0 JBC
↳1 JBCToGraph (⇒, 190 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 220 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 230 ms)
↳8 AND
↳9 IDP
↳10 IDependencyGraphProof (⇔, 0 ms)
↳11 TRUE
↳12 IDP
↳13 IDependencyGraphProof (⇔, 0 ms)
↳14 TRUE
public class HanoiR {
private void solve(int h, int from, int to, int support) {
if (h < 1) return;
else if (h == 1) {
//System.out.println("from " + from + " to " + to + "\n");
}
else {
solve(h - 1, from, support, to);
//System.out.println("from " + from + " to " + to + "\n");
solve(h - 1, support, to, from);
}
}
public static void main(String[] args) {
Random.args = args;
new HanoiR().solve(Random.random(),1,2,3);
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
if (index >= args.length)
return 0;
String string = args[index];
index++;
return string.length();
}
}
Generated 33 rules for P and 10 rules for R.
P rules:
536_0_solve_ConstantStackPush(EOS(STATIC_536), i98, i98) → 539_0_solve_GE(EOS(STATIC_539), i98, i98, 1)
539_0_solve_GE(EOS(STATIC_539), i104, i104, matching1) → 542_0_solve_GE(EOS(STATIC_542), i104, i104, 1) | =(matching1, 1)
542_0_solve_GE(EOS(STATIC_542), i104, i104, matching1) → 546_0_solve_Load(EOS(STATIC_546), i104) | &&(>=(i104, 1), =(matching1, 1))
546_0_solve_Load(EOS(STATIC_546), i104) → 549_0_solve_ConstantStackPush(EOS(STATIC_549), i104, i104)
549_0_solve_ConstantStackPush(EOS(STATIC_549), i104, i104) → 562_0_solve_NE(EOS(STATIC_562), i104, i104, 1)
562_0_solve_NE(EOS(STATIC_562), i110, i110, matching1) → 573_0_solve_NE(EOS(STATIC_573), i110, i110, 1) | =(matching1, 1)
573_0_solve_NE(EOS(STATIC_573), i110, i110, matching1) → 576_0_solve_Load(EOS(STATIC_576), i110) | &&(!(=(i110, 1)), =(matching1, 1))
576_0_solve_Load(EOS(STATIC_576), i110) → 580_0_solve_Load(EOS(STATIC_580), i110)
580_0_solve_Load(EOS(STATIC_580), i110) → 584_0_solve_ConstantStackPush(EOS(STATIC_584), i110, i110)
584_0_solve_ConstantStackPush(EOS(STATIC_584), i110, i110) → 592_0_solve_IntArithmetic(EOS(STATIC_592), i110, i110, 1)
592_0_solve_IntArithmetic(EOS(STATIC_592), i110, i110, matching1) → 599_0_solve_Load(EOS(STATIC_599), i110, -(i110, 1)) | &&(>(i110, 0), =(matching1, 1))
599_0_solve_Load(EOS(STATIC_599), i110, i114) → 601_0_solve_Load(EOS(STATIC_601), i110, i114)
601_0_solve_Load(EOS(STATIC_601), i110, i114) → 603_0_solve_Load(EOS(STATIC_603), i110, i114)
603_0_solve_Load(EOS(STATIC_603), i110, i114) → 605_0_solve_InvokeMethod(EOS(STATIC_605), i110, i114)
605_0_solve_InvokeMethod(EOS(STATIC_605), i110, i114) → 607_1_solve_InvokeMethod(607_0_solve_Load(EOS(STATIC_607), i114), i110, i114)
607_0_solve_Load(EOS(STATIC_607), i114) → 609_0_solve_Load(EOS(STATIC_609), i114)
607_1_solve_InvokeMethod(578_0_solve_Return(EOS(STATIC_578)), i110, matching1) → 621_0_solve_Return(EOS(STATIC_621), i110, 1) | =(matching1, 1)
607_1_solve_InvokeMethod(776_0_solve_Return(EOS(STATIC_776)), i110, i268) → 804_0_solve_Return(EOS(STATIC_804), i110, i268)
609_0_solve_Load(EOS(STATIC_609), i114) → 535_0_solve_Load(EOS(STATIC_535), i114)
535_0_solve_Load(EOS(STATIC_535), i98) → 536_0_solve_ConstantStackPush(EOS(STATIC_536), i98, i98)
621_0_solve_Return(EOS(STATIC_621), i110, matching1) → 694_0_solve_Return(EOS(STATIC_694), i110, 1) | =(matching1, 1)
694_0_solve_Return(EOS(STATIC_694), i110, i180) → 700_0_solve_Load(EOS(STATIC_700), i110)
700_0_solve_Load(EOS(STATIC_700), i110) → 703_0_solve_Load(EOS(STATIC_703), i110)
703_0_solve_Load(EOS(STATIC_703), i110) → 705_0_solve_ConstantStackPush(EOS(STATIC_705), i110)
705_0_solve_ConstantStackPush(EOS(STATIC_705), i110) → 707_0_solve_IntArithmetic(EOS(STATIC_707), i110, 1)
707_0_solve_IntArithmetic(EOS(STATIC_707), i110, matching1) → 709_0_solve_Load(EOS(STATIC_709), -(i110, 1)) | &&(>(i110, 0), =(matching1, 1))
709_0_solve_Load(EOS(STATIC_709), i192) → 711_0_solve_Load(EOS(STATIC_711), i192)
711_0_solve_Load(EOS(STATIC_711), i192) → 712_0_solve_Load(EOS(STATIC_712), i192)
712_0_solve_Load(EOS(STATIC_712), i192) → 714_0_solve_InvokeMethod(EOS(STATIC_714), i192)
714_0_solve_InvokeMethod(EOS(STATIC_714), i192) → 716_1_solve_InvokeMethod(716_0_solve_Load(EOS(STATIC_716), i192), i192)
716_0_solve_Load(EOS(STATIC_716), i192) → 718_0_solve_Load(EOS(STATIC_718), i192)
718_0_solve_Load(EOS(STATIC_718), i192) → 535_0_solve_Load(EOS(STATIC_535), i192)
804_0_solve_Return(EOS(STATIC_804), i110, i268) → 694_0_solve_Return(EOS(STATIC_694), i110, i268)
R rules:
539_0_solve_GE(EOS(STATIC_539), i103, i103, matching1) → 541_0_solve_GE(EOS(STATIC_541), i103, i103, 1) | =(matching1, 1)
541_0_solve_GE(EOS(STATIC_541), i103, i103, matching1) → 543_0_solve_Return(EOS(STATIC_543), i103) | &&(<(i103, 1), =(matching1, 1))
562_0_solve_NE(EOS(STATIC_562), matching1, matching2, matching3) → 572_0_solve_NE(EOS(STATIC_572), 1, 1, 1) | &&(&&(=(matching1, 1), =(matching2, 1)), =(matching3, 1))
572_0_solve_NE(EOS(STATIC_572), matching1, matching2, matching3) → 574_0_solve_JMP(EOS(STATIC_574)) | &&(&&(=(matching1, 1), =(matching2, 1)), =(matching3, 1))
574_0_solve_JMP(EOS(STATIC_574)) → 578_0_solve_Return(EOS(STATIC_578))
716_1_solve_InvokeMethod(578_0_solve_Return(EOS(STATIC_578)), matching1) → 729_0_solve_Return(EOS(STATIC_729), 1) | =(matching1, 1)
716_1_solve_InvokeMethod(776_0_solve_Return(EOS(STATIC_776)), i276) → 808_0_solve_Return(EOS(STATIC_808), i276)
729_0_solve_Return(EOS(STATIC_729), matching1) → 771_0_solve_Return(EOS(STATIC_771), 1) | =(matching1, 1)
771_0_solve_Return(EOS(STATIC_771), i242) → 776_0_solve_Return(EOS(STATIC_776))
808_0_solve_Return(EOS(STATIC_808), i276) → 771_0_solve_Return(EOS(STATIC_771), i276)
Combined rules. Obtained 3 conditional rules for P and 2 conditional rules for R.
P rules:
536_0_solve_ConstantStackPush(EOS(STATIC_536), x0, x0) → 607_1_solve_InvokeMethod(536_0_solve_ConstantStackPush(EOS(STATIC_536), -(x0, 1), -(x0, 1)), x0, -(x0, 1)) | >(x0, 1)
607_1_solve_InvokeMethod(578_0_solve_Return(EOS(STATIC_578)), x0, 1) → 716_1_solve_InvokeMethod(536_0_solve_ConstantStackPush(EOS(STATIC_536), -(x0, 1), -(x0, 1)), -(x0, 1)) | >(x0, 0)
607_1_solve_InvokeMethod(776_0_solve_Return(EOS(STATIC_776)), x0, x1) → 716_1_solve_InvokeMethod(536_0_solve_ConstantStackPush(EOS(STATIC_536), -(x0, 1), -(x0, 1)), -(x0, 1)) | >(x0, 0)
R rules:
716_1_solve_InvokeMethod(578_0_solve_Return(EOS(STATIC_578)), 1) → 776_0_solve_Return(EOS(STATIC_776))
716_1_solve_InvokeMethod(776_0_solve_Return(EOS(STATIC_776)), x0) → 776_0_solve_Return(EOS(STATIC_776))
Filtered ground terms:
536_0_solve_ConstantStackPush(x1, x2, x3) → 536_0_solve_ConstantStackPush(x2, x3)
Cond_607_1_solve_InvokeMethod1(x1, x2, x3, x4) → Cond_607_1_solve_InvokeMethod1(x1, x3, x4)
776_0_solve_Return(x1) → 776_0_solve_Return
Cond_607_1_solve_InvokeMethod(x1, x2, x3, x4) → Cond_607_1_solve_InvokeMethod(x1, x3)
578_0_solve_Return(x1) → 578_0_solve_Return
Cond_536_0_solve_ConstantStackPush(x1, x2, x3, x4) → Cond_536_0_solve_ConstantStackPush(x1, x3, x4)
Filtered duplicate args:
536_0_solve_ConstantStackPush(x1, x2) → 536_0_solve_ConstantStackPush(x2)
Cond_536_0_solve_ConstantStackPush(x1, x2, x3) → Cond_536_0_solve_ConstantStackPush(x1, x3)
Filtered unneeded arguments:
Cond_607_1_solve_InvokeMethod1(x1, x2, x3) → Cond_607_1_solve_InvokeMethod1(x1, x2)
Combined rules. Obtained 3 conditional rules for P and 2 conditional rules for R.
P rules:
536_0_solve_ConstantStackPush(x0) → 607_1_solve_InvokeMethod(536_0_solve_ConstantStackPush(-(x0, 1)), x0, -(x0, 1)) | >(x0, 1)
607_1_solve_InvokeMethod(578_0_solve_Return, x0, 1) → 716_1_solve_InvokeMethod(536_0_solve_ConstantStackPush(-(x0, 1)), -(x0, 1)) | >(x0, 0)
607_1_solve_InvokeMethod(776_0_solve_Return, x0, x1) → 716_1_solve_InvokeMethod(536_0_solve_ConstantStackPush(-(x0, 1)), -(x0, 1)) | >(x0, 0)
R rules:
716_1_solve_InvokeMethod(578_0_solve_Return, 1) → 776_0_solve_Return
716_1_solve_InvokeMethod(776_0_solve_Return, x0) → 776_0_solve_Return
Performed bisimulation on rules. Used the following equivalence classes: {[578_0_solve_Return, 776_0_solve_Return]=578_0_solve_Return}
Finished conversion. Obtained 7 rules for P and 2 rules for R. System has predefined symbols.
P rules:
536_0_SOLVE_CONSTANTSTACKPUSH(x0) → COND_536_0_SOLVE_CONSTANTSTACKPUSH(>(x0, 1), x0)
COND_536_0_SOLVE_CONSTANTSTACKPUSH(TRUE, x0) → 607_1_SOLVE_INVOKEMETHOD(536_0_solve_ConstantStackPush(-(x0, 1)), x0, -(x0, 1))
COND_536_0_SOLVE_CONSTANTSTACKPUSH(TRUE, x0) → 536_0_SOLVE_CONSTANTSTACKPUSH(-(x0, 1))
607_1_SOLVE_INVOKEMETHOD(578_0_solve_Return, x0, 1) → COND_607_1_SOLVE_INVOKEMETHOD(>(x0, 0), 578_0_solve_Return, x0, 1)
COND_607_1_SOLVE_INVOKEMETHOD(TRUE, 578_0_solve_Return, x0, 1) → 536_0_SOLVE_CONSTANTSTACKPUSH(-(x0, 1))
607_1_SOLVE_INVOKEMETHOD(578_0_solve_Return, x0, x1) → COND_607_1_SOLVE_INVOKEMETHOD1(>(x0, 0), 578_0_solve_Return, x0, x1)
COND_607_1_SOLVE_INVOKEMETHOD1(TRUE, 578_0_solve_Return, x0, x1) → 536_0_SOLVE_CONSTANTSTACKPUSH(-(x0, 1))
R rules:
716_1_solve_InvokeMethod(578_0_solve_Return, 1) → 578_0_solve_Return
716_1_solve_InvokeMethod(578_0_solve_Return, x0) → 578_0_solve_Return
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if (x0[0] > 1 ∧x0[0] →* x0[1])
(0) -> (2), if (x0[0] > 1 ∧x0[0] →* x0[2])
(1) -> (3), if (536_0_solve_ConstantStackPush(x0[1] - 1) →* 578_0_solve_Return∧x0[1] →* x0[3]∧x0[1] - 1 →* 1)
(1) -> (5), if (536_0_solve_ConstantStackPush(x0[1] - 1) →* 578_0_solve_Return∧x0[1] →* x0[5]∧x0[1] - 1 →* x1[5])
(2) -> (0), if (x0[2] - 1 →* x0[0])
(3) -> (4), if (x0[3] > 0 ∧x0[3] →* x0[4])
(4) -> (0), if (x0[4] - 1 →* x0[0])
(5) -> (6), if (x0[5] > 0 ∧x0[5] →* x0[6]∧x1[5] →* x1[6])
(6) -> (0), if (x0[6] - 1 →* x0[0])
(1) (>(x0[0], 1)=TRUE∧x0[0]=x0[1] ⇒ 536_0_SOLVE_CONSTANTSTACKPUSH(x0[0])≥NonInfC∧536_0_SOLVE_CONSTANTSTACKPUSH(x0[0])≥COND_536_0_SOLVE_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])∧(UIncreasing(COND_536_0_SOLVE_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])), ≥))
(2) (>(x0[0], 1)=TRUE ⇒ 536_0_SOLVE_CONSTANTSTACKPUSH(x0[0])≥NonInfC∧536_0_SOLVE_CONSTANTSTACKPUSH(x0[0])≥COND_536_0_SOLVE_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])∧(UIncreasing(COND_536_0_SOLVE_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])), ≥))
(3) (x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_536_0_SOLVE_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])), ≥)∧[bni_16 + (-1)Bound*bni_16] + [(2)bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(4) (x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_536_0_SOLVE_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])), ≥)∧[bni_16 + (-1)Bound*bni_16] + [(2)bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(5) (x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_536_0_SOLVE_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])), ≥)∧[bni_16 + (-1)Bound*bni_16] + [(2)bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(6) (x0[0] ≥ 0 ⇒ (UIncreasing(COND_536_0_SOLVE_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])), ≥)∧[(5)bni_16 + (-1)Bound*bni_16] + [(2)bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(7) (>(x0[0], 1)=TRUE∧x0[0]=x0[2] ⇒ 536_0_SOLVE_CONSTANTSTACKPUSH(x0[0])≥NonInfC∧536_0_SOLVE_CONSTANTSTACKPUSH(x0[0])≥COND_536_0_SOLVE_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])∧(UIncreasing(COND_536_0_SOLVE_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])), ≥))
(8) (>(x0[0], 1)=TRUE ⇒ 536_0_SOLVE_CONSTANTSTACKPUSH(x0[0])≥NonInfC∧536_0_SOLVE_CONSTANTSTACKPUSH(x0[0])≥COND_536_0_SOLVE_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])∧(UIncreasing(COND_536_0_SOLVE_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])), ≥))
(9) (x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_536_0_SOLVE_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])), ≥)∧[bni_16 + (-1)Bound*bni_16] + [(2)bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(10) (x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_536_0_SOLVE_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])), ≥)∧[bni_16 + (-1)Bound*bni_16] + [(2)bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(11) (x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_536_0_SOLVE_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])), ≥)∧[bni_16 + (-1)Bound*bni_16] + [(2)bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(12) (x0[0] ≥ 0 ⇒ (UIncreasing(COND_536_0_SOLVE_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])), ≥)∧[(5)bni_16 + (-1)Bound*bni_16] + [(2)bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(13) (COND_536_0_SOLVE_CONSTANTSTACKPUSH(TRUE, x0[1])≥NonInfC∧COND_536_0_SOLVE_CONSTANTSTACKPUSH(TRUE, x0[1])≥607_1_SOLVE_INVOKEMETHOD(536_0_solve_ConstantStackPush(-(x0[1], 1)), x0[1], -(x0[1], 1))∧(UIncreasing(607_1_SOLVE_INVOKEMETHOD(536_0_solve_ConstantStackPush(-(x0[1], 1)), x0[1], -(x0[1], 1))), ≥))
(14) ((UIncreasing(607_1_SOLVE_INVOKEMETHOD(536_0_solve_ConstantStackPush(-(x0[1], 1)), x0[1], -(x0[1], 1))), ≥)∧[bni_18] = 0∧[(-1)bso_19] ≥ 0)
(15) ((UIncreasing(607_1_SOLVE_INVOKEMETHOD(536_0_solve_ConstantStackPush(-(x0[1], 1)), x0[1], -(x0[1], 1))), ≥)∧[bni_18] = 0∧[(-1)bso_19] ≥ 0)
(16) ((UIncreasing(607_1_SOLVE_INVOKEMETHOD(536_0_solve_ConstantStackPush(-(x0[1], 1)), x0[1], -(x0[1], 1))), ≥)∧[bni_18] = 0∧[(-1)bso_19] ≥ 0)
(17) ((UIncreasing(607_1_SOLVE_INVOKEMETHOD(536_0_solve_ConstantStackPush(-(x0[1], 1)), x0[1], -(x0[1], 1))), ≥)∧[bni_18] = 0∧0 = 0∧[(-1)bso_19] ≥ 0)
(18) (COND_536_0_SOLVE_CONSTANTSTACKPUSH(TRUE, x0[2])≥NonInfC∧COND_536_0_SOLVE_CONSTANTSTACKPUSH(TRUE, x0[2])≥536_0_SOLVE_CONSTANTSTACKPUSH(-(x0[2], 1))∧(UIncreasing(536_0_SOLVE_CONSTANTSTACKPUSH(-(x0[2], 1))), ≥))
(19) ((UIncreasing(536_0_SOLVE_CONSTANTSTACKPUSH(-(x0[2], 1))), ≥)∧[bni_20] = 0∧[2 + (-1)bso_21] ≥ 0)
(20) ((UIncreasing(536_0_SOLVE_CONSTANTSTACKPUSH(-(x0[2], 1))), ≥)∧[bni_20] = 0∧[2 + (-1)bso_21] ≥ 0)
(21) ((UIncreasing(536_0_SOLVE_CONSTANTSTACKPUSH(-(x0[2], 1))), ≥)∧[bni_20] = 0∧[2 + (-1)bso_21] ≥ 0)
(22) ((UIncreasing(536_0_SOLVE_CONSTANTSTACKPUSH(-(x0[2], 1))), ≥)∧[bni_20] = 0∧0 = 0∧[2 + (-1)bso_21] ≥ 0)
(23) (>(x0[3], 0)=TRUE∧x0[3]=x0[4] ⇒ 607_1_SOLVE_INVOKEMETHOD(578_0_solve_Return, x0[3], 1)≥NonInfC∧607_1_SOLVE_INVOKEMETHOD(578_0_solve_Return, x0[3], 1)≥COND_607_1_SOLVE_INVOKEMETHOD(>(x0[3], 0), 578_0_solve_Return, x0[3], 1)∧(UIncreasing(COND_607_1_SOLVE_INVOKEMETHOD(>(x0[3], 0), 578_0_solve_Return, x0[3], 1)), ≥))
(24) (>(x0[3], 0)=TRUE ⇒ 607_1_SOLVE_INVOKEMETHOD(578_0_solve_Return, x0[3], 1)≥NonInfC∧607_1_SOLVE_INVOKEMETHOD(578_0_solve_Return, x0[3], 1)≥COND_607_1_SOLVE_INVOKEMETHOD(>(x0[3], 0), 578_0_solve_Return, x0[3], 1)∧(UIncreasing(COND_607_1_SOLVE_INVOKEMETHOD(>(x0[3], 0), 578_0_solve_Return, x0[3], 1)), ≥))
(25) (x0[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_607_1_SOLVE_INVOKEMETHOD(>(x0[3], 0), 578_0_solve_Return, x0[3], 1)), ≥)∧[bni_22 + (-1)Bound*bni_22] + [(2)bni_22]x0[3] ≥ 0∧[(-1)bso_23] ≥ 0)
(26) (x0[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_607_1_SOLVE_INVOKEMETHOD(>(x0[3], 0), 578_0_solve_Return, x0[3], 1)), ≥)∧[bni_22 + (-1)Bound*bni_22] + [(2)bni_22]x0[3] ≥ 0∧[(-1)bso_23] ≥ 0)
(27) (x0[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_607_1_SOLVE_INVOKEMETHOD(>(x0[3], 0), 578_0_solve_Return, x0[3], 1)), ≥)∧[bni_22 + (-1)Bound*bni_22] + [(2)bni_22]x0[3] ≥ 0∧[(-1)bso_23] ≥ 0)
(28) (x0[3] ≥ 0 ⇒ (UIncreasing(COND_607_1_SOLVE_INVOKEMETHOD(>(x0[3], 0), 578_0_solve_Return, x0[3], 1)), ≥)∧[(3)bni_22 + (-1)Bound*bni_22] + [(2)bni_22]x0[3] ≥ 0∧[(-1)bso_23] ≥ 0)
(29) (COND_607_1_SOLVE_INVOKEMETHOD(TRUE, 578_0_solve_Return, x0[4], 1)≥NonInfC∧COND_607_1_SOLVE_INVOKEMETHOD(TRUE, 578_0_solve_Return, x0[4], 1)≥536_0_SOLVE_CONSTANTSTACKPUSH(-(x0[4], 1))∧(UIncreasing(536_0_SOLVE_CONSTANTSTACKPUSH(-(x0[4], 1))), ≥))
(30) ((UIncreasing(536_0_SOLVE_CONSTANTSTACKPUSH(-(x0[4], 1))), ≥)∧[bni_24] = 0∧[2 + (-1)bso_25] ≥ 0)
(31) ((UIncreasing(536_0_SOLVE_CONSTANTSTACKPUSH(-(x0[4], 1))), ≥)∧[bni_24] = 0∧[2 + (-1)bso_25] ≥ 0)
(32) ((UIncreasing(536_0_SOLVE_CONSTANTSTACKPUSH(-(x0[4], 1))), ≥)∧[bni_24] = 0∧[2 + (-1)bso_25] ≥ 0)
(33) ((UIncreasing(536_0_SOLVE_CONSTANTSTACKPUSH(-(x0[4], 1))), ≥)∧[bni_24] = 0∧0 = 0∧[2 + (-1)bso_25] ≥ 0)
(34) (>(x0[5], 0)=TRUE∧x0[5]=x0[6]∧x1[5]=x1[6] ⇒ 607_1_SOLVE_INVOKEMETHOD(578_0_solve_Return, x0[5], x1[5])≥NonInfC∧607_1_SOLVE_INVOKEMETHOD(578_0_solve_Return, x0[5], x1[5])≥COND_607_1_SOLVE_INVOKEMETHOD1(>(x0[5], 0), 578_0_solve_Return, x0[5], x1[5])∧(UIncreasing(COND_607_1_SOLVE_INVOKEMETHOD1(>(x0[5], 0), 578_0_solve_Return, x0[5], x1[5])), ≥))
(35) (>(x0[5], 0)=TRUE ⇒ 607_1_SOLVE_INVOKEMETHOD(578_0_solve_Return, x0[5], x1[5])≥NonInfC∧607_1_SOLVE_INVOKEMETHOD(578_0_solve_Return, x0[5], x1[5])≥COND_607_1_SOLVE_INVOKEMETHOD1(>(x0[5], 0), 578_0_solve_Return, x0[5], x1[5])∧(UIncreasing(COND_607_1_SOLVE_INVOKEMETHOD1(>(x0[5], 0), 578_0_solve_Return, x0[5], x1[5])), ≥))
(36) (x0[5] + [-1] ≥ 0 ⇒ (UIncreasing(COND_607_1_SOLVE_INVOKEMETHOD1(>(x0[5], 0), 578_0_solve_Return, x0[5], x1[5])), ≥)∧[bni_26 + (-1)Bound*bni_26] + [(2)bni_26]x0[5] ≥ 0∧[1 + (-1)bso_27] ≥ 0)
(37) (x0[5] + [-1] ≥ 0 ⇒ (UIncreasing(COND_607_1_SOLVE_INVOKEMETHOD1(>(x0[5], 0), 578_0_solve_Return, x0[5], x1[5])), ≥)∧[bni_26 + (-1)Bound*bni_26] + [(2)bni_26]x0[5] ≥ 0∧[1 + (-1)bso_27] ≥ 0)
(38) (x0[5] + [-1] ≥ 0 ⇒ (UIncreasing(COND_607_1_SOLVE_INVOKEMETHOD1(>(x0[5], 0), 578_0_solve_Return, x0[5], x1[5])), ≥)∧[bni_26 + (-1)Bound*bni_26] + [(2)bni_26]x0[5] ≥ 0∧[1 + (-1)bso_27] ≥ 0)
(39) (x0[5] + [-1] ≥ 0 ⇒ (UIncreasing(COND_607_1_SOLVE_INVOKEMETHOD1(>(x0[5], 0), 578_0_solve_Return, x0[5], x1[5])), ≥)∧0 = 0∧[bni_26 + (-1)Bound*bni_26] + [(2)bni_26]x0[5] ≥ 0∧0 = 0∧[1 + (-1)bso_27] ≥ 0)
(40) (x0[5] ≥ 0 ⇒ (UIncreasing(COND_607_1_SOLVE_INVOKEMETHOD1(>(x0[5], 0), 578_0_solve_Return, x0[5], x1[5])), ≥)∧0 = 0∧[(3)bni_26 + (-1)Bound*bni_26] + [(2)bni_26]x0[5] ≥ 0∧0 = 0∧[1 + (-1)bso_27] ≥ 0)
(41) (COND_607_1_SOLVE_INVOKEMETHOD1(TRUE, 578_0_solve_Return, x0[6], x1[6])≥NonInfC∧COND_607_1_SOLVE_INVOKEMETHOD1(TRUE, 578_0_solve_Return, x0[6], x1[6])≥536_0_SOLVE_CONSTANTSTACKPUSH(-(x0[6], 1))∧(UIncreasing(536_0_SOLVE_CONSTANTSTACKPUSH(-(x0[6], 1))), ≥))
(42) ((UIncreasing(536_0_SOLVE_CONSTANTSTACKPUSH(-(x0[6], 1))), ≥)∧[bni_28] = 0∧[1 + (-1)bso_29] ≥ 0)
(43) ((UIncreasing(536_0_SOLVE_CONSTANTSTACKPUSH(-(x0[6], 1))), ≥)∧[bni_28] = 0∧[1 + (-1)bso_29] ≥ 0)
(44) ((UIncreasing(536_0_SOLVE_CONSTANTSTACKPUSH(-(x0[6], 1))), ≥)∧[bni_28] = 0∧[1 + (-1)bso_29] ≥ 0)
(45) ((UIncreasing(536_0_SOLVE_CONSTANTSTACKPUSH(-(x0[6], 1))), ≥)∧[bni_28] = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_29] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(716_1_solve_InvokeMethod(x1, x2)) = [-1]
POL(578_0_solve_Return) = 0
POL(1) = [1]
POL(536_0_SOLVE_CONSTANTSTACKPUSH(x1)) = [1] + [2]x1
POL(COND_536_0_SOLVE_CONSTANTSTACKPUSH(x1, x2)) = [1] + [2]x2
POL(>(x1, x2)) = [-1]
POL(607_1_SOLVE_INVOKEMETHOD(x1, x2, x3)) = [1] + [2]x2
POL(536_0_solve_ConstantStackPush(x1)) = x1
POL(-(x1, x2)) = x1 + [-1]x2
POL(COND_607_1_SOLVE_INVOKEMETHOD(x1, x2, x3, x4)) = [1] + [2]x3
POL(0) = 0
POL(COND_607_1_SOLVE_INVOKEMETHOD1(x1, x2, x3, x4)) = [2]x3
COND_536_0_SOLVE_CONSTANTSTACKPUSH(TRUE, x0[2]) → 536_0_SOLVE_CONSTANTSTACKPUSH(-(x0[2], 1))
COND_607_1_SOLVE_INVOKEMETHOD(TRUE, 578_0_solve_Return, x0[4], 1) → 536_0_SOLVE_CONSTANTSTACKPUSH(-(x0[4], 1))
607_1_SOLVE_INVOKEMETHOD(578_0_solve_Return, x0[5], x1[5]) → COND_607_1_SOLVE_INVOKEMETHOD1(>(x0[5], 0), 578_0_solve_Return, x0[5], x1[5])
COND_607_1_SOLVE_INVOKEMETHOD1(TRUE, 578_0_solve_Return, x0[6], x1[6]) → 536_0_SOLVE_CONSTANTSTACKPUSH(-(x0[6], 1))
536_0_SOLVE_CONSTANTSTACKPUSH(x0[0]) → COND_536_0_SOLVE_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])
607_1_SOLVE_INVOKEMETHOD(578_0_solve_Return, x0[3], 1) → COND_607_1_SOLVE_INVOKEMETHOD(>(x0[3], 0), 578_0_solve_Return, x0[3], 1)
607_1_SOLVE_INVOKEMETHOD(578_0_solve_Return, x0[5], x1[5]) → COND_607_1_SOLVE_INVOKEMETHOD1(>(x0[5], 0), 578_0_solve_Return, x0[5], x1[5])
536_0_SOLVE_CONSTANTSTACKPUSH(x0[0]) → COND_536_0_SOLVE_CONSTANTSTACKPUSH(>(x0[0], 1), x0[0])
COND_536_0_SOLVE_CONSTANTSTACKPUSH(TRUE, x0[1]) → 607_1_SOLVE_INVOKEMETHOD(536_0_solve_ConstantStackPush(-(x0[1], 1)), x0[1], -(x0[1], 1))
607_1_SOLVE_INVOKEMETHOD(578_0_solve_Return, x0[3], 1) → COND_607_1_SOLVE_INVOKEMETHOD(>(x0[3], 0), 578_0_solve_Return, x0[3], 1)
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if (x0[0] > 1 ∧x0[0] →* x0[1])
(1) -> (3), if (536_0_solve_ConstantStackPush(x0[1] - 1) →* 578_0_solve_Return∧x0[1] →* x0[3]∧x0[1] - 1 →* 1)
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer