]x1[0] ≥ 0∧[(-1)bso_20] ≥ 0)







For Pair COND_1351_0_REC_LOAD(TRUE, x1, x2, x0) → 1351_0_REC_LOAD(x1, -(x2, 1), x0) the following chains were created:
  • We consider the chain COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1]) which results in the following constraint:

    (8)    (COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1])≥1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])∧(UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥))



    We simplified constraint (8) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (9)    ((UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[bni_21] = 0∧[(-1)bso_22] ≥ 0)



    We simplified constraint (9) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (10)    ((UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[bni_21] = 0∧[(-1)bso_22] ≥ 0)



    We simplified constraint (10) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (11)    ((UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[bni_21] = 0∧[(-1)bso_22] ≥ 0)



    We simplified constraint (11) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (12)    ((UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[bni_21] = 0∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_22] ≥ 0)







For Pair 1351_0_REC_LOAD(x1, x2, x0) → COND_1351_0_REC_LOAD1(&&(&&(<(x2, x1), >=(x1, x0)), <=(0, +(+(x0, x1), *(3, x2)))), x1, x2, x0) the following chains were created:
  • We consider the chain 1351_0_REC_LOAD(x1[2], x2[2], x0[2]) → COND_1351_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2]), COND_1351_0_REC_LOAD1(TRUE, x1[3], x2[3], x0[3]) → 1351_0_REC_LOAD(-(x1[3], 2), x2[3], x0[3]) which results in the following constraint:

    (13)    (&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2]))))=TRUEx1[2]=x1[3]x2[2]=x2[3]x0[2]=x0[3]1351_0_REC_LOAD(x1[2], x2[2], x0[2])≥NonInfC∧1351_0_REC_LOAD(x1[2], x2[2], x0[2])≥COND_1351_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])∧(UIncreasing(COND_1351_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥))



    We simplified constraint (13) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (14)    (<=(0, +(+(x0[2], x1[2]), *(3, x2[2])))=TRUE<(x2[2], x1[2])=TRUE>=(x1[2], x0[2])=TRUE1351_0_REC_LOAD(x1[2], x2[2], x0[2])≥NonInfC∧1351_0_REC_LOAD(x1[2], x2[2], x0[2])≥COND_1351_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])∧(UIncreasing(COND_1351_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥))



    We simplified constraint (14) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (15)    (x0[2] + x1[2] + [3]x2[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [(2)bni_23]x1[2] ≥ 0∧[(-1)bso_24] ≥ 0)



    We simplified constraint (15) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (16)    (x0[2] + x1[2] + [3]x2[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [(2)bni_23]x1[2] ≥ 0∧[(-1)bso_24] ≥ 0)



    We simplified constraint (16) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (17)    (x0[2] + x1[2] + [3]x2[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [(2)bni_23]x1[2] ≥ 0∧[(-1)bso_24] ≥ 0)



    We simplified constraint (17) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (18)    (x0[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧[2]x1[2] + [3]x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [(2)bni_23]x1[2] ≥ 0∧[(-1)bso_24] ≥ 0)



    We simplified constraint (18) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (19)    (x0[2] ≥ 0∧x1[2] ≥ 0∧[2] + [5]x2[2] + [2]x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[bni_23 + (-1)Bound*bni_23] + [(2)bni_23]x2[2] + [(2)bni_23]x1[2] ≥ 0∧[(-1)bso_24] ≥ 0)



    We simplified constraint (19) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (20)    (x0[2] ≥ 0∧x1[2] ≥ 0∧[2] + [-5]x2[2] + [2]x1[2] + [-1]x0[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[bni_23 + (-1)Bound*bni_23] + [(-2)bni_23]x2[2] + [(2)bni_23]x1[2] ≥ 0∧[(-1)bso_24] ≥ 0)


    (21)    (x0[2] ≥ 0∧x1[2] ≥ 0∧[2] + [5]x2[2] + [2]x1[2] + [-1]x0[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[bni_23 + (-1)Bound*bni_23] + [(2)bni_23]x2[2] + [(2)bni_23]x1[2] ≥ 0∧[(-1)bso_24] ≥ 0)







For Pair COND_1351_0_REC_LOAD1(TRUE, x1, x2, x0) → 1351_0_REC_LOAD(-(x1, 2), x2, x0) the following chains were created:
  • We consider the chain COND_1351_0_REC_LOAD1(TRUE, x1[3], x2[3], x0[3]) → 1351_0_REC_LOAD(-(x1[3], 2), x2[3], x0[3]) which results in the following constraint:

    (22)    (COND_1351_0_REC_LOAD1(TRUE, x1[3], x2[3], x0[3])≥NonInfC∧COND_1351_0_REC_LOAD1(TRUE, x1[3], x2[3], x0[3])≥1351_0_REC_LOAD(-(x1[3], 2), x2[3], x0[3])∧(UIncreasing(1351_0_REC_LOAD(-(x1[3], 2), x2[3], x0[3])), ≥))



    We simplified constraint (22) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (23)    ((UIncreasing(1351_0_REC_LOAD(-(x1[3], 2), x2[3], x0[3])), ≥)∧[bni_25] = 0∧[4 + (-1)bso_26] ≥ 0)



    We simplified constraint (23) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (24)    ((UIncreasing(1351_0_REC_LOAD(-(x1[3], 2), x2[3], x0[3])), ≥)∧[bni_25] = 0∧[4 + (-1)bso_26] ≥ 0)



    We simplified constraint (24) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (25)    ((UIncreasing(1351_0_REC_LOAD(-(x1[3], 2), x2[3], x0[3])), ≥)∧[bni_25] = 0∧[4 + (-1)bso_26] ≥ 0)



    We simplified constraint (25) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (26)    ((UIncreasing(1351_0_REC_LOAD(-(x1[3], 2), x2[3], x0[3])), ≥)∧[bni_25] = 0∧0 = 0∧0 = 0∧0 = 0∧[4 + (-1)bso_26] ≥ 0)







For Pair 1351_0_REC_LOAD(x1, x2, x0) → COND_1351_0_REC_LOAD2(&&(<(x1, x0), <=(0, +(+(x0, x1), *(3, x2)))), x1, x2, x0) the following chains were created:
  • We consider the chain 1351_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4]), COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1)) which results in the following constraint:

    (27)    (&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4]))))=TRUEx1[4]=x1[5]x2[4]=x2[5]x0[4]=x0[5]1351_0_REC_LOAD(x1[4], x2[4], x0[4])≥NonInfC∧1351_0_REC_LOAD(x1[4], x2[4], x0[4])≥COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])∧(UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥))



    We simplified constraint (27) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (28)    (<(x1[4], x0[4])=TRUE<=(0, +(+(x0[4], x1[4]), *(3, x2[4])))=TRUE1351_0_REC_LOAD(x1[4], x2[4], x0[4])≥NonInfC∧1351_0_REC_LOAD(x1[4], x2[4], x0[4])≥COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])∧(UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥))



    We simplified constraint (28) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (29)    (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [(2)bni_27]x1[4] ≥ 0∧[(-1)bso_28] ≥ 0)



    We simplified constraint (29) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (30)    (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [(2)bni_27]x1[4] ≥ 0∧[(-1)bso_28] ≥ 0)



    We simplified constraint (30) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (31)    (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [(2)bni_27]x1[4] ≥ 0∧[(-1)bso_28] ≥ 0)



    We simplified constraint (31) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (32)    (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [(2)bni_27]x1[4] ≥ 0∧[(-1)bso_28] ≥ 0)



    We simplified constraint (32) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (33)    (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [(2)bni_27]x1[4] ≥ 0∧[(-1)bso_28] ≥ 0)


    (34)    (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [(-2)bni_27]x1[4] ≥ 0∧[(-1)bso_28] ≥ 0)



    We simplified constraint (33) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (35)    (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [(2)bni_27]x1[4] ≥ 0∧[(-1)bso_28] ≥ 0)


    (36)    (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [(2)bni_27]x1[4] ≥ 0∧[(-1)bso_28] ≥ 0)



    We simplified constraint (34) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (37)    (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [(-2)bni_27]x1[4] ≥ 0∧[(-1)bso_28] ≥ 0)


    (38)    (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [(-2)bni_27]x1[4] ≥ 0∧[(-1)bso_28] ≥ 0)







For Pair COND_1351_0_REC_LOAD2(TRUE, x1, x2, x0) → 1351_0_REC_LOAD(x1, x2, -(x0, 1)) the following chains were created:
  • We consider the chain COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1)) which results in the following constraint:

    (39)    (COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5])≥NonInfC∧COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5])≥1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))∧(UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥))



    We simplified constraint (39) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (40)    ((UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[bni_29] = 0∧[(-1)bso_30] ≥ 0)



    We simplified constraint (40) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (41)    ((UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[bni_29] = 0∧[(-1)bso_30] ≥ 0)



    We simplified constraint (41) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (42)    ((UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[bni_29] = 0∧[(-1)bso_30] ≥ 0)



    We simplified constraint (42) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (43)    ((UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[bni_29] = 0∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_30] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 1351_0_REC_LOAD(x1, x2, x0) → COND_1351_0_REC_LOAD(&&(&&(>=(x2, x1), >=(x1, x0)), <=(0, +(+(x0, x1), *(3, x2)))), x1, x2, x0)
    • (x0[0] ≥ 0∧x1[0] ≥ 0∧[5]x2[0] + [-2]x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_19 + (-1)Bound*bni_19] + [(2)bni_19]x2[0] + [(-2)bni_19]x1[0] ≥ 0∧[(-1)bso_20] ≥ 0)

  • COND_1351_0_REC_LOAD(TRUE, x1, x2, x0) → 1351_0_REC_LOAD(x1, -(x2, 1), x0)
    • ((UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[bni_21] = 0∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_22] ≥ 0)

  • 1351_0_REC_LOAD(x1, x2, x0) → COND_1351_0_REC_LOAD1(&&(&&(<(x2, x1), >=(x1, x0)), <=(0, +(+(x0, x1), *(3, x2)))), x1, x2, x0)
    • (x0[2] ≥ 0∧x1[2] ≥ 0∧[2] + [-5]x2[2] + [2]x1[2] + [-1]x0[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[bni_23 + (-1)Bound*bni_23] + [(-2)bni_23]x2[2] + [(2)bni_23]x1[2] ≥ 0∧[(-1)bso_24] ≥ 0)
    • (x0[2] ≥ 0∧x1[2] ≥ 0∧[2] + [5]x2[2] + [2]x1[2] + [-1]x0[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[bni_23 + (-1)Bound*bni_23] + [(2)bni_23]x2[2] + [(2)bni_23]x1[2] ≥ 0∧[(-1)bso_24] ≥ 0)

  • COND_1351_0_REC_LOAD1(TRUE, x1, x2, x0) → 1351_0_REC_LOAD(-(x1, 2), x2, x0)
    • ((UIncreasing(1351_0_REC_LOAD(-(x1[3], 2), x2[3], x0[3])), ≥)∧[bni_25] = 0∧0 = 0∧0 = 0∧0 = 0∧[4 + (-1)bso_26] ≥ 0)

  • 1351_0_REC_LOAD(x1, x2, x0) → COND_1351_0_REC_LOAD2(&&(<(x1, x0), <=(0, +(+(x0, x1), *(3, x2)))), x1, x2, x0)
    • (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [(2)bni_27]x1[4] ≥ 0∧[(-1)bso_28] ≥ 0)
    • (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [(2)bni_27]x1[4] ≥ 0∧[(-1)bso_28] ≥ 0)
    • (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [(-2)bni_27]x1[4] ≥ 0∧[(-1)bso_28] ≥ 0)
    • (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [(-2)bni_27]x1[4] ≥ 0∧[(-1)bso_28] ≥ 0)

  • COND_1351_0_REC_LOAD2(TRUE, x1, x2, x0) → 1351_0_REC_LOAD(x1, x2, -(x0, 1))
    • ((UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[bni_29] = 0∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_30] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(1421_1_rec_InvokeMethod(x1)) = [-1]   
POL(1364_0_rec_Return(x1, x2, x3)) = [-1]   
POL(1482_0_rec_Return) = [-1]   
POL(1404_1_rec_InvokeMethod(x1)) = [-1]   
POL(1420_1_rec_InvokeMethod(x1)) = [-1]   
POL(1351_0_REC_LOAD(x1, x2, x3)) = [-1] + [2]x1   
POL(COND_1351_0_REC_LOAD(x1, x2, x3, x4)) = [-1] + [2]x2   
POL(&&(x1, x2)) = [-1]   
POL(>=(x1, x2)) = [-1]   
POL(<=(x1, x2)) = [-1]   
POL(0) = 0   
POL(+(x1, x2)) = x1 + x2   
POL(*(x1, x2)) = x1·x2   
POL(3) = [3]   
POL(-(x1, x2)) = x1 + [-1]x2   
POL(1) = [1]   
POL(COND_1351_0_REC_LOAD1(x1, x2, x3, x4)) = [-1] + [2]x2   
POL(<(x1, x2)) = [-1]   
POL(2) = [2]   
POL(COND_1351_0_REC_LOAD2(x1, x2, x3, x4)) = [-1] + [2]x2   

The following pairs are in P>:

COND_1351_0_REC_LOAD1(TRUE, x1[3], x2[3], x0[3]) → 1351_0_REC_LOAD(-(x1[3], 2), x2[3], x0[3])

The following pairs are in Pbound:

1351_0_REC_LOAD(x1[2], x2[2], x0[2]) → COND_1351_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])

The following pairs are in P:

1351_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])
COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])
1351_0_REC_LOAD(x1[2], x2[2], x0[2]) → COND_1351_0_REC_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])
1351_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])
COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))

There are no usable rules.

(8) Complex Obligation (AND)

(9) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


The ITRS R consists of the following rules:
1421_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2)) → 1482_0_rec_Return
1404_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2)) → 1482_0_rec_Return
1420_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2)) → 1482_0_rec_Return
1404_1_rec_InvokeMethod(1482_0_rec_Return) → 1482_0_rec_Return
1420_1_rec_InvokeMethod(1482_0_rec_Return) → 1482_0_rec_Return
1421_1_rec_InvokeMethod(1482_0_rec_Return) → 1482_0_rec_Return

The integer pair graph contains the following rules and edges:
(0): 1351_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1351_0_REC_LOAD(x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0], x1[0], x2[0], x0[0])
(1): COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1351_0_REC_LOAD(x1[1], x2[1] - 1, x0[1])
(2): 1351_0_REC_LOAD(x1[2], x2[2], x0[2]) → COND_1351_0_REC_LOAD1(x2[2] < x1[2] && x1[2] >= x0[2] && 0 <= x0[2] + x1[2] + 3 * x2[2], x1[2], x2[2], x0[2])
(4): 1351_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1351_0_REC_LOAD2(x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4], x1[4], x2[4], x0[4])
(5): COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1351_0_REC_LOAD(x1[5], x2[5], x0[5] - 1)

(1) -> (0), if (x1[1]* x1[0]x2[1] - 1* x2[0]x0[1]* x0[0])


(5) -> (0), if (x1[5]* x1[0]x2[5]* x2[0]x0[5] - 1* x0[0])


(0) -> (1), if (x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0]x1[0]* x1[1]x2[0]* x2[1]x0[0]* x0[1])


(1) -> (2), if (x1[1]* x1[2]x2[1] - 1* x2[2]x0[1]* x0[2])


(5) -> (2), if (x1[5]* x1[2]x2[5]* x2[2]x0[5] - 1* x0[2])


(1) -> (4), if (x1[1]* x1[4]x2[1] - 1* x2[4]x0[1]* x0[4])


(5) -> (4), if (x1[5]* x1[4]x2[5]* x2[4]x0[5] - 1* x0[4])


(4) -> (5), if (x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4]x1[4]* x1[5]x2[4]* x2[5]x0[4]* x0[5])



The set Q consists of the following terms:
1421_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2))
1404_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2))
1420_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2))
1404_1_rec_InvokeMethod(1482_0_rec_Return)
1420_1_rec_InvokeMethod(1482_0_rec_Return)
1421_1_rec_InvokeMethod(1482_0_rec_Return)

(10) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(11) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


The ITRS R consists of the following rules:
1421_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2)) → 1482_0_rec_Return
1404_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2)) → 1482_0_rec_Return
1420_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2)) → 1482_0_rec_Return
1404_1_rec_InvokeMethod(1482_0_rec_Return) → 1482_0_rec_Return
1420_1_rec_InvokeMethod(1482_0_rec_Return) → 1482_0_rec_Return
1421_1_rec_InvokeMethod(1482_0_rec_Return) → 1482_0_rec_Return

The integer pair graph contains the following rules and edges:
(5): COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1351_0_REC_LOAD(x1[5], x2[5], x0[5] - 1)
(4): 1351_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1351_0_REC_LOAD2(x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4], x1[4], x2[4], x0[4])
(1): COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1351_0_REC_LOAD(x1[1], x2[1] - 1, x0[1])
(0): 1351_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1351_0_REC_LOAD(x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0], x1[0], x2[0], x0[0])

(1) -> (0), if (x1[1]* x1[0]x2[1] - 1* x2[0]x0[1]* x0[0])


(5) -> (0), if (x1[5]* x1[0]x2[5]* x2[0]x0[5] - 1* x0[0])


(0) -> (1), if (x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0]x1[0]* x1[1]x2[0]* x2[1]x0[0]* x0[1])


(1) -> (4), if (x1[1]* x1[4]x2[1] - 1* x2[4]x0[1]* x0[4])


(5) -> (4), if (x1[5]* x1[4]x2[5]* x2[4]x0[5] - 1* x0[4])


(4) -> (5), if (x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4]x1[4]* x1[5]x2[4]* x2[5]x0[4]* x0[5])



The set Q consists of the following terms:
1421_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2))
1404_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2))
1420_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2))
1404_1_rec_InvokeMethod(1482_0_rec_Return)
1420_1_rec_InvokeMethod(1482_0_rec_Return)
1421_1_rec_InvokeMethod(1482_0_rec_Return)

(12) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(13) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


R is empty.

The integer pair graph contains the following rules and edges:
(5): COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1351_0_REC_LOAD(x1[5], x2[5], x0[5] - 1)
(4): 1351_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1351_0_REC_LOAD2(x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4], x1[4], x2[4], x0[4])
(1): COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1351_0_REC_LOAD(x1[1], x2[1] - 1, x0[1])
(0): 1351_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1351_0_REC_LOAD(x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0], x1[0], x2[0], x0[0])

(1) -> (0), if (x1[1]* x1[0]x2[1] - 1* x2[0]x0[1]* x0[0])


(5) -> (0), if (x1[5]* x1[0]x2[5]* x2[0]x0[5] - 1* x0[0])


(0) -> (1), if (x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0]x1[0]* x1[1]x2[0]* x2[1]x0[0]* x0[1])


(1) -> (4), if (x1[1]* x1[4]x2[1] - 1* x2[4]x0[1]* x0[4])


(5) -> (4), if (x1[5]* x1[4]x2[5]* x2[4]x0[5] - 1* x0[4])


(4) -> (5), if (x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4]x1[4]* x1[5]x2[4]* x2[5]x0[4]* x0[5])



The set Q consists of the following terms:
1421_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2))
1404_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2))
1420_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2))
1404_1_rec_InvokeMethod(1482_0_rec_Return)
1420_1_rec_InvokeMethod(1482_0_rec_Return)
1421_1_rec_InvokeMethod(1482_0_rec_Return)

(14) IDPNonInfProof (SOUND transformation)

Used the following options for this NonInfProof:
IDPGPoloSolver: Range: [(-1,2)] IsNat: false Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpCand1ShapeHeuristic@518944a Constraint Generator: NonInfConstraintGenerator: PathGenerator: MetricPathGenerator: Max Left Steps: 0 Max Right Steps: 0

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1)) the following chains were created:
  • We consider the chain COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1)) which results in the following constraint:

    (1)    (COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5])≥NonInfC∧COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5])≥1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))∧(UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥))



    We simplified constraint (1) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (2)    ((UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[bni_13] = 0∧[(-1)bso_14] ≥ 0)



    We simplified constraint (2) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (3)    ((UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[bni_13] = 0∧[(-1)bso_14] ≥ 0)



    We simplified constraint (3) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (4)    ((UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[bni_13] = 0∧[(-1)bso_14] ≥ 0)



    We simplified constraint (4) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (5)    ((UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[bni_13] = 0∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_14] ≥ 0)







For Pair 1351_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4]) the following chains were created:
  • We consider the chain 1351_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4]), COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1)) which results in the following constraint:

    (6)    (&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4]))))=TRUEx1[4]=x1[5]x2[4]=x2[5]x0[4]=x0[5]1351_0_REC_LOAD(x1[4], x2[4], x0[4])≥NonInfC∧1351_0_REC_LOAD(x1[4], x2[4], x0[4])≥COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])∧(UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥))



    We simplified constraint (6) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (7)    (<(x1[4], x0[4])=TRUE<=(0, +(+(x0[4], x1[4]), *(3, x2[4])))=TRUE1351_0_REC_LOAD(x1[4], x2[4], x0[4])≥NonInfC∧1351_0_REC_LOAD(x1[4], x2[4], x0[4])≥COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])∧(UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥))



    We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (8)    (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_15 + (-1)Bound*bni_15] + [(2)bni_15]x2[4] + [(-1)bni_15]x1[4] ≥ 0∧[(-1)bso_16] ≥ 0)



    We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (9)    (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_15 + (-1)Bound*bni_15] + [(2)bni_15]x2[4] + [(-1)bni_15]x1[4] ≥ 0∧[(-1)bso_16] ≥ 0)



    We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (10)    (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_15 + (-1)Bound*bni_15] + [(2)bni_15]x2[4] + [(-1)bni_15]x1[4] ≥ 0∧[(-1)bso_16] ≥ 0)



    We simplified constraint (10) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (11)    (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_15 + (-1)Bound*bni_15] + [(2)bni_15]x2[4] + [(-1)bni_15]x1[4] ≥ 0∧[(-1)bso_16] ≥ 0)



    We simplified constraint (11) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (12)    (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_15 + (-1)Bound*bni_15] + [(2)bni_15]x2[4] + [(-1)bni_15]x1[4] ≥ 0∧[(-1)bso_16] ≥ 0)


    (13)    (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_15 + (-1)Bound*bni_15] + [(2)bni_15]x2[4] + [bni_15]x1[4] ≥ 0∧[(-1)bso_16] ≥ 0)



    We simplified constraint (12) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (14)    (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_15 + (-1)Bound*bni_15] + [(2)bni_15]x2[4] + [(-1)bni_15]x1[4] ≥ 0∧[(-1)bso_16] ≥ 0)


    (15)    (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_15 + (-1)Bound*bni_15] + [(-2)bni_15]x2[4] + [(-1)bni_15]x1[4] ≥ 0∧[(-1)bso_16] ≥ 0)



    We simplified constraint (13) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (16)    (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_15 + (-1)Bound*bni_15] + [(2)bni_15]x2[4] + [bni_15]x1[4] ≥ 0∧[(-1)bso_16] ≥ 0)


    (17)    (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_15 + (-1)Bound*bni_15] + [(-2)bni_15]x2[4] + [bni_15]x1[4] ≥ 0∧[(-1)bso_16] ≥ 0)







For Pair COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1]) the following chains were created:
  • We consider the chain COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1]) which results in the following constraint:

    (18)    (COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1])≥1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])∧(UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥))



    We simplified constraint (18) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (19)    ((UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[bni_17] = 0∧[(-1)bso_18] ≥ 0)



    We simplified constraint (19) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (20)    ((UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[bni_17] = 0∧[(-1)bso_18] ≥ 0)



    We simplified constraint (20) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (21)    ((UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[bni_17] = 0∧[(-1)bso_18] ≥ 0)



    We simplified constraint (21) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (22)    ((UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[bni_17] = 0∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_18] ≥ 0)







For Pair 1351_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0]) the following chains were created:
  • We consider the chain 1351_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0]), COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1]) which results in the following constraint:

    (23)    (&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0]))))=TRUEx1[0]=x1[1]x2[0]=x2[1]x0[0]=x0[1]1351_0_REC_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1351_0_REC_LOAD(x1[0], x2[0], x0[0])≥COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥))



    We simplified constraint (23) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (24)    (<=(0, +(+(x0[0], x1[0]), *(3, x2[0])))=TRUE>=(x2[0], x1[0])=TRUE>=(x1[0], x0[0])=TRUE1351_0_REC_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1351_0_REC_LOAD(x1[0], x2[0], x0[0])≥COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥))



    We simplified constraint (24) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (25)    (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(2)bni_19 + (-1)Bound*bni_19] + [(2)bni_19]x2[0] + [(-1)bni_19]x1[0] ≥ 0∧[2 + (-1)bso_20] ≥ 0)



    We simplified constraint (25) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (26)    (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(2)bni_19 + (-1)Bound*bni_19] + [(2)bni_19]x2[0] + [(-1)bni_19]x1[0] ≥ 0∧[2 + (-1)bso_20] ≥ 0)



    We simplified constraint (26) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (27)    (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(2)bni_19 + (-1)Bound*bni_19] + [(2)bni_19]x2[0] + [(-1)bni_19]x1[0] ≥ 0∧[2 + (-1)bso_20] ≥ 0)



    We simplified constraint (27) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (28)    (x0[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧[2]x1[0] + [3]x2[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(2)bni_19 + (-1)Bound*bni_19] + [(2)bni_19]x2[0] + [(-1)bni_19]x1[0] ≥ 0∧[2 + (-1)bso_20] ≥ 0)



    We simplified constraint (28) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (29)    (x0[0] ≥ 0∧x1[0] ≥ 0∧[5]x2[0] + [-2]x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(2)bni_19 + (-1)Bound*bni_19] + [bni_19]x2[0] + [bni_19]x1[0] ≥ 0∧[2 + (-1)bso_20] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))
    • ((UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[bni_13] = 0∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_14] ≥ 0)

  • 1351_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])
    • (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_15 + (-1)Bound*bni_15] + [(2)bni_15]x2[4] + [(-1)bni_15]x1[4] ≥ 0∧[(-1)bso_16] ≥ 0)
    • (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_15 + (-1)Bound*bni_15] + [(-2)bni_15]x2[4] + [(-1)bni_15]x1[4] ≥ 0∧[(-1)bso_16] ≥ 0)
    • (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_15 + (-1)Bound*bni_15] + [(2)bni_15]x2[4] + [bni_15]x1[4] ≥ 0∧[(-1)bso_16] ≥ 0)
    • (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_15 + (-1)Bound*bni_15] + [(-2)bni_15]x2[4] + [bni_15]x1[4] ≥ 0∧[(-1)bso_16] ≥ 0)

  • COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])
    • ((UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[bni_17] = 0∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_18] ≥ 0)

  • 1351_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])
    • (x0[0] ≥ 0∧x1[0] ≥ 0∧[5]x2[0] + [-2]x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(2)bni_19 + (-1)Bound*bni_19] + [bni_19]x2[0] + [bni_19]x1[0] ≥ 0∧[2 + (-1)bso_20] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(COND_1351_0_REC_LOAD2(x1, x2, x3, x4)) = [2] + [2]x3 + [-1]x2   
POL(1351_0_REC_LOAD(x1, x2, x3)) = [2] + [2]x2 + [-1]x1   
POL(-(x1, x2)) = x1 + [-1]x2   
POL(1) = [1]   
POL(&&(x1, x2)) = [-1]   
POL(<(x1, x2)) = [-1]   
POL(<=(x1, x2)) = [-1]   
POL(0) = 0   
POL(+(x1, x2)) = x1 + x2   
POL(*(x1, x2)) = x1·x2   
POL(3) = [3]   
POL(COND_1351_0_REC_LOAD(x1, x2, x3, x4)) = [-1]x2 + [2]x3   
POL(>=(x1, x2)) = [-1]   

The following pairs are in P>:

1351_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])

The following pairs are in Pbound:

1351_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])

The following pairs are in P:

COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))
1351_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])
COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])

There are no usable rules.

(15) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


R is empty.

The integer pair graph contains the following rules and edges:
(5): COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1351_0_REC_LOAD(x1[5], x2[5], x0[5] - 1)
(4): 1351_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1351_0_REC_LOAD2(x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4], x1[4], x2[4], x0[4])
(1): COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1351_0_REC_LOAD(x1[1], x2[1] - 1, x0[1])

(1) -> (4), if (x1[1]* x1[4]x2[1] - 1* x2[4]x0[1]* x0[4])


(5) -> (4), if (x1[5]* x1[4]x2[5]* x2[4]x0[5] - 1* x0[4])


(4) -> (5), if (x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4]x1[4]* x1[5]x2[4]* x2[5]x0[4]* x0[5])



The set Q consists of the following terms:
1421_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2))
1404_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2))
1420_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2))
1404_1_rec_InvokeMethod(1482_0_rec_Return)
1420_1_rec_InvokeMethod(1482_0_rec_Return)
1421_1_rec_InvokeMethod(1482_0_rec_Return)

(16) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(17) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(4): 1351_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1351_0_REC_LOAD2(x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4], x1[4], x2[4], x0[4])
(5): COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1351_0_REC_LOAD(x1[5], x2[5], x0[5] - 1)

(5) -> (4), if (x1[5]* x1[4]x2[5]* x2[4]x0[5] - 1* x0[4])


(4) -> (5), if (x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4]x1[4]* x1[5]x2[4]* x2[5]x0[4]* x0[5])



The set Q consists of the following terms:
1421_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2))
1404_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2))
1420_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2))
1404_1_rec_InvokeMethod(1482_0_rec_Return)
1420_1_rec_InvokeMethod(1482_0_rec_Return)
1421_1_rec_InvokeMethod(1482_0_rec_Return)

(18) IDPNonInfProof (SOUND transformation)

Used the following options for this NonInfProof:
IDPGPoloSolver: Range: [(-1,2)] IsNat: false Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpCand1ShapeHeuristic@518944a Constraint Generator: NonInfConstraintGenerator: PathGenerator: MetricPathGenerator: Max Left Steps: 0 Max Right Steps: 0

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 1351_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4]) the following chains were created:
  • We consider the chain 1351_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4]), COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1)) which results in the following constraint:

    (1)    (&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4]))))=TRUEx1[4]=x1[5]x2[4]=x2[5]x0[4]=x0[5]1351_0_REC_LOAD(x1[4], x2[4], x0[4])≥NonInfC∧1351_0_REC_LOAD(x1[4], x2[4], x0[4])≥COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])∧(UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥))



    We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (<(x1[4], x0[4])=TRUE<=(0, +(+(x0[4], x1[4]), *(3, x2[4])))=TRUE1351_0_REC_LOAD(x1[4], x2[4], x0[4])≥NonInfC∧1351_0_REC_LOAD(x1[4], x2[4], x0[4])≥COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])∧(UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_8] + [bni_8]x0[4] + [(-1)bni_8]x1[4] ≥ 0∧[1 + (-1)bso_9] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_8] + [bni_8]x0[4] + [(-1)bni_8]x1[4] ≥ 0∧[1 + (-1)bso_9] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_8] + [bni_8]x0[4] + [(-1)bni_8]x1[4] ≥ 0∧[1 + (-1)bso_9] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_8 + bni_8] + [bni_8]x0[4] ≥ 0∧[1 + (-1)bso_9] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (7)    (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_8 + bni_8] + [bni_8]x0[4] ≥ 0∧[1 + (-1)bso_9] ≥ 0)


    (8)    (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_8 + bni_8] + [bni_8]x0[4] ≥ 0∧[1 + (-1)bso_9] ≥ 0)



    We simplified constraint (7) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (9)    (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_8 + bni_8] + [bni_8]x0[4] ≥ 0∧[1 + (-1)bso_9] ≥ 0)


    (10)    (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_8 + bni_8] + [bni_8]x0[4] ≥ 0∧[1 + (-1)bso_9] ≥ 0)



    We simplified constraint (8) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (11)    (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_8 + bni_8] + [bni_8]x0[4] ≥ 0∧[1 + (-1)bso_9] ≥ 0)


    (12)    (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_8 + bni_8] + [bni_8]x0[4] ≥ 0∧[1 + (-1)bso_9] ≥ 0)







For Pair COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1)) the following chains were created:
  • We consider the chain COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1)) which results in the following constraint:

    (13)    (COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5])≥NonInfC∧COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5])≥1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))∧(UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥))



    We simplified constraint (13) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (14)    ((UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[bni_10] = 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (14) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (15)    ((UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[bni_10] = 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (15) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (16)    ((UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[bni_10] = 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (16) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (17)    ((UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[bni_10] = 0∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_11] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 1351_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])
    • (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_8 + bni_8] + [bni_8]x0[4] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
    • (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_8 + bni_8] + [bni_8]x0[4] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
    • (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_8 + bni_8] + [bni_8]x0[4] ≥ 0∧[1 + (-1)bso_9] ≥ 0)
    • (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_8 + bni_8] + [bni_8]x0[4] ≥ 0∧[1 + (-1)bso_9] ≥ 0)

  • COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))
    • ((UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[bni_10] = 0∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_11] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(1351_0_REC_LOAD(x1, x2, x3)) = x3 + [-1]x1   
POL(COND_1351_0_REC_LOAD2(x1, x2, x3, x4)) = [-1] + x4 + [-1]x2   
POL(&&(x1, x2)) = [-1]   
POL(<(x1, x2)) = [-1]   
POL(<=(x1, x2)) = [-1]   
POL(0) = 0   
POL(+(x1, x2)) = x1 + x2   
POL(*(x1, x2)) = x1·x2   
POL(3) = [3]   
POL(-(x1, x2)) = x1 + [-1]x2   
POL(1) = [1]   

The following pairs are in P>:

1351_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])

The following pairs are in Pbound:

1351_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])

The following pairs are in P:

COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))

There are no usable rules.

(19) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(5): COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1351_0_REC_LOAD(x1[5], x2[5], x0[5] - 1)


The set Q consists of the following terms:
1421_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2))
1404_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2))
1420_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2))
1404_1_rec_InvokeMethod(1482_0_rec_Return)
1420_1_rec_InvokeMethod(1482_0_rec_Return)
1421_1_rec_InvokeMethod(1482_0_rec_Return)

(20) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(21) TRUE

(22) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


The ITRS R consists of the following rules:
1421_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2)) → 1482_0_rec_Return
1404_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2)) → 1482_0_rec_Return
1420_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2)) → 1482_0_rec_Return
1404_1_rec_InvokeMethod(1482_0_rec_Return) → 1482_0_rec_Return
1420_1_rec_InvokeMethod(1482_0_rec_Return) → 1482_0_rec_Return
1421_1_rec_InvokeMethod(1482_0_rec_Return) → 1482_0_rec_Return

The integer pair graph contains the following rules and edges:
(0): 1351_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1351_0_REC_LOAD(x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0], x1[0], x2[0], x0[0])
(1): COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1351_0_REC_LOAD(x1[1], x2[1] - 1, x0[1])
(3): COND_1351_0_REC_LOAD1(TRUE, x1[3], x2[3], x0[3]) → 1351_0_REC_LOAD(x1[3] - 2, x2[3], x0[3])
(4): 1351_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1351_0_REC_LOAD2(x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4], x1[4], x2[4], x0[4])
(5): COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1351_0_REC_LOAD(x1[5], x2[5], x0[5] - 1)

(1) -> (0), if (x1[1]* x1[0]x2[1] - 1* x2[0]x0[1]* x0[0])


(3) -> (0), if (x1[3] - 2* x1[0]x2[3]* x2[0]x0[3]* x0[0])


(5) -> (0), if (x1[5]* x1[0]x2[5]* x2[0]x0[5] - 1* x0[0])


(0) -> (1), if (x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0]x1[0]* x1[1]x2[0]* x2[1]x0[0]* x0[1])


(1) -> (4), if (x1[1]* x1[4]x2[1] - 1* x2[4]x0[1]* x0[4])


(3) -> (4), if (x1[3] - 2* x1[4]x2[3]* x2[4]x0[3]* x0[4])


(5) -> (4), if (x1[5]* x1[4]x2[5]* x2[4]x0[5] - 1* x0[4])


(4) -> (5), if (x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4]x1[4]* x1[5]x2[4]* x2[5]x0[4]* x0[5])



The set Q consists of the following terms:
1421_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2))
1404_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2))
1420_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2))
1404_1_rec_InvokeMethod(1482_0_rec_Return)
1420_1_rec_InvokeMethod(1482_0_rec_Return)
1421_1_rec_InvokeMethod(1482_0_rec_Return)

(23) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(24) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


The ITRS R consists of the following rules:
1421_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2)) → 1482_0_rec_Return
1404_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2)) → 1482_0_rec_Return
1420_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2)) → 1482_0_rec_Return
1404_1_rec_InvokeMethod(1482_0_rec_Return) → 1482_0_rec_Return
1420_1_rec_InvokeMethod(1482_0_rec_Return) → 1482_0_rec_Return
1421_1_rec_InvokeMethod(1482_0_rec_Return) → 1482_0_rec_Return

The integer pair graph contains the following rules and edges:
(5): COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1351_0_REC_LOAD(x1[5], x2[5], x0[5] - 1)
(4): 1351_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1351_0_REC_LOAD2(x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4], x1[4], x2[4], x0[4])
(1): COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1351_0_REC_LOAD(x1[1], x2[1] - 1, x0[1])
(0): 1351_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1351_0_REC_LOAD(x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0], x1[0], x2[0], x0[0])

(1) -> (0), if (x1[1]* x1[0]x2[1] - 1* x2[0]x0[1]* x0[0])


(5) -> (0), if (x1[5]* x1[0]x2[5]* x2[0]x0[5] - 1* x0[0])


(0) -> (1), if (x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0]x1[0]* x1[1]x2[0]* x2[1]x0[0]* x0[1])


(1) -> (4), if (x1[1]* x1[4]x2[1] - 1* x2[4]x0[1]* x0[4])


(5) -> (4), if (x1[5]* x1[4]x2[5]* x2[4]x0[5] - 1* x0[4])


(4) -> (5), if (x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4]x1[4]* x1[5]x2[4]* x2[5]x0[4]* x0[5])



The set Q consists of the following terms:
1421_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2))
1404_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2))
1420_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2))
1404_1_rec_InvokeMethod(1482_0_rec_Return)
1420_1_rec_InvokeMethod(1482_0_rec_Return)
1421_1_rec_InvokeMethod(1482_0_rec_Return)

(25) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(26) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


R is empty.

The integer pair graph contains the following rules and edges:
(5): COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1351_0_REC_LOAD(x1[5], x2[5], x0[5] - 1)
(4): 1351_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1351_0_REC_LOAD2(x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4], x1[4], x2[4], x0[4])
(1): COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1351_0_REC_LOAD(x1[1], x2[1] - 1, x0[1])
(0): 1351_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1351_0_REC_LOAD(x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0], x1[0], x2[0], x0[0])

(1) -> (0), if (x1[1]* x1[0]x2[1] - 1* x2[0]x0[1]* x0[0])


(5) -> (0), if (x1[5]* x1[0]x2[5]* x2[0]x0[5] - 1* x0[0])


(0) -> (1), if (x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0]x1[0]* x1[1]x2[0]* x2[1]x0[0]* x0[1])


(1) -> (4), if (x1[1]* x1[4]x2[1] - 1* x2[4]x0[1]* x0[4])


(5) -> (4), if (x1[5]* x1[4]x2[5]* x2[4]x0[5] - 1* x0[4])


(4) -> (5), if (x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4]x1[4]* x1[5]x2[4]* x2[5]x0[4]* x0[5])



The set Q consists of the following terms:
1421_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2))
1404_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2))
1420_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2))
1404_1_rec_InvokeMethod(1482_0_rec_Return)
1420_1_rec_InvokeMethod(1482_0_rec_Return)
1421_1_rec_InvokeMethod(1482_0_rec_Return)

(27) IDPNonInfProof (SOUND transformation)

Used the following options for this NonInfProof:
IDPGPoloSolver: Range: [(-1,2)] IsNat: false Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpCand1ShapeHeuristic@518944a Constraint Generator: NonInfConstraintGenerator: PathGenerator: MetricPathGenerator: Max Left Steps: 0 Max Right Steps: 0

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1)) the following chains were created:
  • We consider the chain COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1)) which results in the following constraint:

    (1)    (COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5])≥NonInfC∧COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5])≥1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))∧(UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥))



    We simplified constraint (1) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (2)    ((UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[bni_10] = 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (2) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (3)    ((UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[bni_10] = 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (3) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (4)    ((UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[bni_10] = 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (4) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (5)    ((UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[bni_10] = 0∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_11] ≥ 0)







For Pair 1351_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4]) the following chains were created:
  • We consider the chain 1351_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4]), COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1)) which results in the following constraint:

    (6)    (&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4]))))=TRUEx1[4]=x1[5]x2[4]=x2[5]x0[4]=x0[5]1351_0_REC_LOAD(x1[4], x2[4], x0[4])≥NonInfC∧1351_0_REC_LOAD(x1[4], x2[4], x0[4])≥COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])∧(UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥))



    We simplified constraint (6) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (7)    (<(x1[4], x0[4])=TRUE<=(0, +(+(x0[4], x1[4]), *(3, x2[4])))=TRUE1351_0_REC_LOAD(x1[4], x2[4], x0[4])≥NonInfC∧1351_0_REC_LOAD(x1[4], x2[4], x0[4])≥COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])∧(UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥))



    We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (8)    (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_12] + [bni_12]x0[4] + [(-1)bni_12]x1[4] ≥ 0∧[1 + (-1)bso_13] ≥ 0)



    We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (9)    (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_12] + [bni_12]x0[4] + [(-1)bni_12]x1[4] ≥ 0∧[1 + (-1)bso_13] ≥ 0)



    We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (10)    (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_12] + [bni_12]x0[4] + [(-1)bni_12]x1[4] ≥ 0∧[1 + (-1)bso_13] ≥ 0)



    We simplified constraint (10) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (11)    (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_12 + bni_12] + [bni_12]x0[4] ≥ 0∧[1 + (-1)bso_13] ≥ 0)



    We simplified constraint (11) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (12)    (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_12 + bni_12] + [bni_12]x0[4] ≥ 0∧[1 + (-1)bso_13] ≥ 0)


    (13)    (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_12 + bni_12] + [bni_12]x0[4] ≥ 0∧[1 + (-1)bso_13] ≥ 0)



    We simplified constraint (12) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (14)    (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_12 + bni_12] + [bni_12]x0[4] ≥ 0∧[1 + (-1)bso_13] ≥ 0)


    (15)    (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_12 + bni_12] + [bni_12]x0[4] ≥ 0∧[1 + (-1)bso_13] ≥ 0)



    We simplified constraint (13) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (16)    (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_12 + bni_12] + [bni_12]x0[4] ≥ 0∧[1 + (-1)bso_13] ≥ 0)


    (17)    (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_12 + bni_12] + [bni_12]x0[4] ≥ 0∧[1 + (-1)bso_13] ≥ 0)







For Pair COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1]) the following chains were created:
  • We consider the chain COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1]) which results in the following constraint:

    (18)    (COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1])≥1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])∧(UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥))



    We simplified constraint (18) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (19)    ((UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[bni_14] = 0∧[(-1)bso_15] ≥ 0)



    We simplified constraint (19) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (20)    ((UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[bni_14] = 0∧[(-1)bso_15] ≥ 0)



    We simplified constraint (20) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (21)    ((UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[bni_14] = 0∧[(-1)bso_15] ≥ 0)



    We simplified constraint (21) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (22)    ((UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[bni_14] = 0∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_15] ≥ 0)







For Pair 1351_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0]) the following chains were created:
  • We consider the chain 1351_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0]), COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1]) which results in the following constraint:

    (23)    (&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0]))))=TRUEx1[0]=x1[1]x2[0]=x2[1]x0[0]=x0[1]1351_0_REC_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1351_0_REC_LOAD(x1[0], x2[0], x0[0])≥COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥))



    We simplified constraint (23) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (24)    (<=(0, +(+(x0[0], x1[0]), *(3, x2[0])))=TRUE>=(x2[0], x1[0])=TRUE>=(x1[0], x0[0])=TRUE1351_0_REC_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1351_0_REC_LOAD(x1[0], x2[0], x0[0])≥COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥))



    We simplified constraint (24) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (25)    (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[0] + [(-1)bni_16]x1[0] ≥ 0∧[(-1)bso_17] ≥ 0)



    We simplified constraint (25) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (26)    (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[0] + [(-1)bni_16]x1[0] ≥ 0∧[(-1)bso_17] ≥ 0)



    We simplified constraint (26) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (27)    (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[0] + [(-1)bni_16]x1[0] ≥ 0∧[(-1)bso_17] ≥ 0)



    We simplified constraint (27) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (28)    (x0[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧[2]x1[0] + [3]x2[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(-1)Bound*bni_16] + [(-3)bni_16]x2[0] + [(-2)bni_16]x1[0] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)



    We simplified constraint (28) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (29)    (x0[0] ≥ 0∧x1[0] ≥ 0∧[5]x2[0] + [-2]x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(-1)Bound*bni_16] + [(-5)bni_16]x2[0] + [(2)bni_16]x1[0] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))
    • ((UIncreasing(1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))), ≥)∧[bni_10] = 0∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_11] ≥ 0)

  • 1351_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])
    • (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_12 + bni_12] + [bni_12]x0[4] ≥ 0∧[1 + (-1)bso_13] ≥ 0)
    • (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_12 + bni_12] + [bni_12]x0[4] ≥ 0∧[1 + (-1)bso_13] ≥ 0)
    • (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_12 + bni_12] + [bni_12]x0[4] ≥ 0∧[1 + (-1)bso_13] ≥ 0)
    • (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)Bound*bni_12 + bni_12] + [bni_12]x0[4] ≥ 0∧[1 + (-1)bso_13] ≥ 0)

  • COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])
    • ((UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[bni_14] = 0∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_15] ≥ 0)

  • 1351_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])
    • (x0[0] ≥ 0∧x1[0] ≥ 0∧[5]x2[0] + [-2]x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(-1)Bound*bni_16] + [(-5)bni_16]x2[0] + [(2)bni_16]x1[0] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(COND_1351_0_REC_LOAD2(x1, x2, x3, x4)) = [-1] + x4 + [-1]x2   
POL(1351_0_REC_LOAD(x1, x2, x3)) = x3 + [-1]x1   
POL(-(x1, x2)) = x1 + [-1]x2   
POL(1) = [1]   
POL(&&(x1, x2)) = [1]   
POL(<(x1, x2)) = [-1]   
POL(<=(x1, x2)) = [-1]   
POL(0) = 0   
POL(+(x1, x2)) = x1 + x2   
POL(*(x1, x2)) = x1·x2   
POL(3) = [3]   
POL(COND_1351_0_REC_LOAD(x1, x2, x3, x4)) = x4 + [-1]x2   
POL(>=(x1, x2)) = [-1]   

The following pairs are in P>:

1351_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])

The following pairs are in Pbound:

1351_0_REC_LOAD(x1[4], x2[4], x0[4]) → COND_1351_0_REC_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])

The following pairs are in P:

COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1351_0_REC_LOAD(x1[5], x2[5], -(x0[5], 1))
COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])
1351_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])

There are no usable rules.

(28) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


R is empty.

The integer pair graph contains the following rules and edges:
(5): COND_1351_0_REC_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1351_0_REC_LOAD(x1[5], x2[5], x0[5] - 1)
(1): COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1351_0_REC_LOAD(x1[1], x2[1] - 1, x0[1])
(0): 1351_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1351_0_REC_LOAD(x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0], x1[0], x2[0], x0[0])

(1) -> (0), if (x1[1]* x1[0]x2[1] - 1* x2[0]x0[1]* x0[0])


(5) -> (0), if (x1[5]* x1[0]x2[5]* x2[0]x0[5] - 1* x0[0])


(0) -> (1), if (x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0]x1[0]* x1[1]x2[0]* x2[1]x0[0]* x0[1])



The set Q consists of the following terms:
1421_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2))
1404_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2))
1420_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2))
1404_1_rec_InvokeMethod(1482_0_rec_Return)
1420_1_rec_InvokeMethod(1482_0_rec_Return)
1421_1_rec_InvokeMethod(1482_0_rec_Return)

(29) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(30) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1351_0_REC_LOAD(x1[1], x2[1] - 1, x0[1])
(0): 1351_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1351_0_REC_LOAD(x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0], x1[0], x2[0], x0[0])

(1) -> (0), if (x1[1]* x1[0]x2[1] - 1* x2[0]x0[1]* x0[0])


(0) -> (1), if (x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0]x1[0]* x1[1]x2[0]* x2[1]x0[0]* x0[1])



The set Q consists of the following terms:
1421_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2))
1404_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2))
1420_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2))
1404_1_rec_InvokeMethod(1482_0_rec_Return)
1420_1_rec_InvokeMethod(1482_0_rec_Return)
1421_1_rec_InvokeMethod(1482_0_rec_Return)

(31) IDPNonInfProof (SOUND transformation)

Used the following options for this NonInfProof:
IDPGPoloSolver: Range: [(-1,2)] IsNat: false Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpCand1ShapeHeuristic@518944a Constraint Generator: NonInfConstraintGenerator: PathGenerator: MetricPathGenerator: Max Left Steps: 0 Max Right Steps: 0

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1]) the following chains were created:
  • We consider the chain COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1]) which results in the following constraint:

    (1)    (COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1])≥1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])∧(UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥))



    We simplified constraint (1) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (2)    ((UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[bni_8] = 0∧[(-1)bso_9] ≥ 0)



    We simplified constraint (2) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (3)    ((UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[bni_8] = 0∧[(-1)bso_9] ≥ 0)



    We simplified constraint (3) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (4)    ((UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[bni_8] = 0∧[(-1)bso_9] ≥ 0)



    We simplified constraint (4) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (5)    ((UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[bni_8] = 0∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_9] ≥ 0)







For Pair 1351_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0]) the following chains were created:
  • We consider the chain 1351_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0]), COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1]) which results in the following constraint:

    (6)    (&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0]))))=TRUEx1[0]=x1[1]x2[0]=x2[1]x0[0]=x0[1]1351_0_REC_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1351_0_REC_LOAD(x1[0], x2[0], x0[0])≥COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥))



    We simplified constraint (6) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (7)    (<=(0, +(+(x0[0], x1[0]), *(3, x2[0])))=TRUE>=(x2[0], x1[0])=TRUE>=(x1[0], x0[0])=TRUE1351_0_REC_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1351_0_REC_LOAD(x1[0], x2[0], x0[0])≥COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥))



    We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (8)    (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(2)bni_10 + (-1)Bound*bni_10] + [(2)bni_10]x2[0] + [(-1)bni_10]x0[0] + [(-1)bni_10]x1[0] ≥ 0∧[2 + (-1)bso_11] ≥ 0)



    We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (9)    (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(2)bni_10 + (-1)Bound*bni_10] + [(2)bni_10]x2[0] + [(-1)bni_10]x0[0] + [(-1)bni_10]x1[0] ≥ 0∧[2 + (-1)bso_11] ≥ 0)



    We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (10)    (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(2)bni_10 + (-1)Bound*bni_10] + [(2)bni_10]x2[0] + [(-1)bni_10]x0[0] + [(-1)bni_10]x1[0] ≥ 0∧[2 + (-1)bso_11] ≥ 0)



    We simplified constraint (10) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (11)    (x0[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧[2]x1[0] + [3]x2[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(2)bni_10 + (-1)Bound*bni_10] + [(5)bni_10]x2[0] + [(-1)bni_10]x0[0] ≥ 0∧[2 + (-1)bso_11] ≥ 0)



    We simplified constraint (11) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (12)    (x0[0] ≥ 0∧x1[0] ≥ 0∧[5]x2[0] + [-2]x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(2)bni_10 + (-1)Bound*bni_10] + [(5)bni_10]x2[0] + [(-1)bni_10]x0[0] ≥ 0∧[2 + (-1)bso_11] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])
    • ((UIncreasing(1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])), ≥)∧[bni_8] = 0∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_9] ≥ 0)

  • 1351_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])
    • (x0[0] ≥ 0∧x1[0] ≥ 0∧[5]x2[0] + [-2]x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(2)bni_10 + (-1)Bound*bni_10] + [(5)bni_10]x2[0] + [(-1)bni_10]x0[0] ≥ 0∧[2 + (-1)bso_11] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(COND_1351_0_REC_LOAD(x1, x2, x3, x4)) = [-1]x4 + [-1]x2 + [2]x3   
POL(1351_0_REC_LOAD(x1, x2, x3)) = [2] + [2]x2 + [-1]x3 + [-1]x1   
POL(-(x1, x2)) = x1 + [-1]x2   
POL(1) = [1]   
POL(&&(x1, x2)) = [-1]   
POL(>=(x1, x2)) = [-1]   
POL(<=(x1, x2)) = [-1]   
POL(0) = 0   
POL(+(x1, x2)) = x1 + x2   
POL(*(x1, x2)) = x1·x2   
POL(3) = [3]   

The following pairs are in P>:

1351_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])

The following pairs are in Pbound:

1351_0_REC_LOAD(x1[0], x2[0], x0[0]) → COND_1351_0_REC_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])

The following pairs are in P:

COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1351_0_REC_LOAD(x1[1], -(x2[1], 1), x0[1])

There are no usable rules.

(32) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_1351_0_REC_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1351_0_REC_LOAD(x1[1], x2[1] - 1, x0[1])


The set Q consists of the following terms:
1421_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2))
1404_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2))
1420_1_rec_InvokeMethod(1364_0_rec_Return(x0, x1, x2))
1404_1_rec_InvokeMethod(1482_0_rec_Return)
1420_1_rec_InvokeMethod(1482_0_rec_Return)
1421_1_rec_InvokeMethod(1482_0_rec_Return)

(33) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(34) TRUE