(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_20 (Apple Inc.) Main-Class: FibSLR
public class FibSLR {

public static int fib(int n){
if (n < 2) return 1;
else return fib(n-1) + fib(n-2);
}

public static int doSum(List x){
if (x==null) return 1;
else return fib(x.head) + doSum(x.tail);
}

public static void main(String [] args) {
Random.args = args;
List l = List.mk(Random.random()*Random.random());
//System.out.println(doSum(l));
}
}



public class List {
public int head;
public List tail;

public List(int head, List tail) {
this.head = head;
this.tail = tail;
}

public List getTail() {
return tail;
}

public static List mk(int len) {
List result = null;

while (len-- > 0)
result = new List(Random.random(), result);

return result;
}
}

public class Random {
static String[] args;
static int index = 0;

public static int random() {
if (index >= args.length)
return 0;

String string = args[index];
index++;
return string.length();
}
}


(1) JBCToGraph (SOUND transformation)

Constructed TerminationGraph.

(2) Obligation:

Termination Graph based on JBC Program:
FibSLR.main([Ljava/lang/String;)V: Graph of 183 nodes with 0 SCCs.

List.mk(I)LList;: Graph of 119 nodes with 1 SCC.


(3) TerminationGraphToSCCProof (SOUND transformation)

Splitted TerminationGraph to 1 SCCs.

(4) Obligation:

SCC of termination graph based on JBC Program.
SCC contains nodes from the following methods: List.mk(I)LList;
SCC calls the following helper methods:
Performed SCC analyses: UsedFieldsAnalysis

(5) SCCToIDPv1Proof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Log:

Generated 61 rules for P and 0 rules for R.


P rules:
1290_0_mk_Inc(EOS(STATIC_1290(i230)), i231, i231) → 1292_0_mk_LE(EOS(STATIC_1292(i230)), +(i231, -1), i231)
1292_0_mk_LE(EOS(STATIC_1292(i230)), i234, i238) → 1295_0_mk_LE(EOS(STATIC_1295(i230)), i234, i238)
1295_0_mk_LE(EOS(STATIC_1295(i230)), i234, i238) → 1298_0_mk_New(EOS(STATIC_1298(i230)), i234) | >(i238, 0)
1298_0_mk_New(EOS(STATIC_1298(i230)), i234) → 1301_0_mk_Duplicate(EOS(STATIC_1301(i230)), i234)
1301_0_mk_Duplicate(EOS(STATIC_1301(i230)), i234) → 1304_0_mk_InvokeMethod(EOS(STATIC_1304(i230)), i234)
1304_0_mk_InvokeMethod(EOS(STATIC_1304(i230)), i234) → 1312_0_random_FieldAccess(EOS(STATIC_1312(i230)), i234)
1312_0_random_FieldAccess(EOS(STATIC_1312(i230)), i234) → 1318_0_random_FieldAccess(EOS(STATIC_1318(i230)), i234, i230)
1318_0_random_FieldAccess(EOS(STATIC_1318(i230)), i234, i230) → 1320_0_random_ArrayLength(EOS(STATIC_1320(i230)), i234, i230, java.lang.Object(ARRAY(i58)))
1320_0_random_ArrayLength(EOS(STATIC_1320(i230)), i234, i230, java.lang.Object(ARRAY(i58))) → 1322_0_random_LT(EOS(STATIC_1322(i230)), i234, i230, i58) | >=(i58, 0)
1322_0_random_LT(EOS(STATIC_1322(i230)), i234, i230, i58) → 1323_0_random_LT(EOS(STATIC_1323(i230)), i234, i230, i58)
1322_0_random_LT(EOS(STATIC_1322(i230)), i234, i230, i58) → 1324_0_random_LT(EOS(STATIC_1324(i230)), i234, i230, i58)
1323_0_random_LT(EOS(STATIC_1323(i230)), i234, i230, i58) → 1326_0_random_FieldAccess(EOS(STATIC_1326(i230)), i234) | <(i230, i58)
1326_0_random_FieldAccess(EOS(STATIC_1326(i230)), i234) → 1329_0_random_FieldAccess(EOS(STATIC_1329(i230)), i234, java.lang.Object(ARRAY(i58)))
1329_0_random_FieldAccess(EOS(STATIC_1329(i230)), i234, java.lang.Object(ARRAY(i58))) → 1332_0_random_ArrayAccess(EOS(STATIC_1332(i230)), i234, java.lang.Object(ARRAY(i58)), i230)
1332_0_random_ArrayAccess(EOS(STATIC_1332(i230)), i234, java.lang.Object(ARRAY(i58)), i230) → 1336_0_random_ArrayAccess(EOS(STATIC_1336(i230)), i234, java.lang.Object(ARRAY(i58)), i230)
1336_0_random_ArrayAccess(EOS(STATIC_1336(i230)), i234, java.lang.Object(ARRAY(i58)), i230) → 1340_0_random_Store(EOS(STATIC_1340(i230)), i234, o272)
1340_0_random_Store(EOS(STATIC_1340(i230)), i234, o272) → 1344_0_random_FieldAccess(EOS(STATIC_1344(i230)), i234, o272)
1344_0_random_FieldAccess(EOS(STATIC_1344(i230)), i234, o272) → 1346_0_random_ConstantStackPush(EOS(STATIC_1346(i230)), i234, o272, i230)
1346_0_random_ConstantStackPush(EOS(STATIC_1346(i230)), i234, o272, i230) → 1351_0_random_IntArithmetic(EOS(STATIC_1351(i230)), i234, o272, i230, 1)
1351_0_random_IntArithmetic(EOS(STATIC_1351(i230)), i234, o272, i230, matching1) → 1356_0_random_FieldAccess(EOS(STATIC_1356(i230)), i234, o272, +(i230, 1)) | &&(>=(i230, 0), =(matching1, 1))
1356_0_random_FieldAccess(EOS(STATIC_1356(i230)), i234, o272, i250) → 1359_0_random_Load(EOS(STATIC_1359(i250)), i234, o272)
1359_0_random_Load(EOS(STATIC_1359(i250)), i234, o272) → 1364_0_random_InvokeMethod(EOS(STATIC_1364(i250)), i234, o272)
1364_0_random_InvokeMethod(EOS(STATIC_1364(i250)), i234, java.lang.Object(o276sub)) → 1369_0_random_InvokeMethod(EOS(STATIC_1369(i250)), i234, java.lang.Object(o276sub))
1369_0_random_InvokeMethod(EOS(STATIC_1369(i250)), i234, java.lang.Object(o276sub)) → 1374_0_length_Load(EOS(STATIC_1374(i250)), i234, java.lang.Object(o276sub), java.lang.Object(o276sub))
1374_0_length_Load(EOS(STATIC_1374(i250)), i234, java.lang.Object(o276sub), java.lang.Object(o276sub)) → 1386_0_length_FieldAccess(EOS(STATIC_1386(i250)), i234, java.lang.Object(o276sub), java.lang.Object(o276sub))
1386_0_length_FieldAccess(EOS(STATIC_1386(i250)), i234, java.lang.Object(java.lang.String(o280sub, i260)), java.lang.Object(java.lang.String(o280sub, i260))) → 1389_0_length_FieldAccess(EOS(STATIC_1389(i250)), i234, java.lang.Object(java.lang.String(o280sub, i260)), java.lang.Object(java.lang.String(o280sub, i260))) | &&(>=(i260, 0), >=(i261, 0))
1389_0_length_FieldAccess(EOS(STATIC_1389(i250)), i234, java.lang.Object(java.lang.String(o280sub, i260)), java.lang.Object(java.lang.String(o280sub, i260))) → 1396_0_length_Return(EOS(STATIC_1396(i250)), i234, java.lang.Object(java.lang.String(o280sub, i260)))
1396_0_length_Return(EOS(STATIC_1396(i250)), i234, java.lang.Object(java.lang.String(o280sub, i260))) → 1403_0_random_Return(EOS(STATIC_1403(i250)), i234)
1403_0_random_Return(EOS(STATIC_1403(i250)), i234) → 1405_0_mk_Load(EOS(STATIC_1405(i250)), i234)
1405_0_mk_Load(EOS(STATIC_1405(i250)), i234) → 1411_0_mk_InvokeMethod(EOS(STATIC_1411(i250)), i234)
1411_0_mk_InvokeMethod(EOS(STATIC_1411(i250)), i234) → 1416_0_<init>_Load(EOS(STATIC_1416(i250)), i234)
1416_0_<init>_Load(EOS(STATIC_1416(i250)), i234) → 1423_0_<init>_InvokeMethod(EOS(STATIC_1423(i250)), i234)
1423_0_<init>_InvokeMethod(EOS(STATIC_1423(i250)), i234) → 1433_0_<init>_Load(EOS(STATIC_1433(i250)), i234)
1433_0_<init>_Load(EOS(STATIC_1433(i250)), i234) → 1436_0_<init>_Load(EOS(STATIC_1436(i250)), i234)
1436_0_<init>_Load(EOS(STATIC_1436(i250)), i234) → 1442_0_<init>_FieldAccess(EOS(STATIC_1442(i250)), i234)
1442_0_<init>_FieldAccess(EOS(STATIC_1442(i250)), i234) → 1448_0_<init>_Load(EOS(STATIC_1448(i250)), i234)
1448_0_<init>_Load(EOS(STATIC_1448(i250)), i234) → 1454_0_<init>_Load(EOS(STATIC_1454(i250)), i234)
1454_0_<init>_Load(EOS(STATIC_1454(i250)), i234) → 1460_0_<init>_FieldAccess(EOS(STATIC_1460(i250)), i234)
1460_0_<init>_FieldAccess(EOS(STATIC_1460(i250)), i234) → 1467_0_<init>_Return(EOS(STATIC_1467(i250)), i234)
1467_0_<init>_Return(EOS(STATIC_1467(i250)), i234) → 1473_0_mk_Store(EOS(STATIC_1473(i250)), i234)
1473_0_mk_Store(EOS(STATIC_1473(i250)), i234) → 1479_0_mk_JMP(EOS(STATIC_1479(i250)), i234)
1479_0_mk_JMP(EOS(STATIC_1479(i250)), i234) → 1486_0_mk_Load(EOS(STATIC_1486(i250)), i234)
1486_0_mk_Load(EOS(STATIC_1486(i250)), i234) → 1287_0_mk_Load(EOS(STATIC_1287(i250)), i234)
1287_0_mk_Load(EOS(STATIC_1287(i230)), i231) → 1290_0_mk_Inc(EOS(STATIC_1290(i230)), i231, i231)
1324_0_random_LT(EOS(STATIC_1324(i230)), i234, i230, i58) → 1328_0_random_ConstantStackPush(EOS(STATIC_1328(i230)), i234) | >=(i230, i58)
1328_0_random_ConstantStackPush(EOS(STATIC_1328(i230)), i234) → 1331_0_random_Return(EOS(STATIC_1331(i230)), i234)
1331_0_random_Return(EOS(STATIC_1331(i230)), i234) → 1334_0_mk_Load(EOS(STATIC_1334(i230)), i234)
1334_0_mk_Load(EOS(STATIC_1334(i230)), i234) → 1338_0_mk_InvokeMethod(EOS(STATIC_1338(i230)), i234)
1338_0_mk_InvokeMethod(EOS(STATIC_1338(i230)), i234) → 1343_0_<init>_Load(EOS(STATIC_1343(i230)), i234)
1343_0_<init>_Load(EOS(STATIC_1343(i230)), i234) → 1349_0_<init>_InvokeMethod(EOS(STATIC_1349(i230)), i234)
1349_0_<init>_InvokeMethod(EOS(STATIC_1349(i230)), i234) → 1354_0_<init>_Load(EOS(STATIC_1354(i230)), i234)
1354_0_<init>_Load(EOS(STATIC_1354(i230)), i234) → 1358_0_<init>_Load(EOS(STATIC_1358(i230)), i234)
1358_0_<init>_Load(EOS(STATIC_1358(i230)), i234) → 1362_0_<init>_FieldAccess(EOS(STATIC_1362(i230)), i234)
1362_0_<init>_FieldAccess(EOS(STATIC_1362(i230)), i234) → 1367_0_<init>_Load(EOS(STATIC_1367(i230)), i234)
1367_0_<init>_Load(EOS(STATIC_1367(i230)), i234) → 1372_0_<init>_Load(EOS(STATIC_1372(i230)), i234)
1372_0_<init>_Load(EOS(STATIC_1372(i230)), i234) → 1378_0_<init>_FieldAccess(EOS(STATIC_1378(i230)), i234)
1378_0_<init>_FieldAccess(EOS(STATIC_1378(i230)), i234) → 1384_0_<init>_Return(EOS(STATIC_1384(i230)), i234)
1384_0_<init>_Return(EOS(STATIC_1384(i230)), i234) → 1388_0_mk_Store(EOS(STATIC_1388(i230)), i234)
1388_0_mk_Store(EOS(STATIC_1388(i230)), i234) → 1394_0_mk_JMP(EOS(STATIC_1394(i230)), i234)
1394_0_mk_JMP(EOS(STATIC_1394(i230)), i234) → 1401_0_mk_Load(EOS(STATIC_1401(i230)), i234)
1401_0_mk_Load(EOS(STATIC_1401(i230)), i234) → 1287_0_mk_Load(EOS(STATIC_1287(i230)), i234)
R rules:

Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.


P rules:
1290_0_mk_Inc(EOS(STATIC_1290(x0)), x1, x1) → 1290_0_mk_Inc(EOS(STATIC_1290(+(x0, 1))), +(x1, -1), +(x1, -1)) | &&(>(x1, 0), >(+(x0, 1), 0))
1290_0_mk_Inc(EOS(STATIC_1290(x0)), x1, x1) → 1290_0_mk_Inc(EOS(STATIC_1290(x0)), +(x1, -1), +(x1, -1)) | >(x1, 0)
R rules:

Filtered duplicate args:



1290_0_mk_Inc(x1, x2, x3) → 1290_0_mk_Inc(x1, x3)
Cond_1290_0_mk_Inc(x1, x2, x3, x4) → Cond_1290_0_mk_Inc(x1, x2, x4)
Cond_1290_0_mk_Inc1(x1, x2, x3, x4) → Cond_1290_0_mk_Inc1(x1, x2, x4)

Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.


P rules:
1290_0_mk_Inc(EOS(STATIC_1290(x0)), x1) → 1290_0_mk_Inc(EOS(STATIC_1290(+(x0, 1))), +(x1, -1)) | &&(>(x1, 0), >(x0, -1))
1290_0_mk_Inc(EOS(STATIC_1290(x0)), x1) → 1290_0_mk_Inc(EOS(STATIC_1290(x0)), +(x1, -1)) | >(x1, 0)
R rules:

Finished conversion. Obtained 4 rules for P and 0 rules for R. System has predefined symbols.


P rules:
1290_0_MK_INC(EOS(STATIC_1290(x0)), x1) → COND_1290_0_MK_INC(&&(>(x1, 0), >(x0, -1)), EOS(STATIC_1290(x0)), x1)
COND_1290_0_MK_INC(TRUE, EOS(STATIC_1290(x0)), x1) → 1290_0_MK_INC(EOS(STATIC_1290(+(x0, 1))), +(x1, -1))
1290_0_MK_INC(EOS(STATIC_1290(x0)), x1) → COND_1290_0_MK_INC1(>(x1, 0), EOS(STATIC_1290(x0)), x1)
COND_1290_0_MK_INC1(TRUE, EOS(STATIC_1290(x0)), x1) → 1290_0_MK_INC(EOS(STATIC_1290(x0)), +(x1, -1))
R rules:

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 1290_0_MK_INC(EOS(STATIC_1290(x0[0])), x1[0]) → COND_1290_0_MK_INC(x1[0] > 0 && x0[0] > -1, EOS(STATIC_1290(x0[0])), x1[0])
(1): COND_1290_0_MK_INC(TRUE, EOS(STATIC_1290(x0[1])), x1[1]) → 1290_0_MK_INC(EOS(STATIC_1290(x0[1] + 1)), x1[1] + -1)
(2): 1290_0_MK_INC(EOS(STATIC_1290(x0[2])), x1[2]) → COND_1290_0_MK_INC1(x1[2] > 0, EOS(STATIC_1290(x0[2])), x1[2])
(3): COND_1290_0_MK_INC1(TRUE, EOS(STATIC_1290(x0[3])), x1[3]) → 1290_0_MK_INC(EOS(STATIC_1290(x0[3])), x1[3] + -1)

(0) -> (1), if (x1[0] > 0 && x0[0] > -1EOS(STATIC_1290(x0[0])) →* EOS(STATIC_1290(x0[1]))∧x1[0]* x1[1])


(1) -> (0), if (EOS(STATIC_1290(x0[1] + 1)) →* EOS(STATIC_1290(x0[0]))∧x1[1] + -1* x1[0])


(1) -> (2), if (EOS(STATIC_1290(x0[1] + 1)) →* EOS(STATIC_1290(x0[2]))∧x1[1] + -1* x1[2])


(2) -> (3), if (x1[2] > 0EOS(STATIC_1290(x0[2])) →* EOS(STATIC_1290(x0[3]))∧x1[2]* x1[3])


(3) -> (0), if (EOS(STATIC_1290(x0[3])) →* EOS(STATIC_1290(x0[0]))∧x1[3] + -1* x1[0])


(3) -> (2), if (EOS(STATIC_1290(x0[3])) →* EOS(STATIC_1290(x0[2]))∧x1[3] + -1* x1[2])



The set Q is empty.

(7) IDPNonInfProof (SOUND transformation)

Used the following options for this NonInfProof:
IDPGPoloSolver: Range: [(-1,2)] IsNat: false Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpCand1ShapeHeuristic@6706cf24 Constraint Generator: NonInfConstraintGenerator: PathGenerator: MetricPathGenerator: Max Left Steps: 0 Max Right Steps: 0

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 1290_0_MK_INC(EOS(STATIC_1290(x0)), x1) → COND_1290_0_MK_INC(&&(>(x1, 0), >(x0, -1)), EOS(STATIC_1290(x0)), x1) the following chains were created:
  • We consider the chain 1290_0_MK_INC(EOS(STATIC_1290(x0[0])), x1[0]) → COND_1290_0_MK_INC(&&(>(x1[0], 0), >(x0[0], -1)), EOS(STATIC_1290(x0[0])), x1[0]), COND_1290_0_MK_INC(TRUE, EOS(STATIC_1290(x0[1])), x1[1]) → 1290_0_MK_INC(EOS(STATIC_1290(+(x0[1], 1))), +(x1[1], -1)) which results in the following constraint:

    (1)    (&&(>(x1[0], 0), >(x0[0], -1))=TRUEEOS(STATIC_1290(x0[0]))=EOS(STATIC_1290(x0[1]))∧x1[0]=x1[1]1290_0_MK_INC(EOS(STATIC_1290(x0[0])), x1[0])≥NonInfC∧1290_0_MK_INC(EOS(STATIC_1290(x0[0])), x1[0])≥COND_1290_0_MK_INC(&&(>(x1[0], 0), >(x0[0], -1)), EOS(STATIC_1290(x0[0])), x1[0])∧(UIncreasing(COND_1290_0_MK_INC(&&(>(x1[0], 0), >(x0[0], -1)), EOS(STATIC_1290(x0[0])), x1[0])), ≥))



    We simplified constraint (1) using rules (I), (II), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>(x1[0], 0)=TRUE>(x0[0], -1)=TRUE1290_0_MK_INC(EOS(STATIC_1290(x0[0])), x1[0])≥NonInfC∧1290_0_MK_INC(EOS(STATIC_1290(x0[0])), x1[0])≥COND_1290_0_MK_INC(&&(>(x1[0], 0), >(x0[0], -1)), EOS(STATIC_1290(x0[0])), x1[0])∧(UIncreasing(COND_1290_0_MK_INC(&&(>(x1[0], 0), >(x0[0], -1)), EOS(STATIC_1290(x0[0])), x1[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1290_0_MK_INC(&&(>(x1[0], 0), >(x0[0], -1)), EOS(STATIC_1290(x0[0])), x1[0])), ≥)∧[bni_10 + (-1)Bound*bni_10] + [bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1290_0_MK_INC(&&(>(x1[0], 0), >(x0[0], -1)), EOS(STATIC_1290(x0[0])), x1[0])), ≥)∧[bni_10 + (-1)Bound*bni_10] + [bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x1[0] + [-1] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1290_0_MK_INC(&&(>(x1[0], 0), >(x0[0], -1)), EOS(STATIC_1290(x0[0])), x1[0])), ≥)∧[bni_10 + (-1)Bound*bni_10] + [bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1290_0_MK_INC(&&(>(x1[0], 0), >(x0[0], -1)), EOS(STATIC_1290(x0[0])), x1[0])), ≥)∧[(2)bni_10 + (-1)Bound*bni_10] + [bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)







For Pair COND_1290_0_MK_INC(TRUE, EOS(STATIC_1290(x0)), x1) → 1290_0_MK_INC(EOS(STATIC_1290(+(x0, 1))), +(x1, -1)) the following chains were created:
  • We consider the chain COND_1290_0_MK_INC(TRUE, EOS(STATIC_1290(x0[1])), x1[1]) → 1290_0_MK_INC(EOS(STATIC_1290(+(x0[1], 1))), +(x1[1], -1)) which results in the following constraint:

    (7)    (COND_1290_0_MK_INC(TRUE, EOS(STATIC_1290(x0[1])), x1[1])≥NonInfC∧COND_1290_0_MK_INC(TRUE, EOS(STATIC_1290(x0[1])), x1[1])≥1290_0_MK_INC(EOS(STATIC_1290(+(x0[1], 1))), +(x1[1], -1))∧(UIncreasing(1290_0_MK_INC(EOS(STATIC_1290(+(x0[1], 1))), +(x1[1], -1))), ≥))



    We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (8)    ((UIncreasing(1290_0_MK_INC(EOS(STATIC_1290(+(x0[1], 1))), +(x1[1], -1))), ≥)∧[bni_12] = 0∧[1 + (-1)bso_13] ≥ 0)



    We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (9)    ((UIncreasing(1290_0_MK_INC(EOS(STATIC_1290(+(x0[1], 1))), +(x1[1], -1))), ≥)∧[bni_12] = 0∧[1 + (-1)bso_13] ≥ 0)



    We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (10)    ((UIncreasing(1290_0_MK_INC(EOS(STATIC_1290(+(x0[1], 1))), +(x1[1], -1))), ≥)∧[bni_12] = 0∧[1 + (-1)bso_13] ≥ 0)



    We simplified constraint (10) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (11)    ((UIncreasing(1290_0_MK_INC(EOS(STATIC_1290(+(x0[1], 1))), +(x1[1], -1))), ≥)∧[bni_12] = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_13] ≥ 0)







For Pair 1290_0_MK_INC(EOS(STATIC_1290(x0)), x1) → COND_1290_0_MK_INC1(>(x1, 0), EOS(STATIC_1290(x0)), x1) the following chains were created:
  • We consider the chain 1290_0_MK_INC(EOS(STATIC_1290(x0[2])), x1[2]) → COND_1290_0_MK_INC1(>(x1[2], 0), EOS(STATIC_1290(x0[2])), x1[2]), COND_1290_0_MK_INC1(TRUE, EOS(STATIC_1290(x0[3])), x1[3]) → 1290_0_MK_INC(EOS(STATIC_1290(x0[3])), +(x1[3], -1)) which results in the following constraint:

    (12)    (>(x1[2], 0)=TRUEEOS(STATIC_1290(x0[2]))=EOS(STATIC_1290(x0[3]))∧x1[2]=x1[3]1290_0_MK_INC(EOS(STATIC_1290(x0[2])), x1[2])≥NonInfC∧1290_0_MK_INC(EOS(STATIC_1290(x0[2])), x1[2])≥COND_1290_0_MK_INC1(>(x1[2], 0), EOS(STATIC_1290(x0[2])), x1[2])∧(UIncreasing(COND_1290_0_MK_INC1(>(x1[2], 0), EOS(STATIC_1290(x0[2])), x1[2])), ≥))



    We simplified constraint (12) using rules (I), (II), (IV) which results in the following new constraint:

    (13)    (>(x1[2], 0)=TRUE1290_0_MK_INC(EOS(STATIC_1290(x0[2])), x1[2])≥NonInfC∧1290_0_MK_INC(EOS(STATIC_1290(x0[2])), x1[2])≥COND_1290_0_MK_INC1(>(x1[2], 0), EOS(STATIC_1290(x0[2])), x1[2])∧(UIncreasing(COND_1290_0_MK_INC1(>(x1[2], 0), EOS(STATIC_1290(x0[2])), x1[2])), ≥))



    We simplified constraint (13) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (14)    (x1[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1290_0_MK_INC1(>(x1[2], 0), EOS(STATIC_1290(x0[2])), x1[2])), ≥)∧[bni_14 + (-1)Bound*bni_14] + [bni_14]x1[2] ≥ 0∧[(-1)bso_15] ≥ 0)



    We simplified constraint (14) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (15)    (x1[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1290_0_MK_INC1(>(x1[2], 0), EOS(STATIC_1290(x0[2])), x1[2])), ≥)∧[bni_14 + (-1)Bound*bni_14] + [bni_14]x1[2] ≥ 0∧[(-1)bso_15] ≥ 0)



    We simplified constraint (15) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (16)    (x1[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1290_0_MK_INC1(>(x1[2], 0), EOS(STATIC_1290(x0[2])), x1[2])), ≥)∧[bni_14 + (-1)Bound*bni_14] + [bni_14]x1[2] ≥ 0∧[(-1)bso_15] ≥ 0)



    We simplified constraint (16) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (17)    (x1[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1290_0_MK_INC1(>(x1[2], 0), EOS(STATIC_1290(x0[2])), x1[2])), ≥)∧0 = 0∧[bni_14 + (-1)Bound*bni_14] + [bni_14]x1[2] ≥ 0∧0 = 0∧[(-1)bso_15] ≥ 0)



    We simplified constraint (17) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (18)    (x1[2] ≥ 0 ⇒ (UIncreasing(COND_1290_0_MK_INC1(>(x1[2], 0), EOS(STATIC_1290(x0[2])), x1[2])), ≥)∧0 = 0∧[(2)bni_14 + (-1)Bound*bni_14] + [bni_14]x1[2] ≥ 0∧0 = 0∧[(-1)bso_15] ≥ 0)







For Pair COND_1290_0_MK_INC1(TRUE, EOS(STATIC_1290(x0)), x1) → 1290_0_MK_INC(EOS(STATIC_1290(x0)), +(x1, -1)) the following chains were created:
  • We consider the chain COND_1290_0_MK_INC1(TRUE, EOS(STATIC_1290(x0[3])), x1[3]) → 1290_0_MK_INC(EOS(STATIC_1290(x0[3])), +(x1[3], -1)) which results in the following constraint:

    (19)    (COND_1290_0_MK_INC1(TRUE, EOS(STATIC_1290(x0[3])), x1[3])≥NonInfC∧COND_1290_0_MK_INC1(TRUE, EOS(STATIC_1290(x0[3])), x1[3])≥1290_0_MK_INC(EOS(STATIC_1290(x0[3])), +(x1[3], -1))∧(UIncreasing(1290_0_MK_INC(EOS(STATIC_1290(x0[3])), +(x1[3], -1))), ≥))



    We simplified constraint (19) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (20)    ((UIncreasing(1290_0_MK_INC(EOS(STATIC_1290(x0[3])), +(x1[3], -1))), ≥)∧[bni_16] = 0∧[1 + (-1)bso_17] ≥ 0)



    We simplified constraint (20) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (21)    ((UIncreasing(1290_0_MK_INC(EOS(STATIC_1290(x0[3])), +(x1[3], -1))), ≥)∧[bni_16] = 0∧[1 + (-1)bso_17] ≥ 0)



    We simplified constraint (21) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (22)    ((UIncreasing(1290_0_MK_INC(EOS(STATIC_1290(x0[3])), +(x1[3], -1))), ≥)∧[bni_16] = 0∧[1 + (-1)bso_17] ≥ 0)



    We simplified constraint (22) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (23)    ((UIncreasing(1290_0_MK_INC(EOS(STATIC_1290(x0[3])), +(x1[3], -1))), ≥)∧[bni_16] = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_17] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 1290_0_MK_INC(EOS(STATIC_1290(x0)), x1) → COND_1290_0_MK_INC(&&(>(x1, 0), >(x0, -1)), EOS(STATIC_1290(x0)), x1)
    • (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_1290_0_MK_INC(&&(>(x1[0], 0), >(x0[0], -1)), EOS(STATIC_1290(x0[0])), x1[0])), ≥)∧[(2)bni_10 + (-1)Bound*bni_10] + [bni_10]x1[0] ≥ 0∧[(-1)bso_11] ≥ 0)

  • COND_1290_0_MK_INC(TRUE, EOS(STATIC_1290(x0)), x1) → 1290_0_MK_INC(EOS(STATIC_1290(+(x0, 1))), +(x1, -1))
    • ((UIncreasing(1290_0_MK_INC(EOS(STATIC_1290(+(x0[1], 1))), +(x1[1], -1))), ≥)∧[bni_12] = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_13] ≥ 0)

  • 1290_0_MK_INC(EOS(STATIC_1290(x0)), x1) → COND_1290_0_MK_INC1(>(x1, 0), EOS(STATIC_1290(x0)), x1)
    • (x1[2] ≥ 0 ⇒ (UIncreasing(COND_1290_0_MK_INC1(>(x1[2], 0), EOS(STATIC_1290(x0[2])), x1[2])), ≥)∧0 = 0∧[(2)bni_14 + (-1)Bound*bni_14] + [bni_14]x1[2] ≥ 0∧0 = 0∧[(-1)bso_15] ≥ 0)

  • COND_1290_0_MK_INC1(TRUE, EOS(STATIC_1290(x0)), x1) → 1290_0_MK_INC(EOS(STATIC_1290(x0)), +(x1, -1))
    • ((UIncreasing(1290_0_MK_INC(EOS(STATIC_1290(x0[3])), +(x1[3], -1))), ≥)∧[bni_16] = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_17] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(1290_0_MK_INC(x1, x2)) = [1] + x2   
POL(EOS(x1)) = x1   
POL(STATIC_1290(x1)) = x1   
POL(COND_1290_0_MK_INC(x1, x2, x3)) = [1] + x3   
POL(&&(x1, x2)) = [-1]   
POL(>(x1, x2)) = [-1]   
POL(0) = 0   
POL(-1) = [-1]   
POL(+(x1, x2)) = x1 + x2   
POL(1) = [1]   
POL(COND_1290_0_MK_INC1(x1, x2, x3)) = [1] + x3   

The following pairs are in P>:

COND_1290_0_MK_INC(TRUE, EOS(STATIC_1290(x0[1])), x1[1]) → 1290_0_MK_INC(EOS(STATIC_1290(+(x0[1], 1))), +(x1[1], -1))
COND_1290_0_MK_INC1(TRUE, EOS(STATIC_1290(x0[3])), x1[3]) → 1290_0_MK_INC(EOS(STATIC_1290(x0[3])), +(x1[3], -1))

The following pairs are in Pbound:

1290_0_MK_INC(EOS(STATIC_1290(x0[0])), x1[0]) → COND_1290_0_MK_INC(&&(>(x1[0], 0), >(x0[0], -1)), EOS(STATIC_1290(x0[0])), x1[0])
1290_0_MK_INC(EOS(STATIC_1290(x0[2])), x1[2]) → COND_1290_0_MK_INC1(>(x1[2], 0), EOS(STATIC_1290(x0[2])), x1[2])

The following pairs are in P:

1290_0_MK_INC(EOS(STATIC_1290(x0[0])), x1[0]) → COND_1290_0_MK_INC(&&(>(x1[0], 0), >(x0[0], -1)), EOS(STATIC_1290(x0[0])), x1[0])
1290_0_MK_INC(EOS(STATIC_1290(x0[2])), x1[2]) → COND_1290_0_MK_INC1(>(x1[2], 0), EOS(STATIC_1290(x0[2])), x1[2])

There are no usable rules.

(8) Complex Obligation (AND)

(9) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 1290_0_MK_INC(EOS(STATIC_1290(x0[0])), x1[0]) → COND_1290_0_MK_INC(x1[0] > 0 && x0[0] > -1, EOS(STATIC_1290(x0[0])), x1[0])
(2): 1290_0_MK_INC(EOS(STATIC_1290(x0[2])), x1[2]) → COND_1290_0_MK_INC1(x1[2] > 0, EOS(STATIC_1290(x0[2])), x1[2])


The set Q is empty.

(10) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(11) TRUE

(12) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_1290_0_MK_INC(TRUE, EOS(STATIC_1290(x0[1])), x1[1]) → 1290_0_MK_INC(EOS(STATIC_1290(x0[1] + 1)), x1[1] + -1)
(3): COND_1290_0_MK_INC1(TRUE, EOS(STATIC_1290(x0[3])), x1[3]) → 1290_0_MK_INC(EOS(STATIC_1290(x0[3])), x1[3] + -1)


The set Q is empty.

(13) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(14) TRUE