0 JBC
↳1 JBCToGraph (⇒, 160 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 330 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 340 ms)
↳8 AND
↳9 IDP
↳10 IDependencyGraphProof (⇔, 0 ms)
↳11 IDP
↳12 UsableRulesProof (⇔, 0 ms)
↳13 IDP
↳14 IDPNonInfProof (⇒, 40 ms)
↳15 AND
↳16 IDP
↳17 IDependencyGraphProof (⇔, 0 ms)
↳18 TRUE
↳19 IDP
↳20 IDependencyGraphProof (⇔, 0 ms)
↳21 TRUE
↳22 IDP
↳23 IDependencyGraphProof (⇔, 0 ms)
↳24 TRUE
public class AckermannR {
public static int ack(int m, int n) {
if (m <= 0) return n + 1;
else if (n <= 0) return ack(m - 1,1);
else return ack(m - 1,ack(m,n - 1));
}
public static void main(String[] args) {
Random.args = args;
ack(Random.random(),Random.random());
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
if (index >= args.length)
return 0;
String string = args[index];
index++;
return string.length();
}
}
Generated 38 rules for P and 20 rules for R.
P rules:
377_0_ack_GT(EOS(STATIC_377), i71, i67, i71) → 380_0_ack_GT(EOS(STATIC_380), i71, i67, i71)
380_0_ack_GT(EOS(STATIC_380), i71, i67, i71) → 386_0_ack_Load(EOS(STATIC_386), i71, i67) | >(i71, 0)
386_0_ack_Load(EOS(STATIC_386), i71, i67) → 392_0_ack_GT(EOS(STATIC_392), i71, i67, i67)
392_0_ack_GT(EOS(STATIC_392), i71, matching1, matching2) → 399_0_ack_GT(EOS(STATIC_399), i71, 0, 0) | &&(=(matching1, 0), =(matching2, 0))
392_0_ack_GT(EOS(STATIC_392), i71, i75, i75) → 400_0_ack_GT(EOS(STATIC_400), i71, i75, i75)
399_0_ack_GT(EOS(STATIC_399), i71, matching1, matching2) → 406_0_ack_Load(EOS(STATIC_406), i71, 0) | &&(&&(<=(0, 0), =(matching1, 0)), =(matching2, 0))
406_0_ack_Load(EOS(STATIC_406), i71, matching1) → 417_0_ack_ConstantStackPush(EOS(STATIC_417), i71, 0, i71) | =(matching1, 0)
417_0_ack_ConstantStackPush(EOS(STATIC_417), i71, matching1, i71) → 437_0_ack_IntArithmetic(EOS(STATIC_437), i71, 0, i71, 1) | =(matching1, 0)
437_0_ack_IntArithmetic(EOS(STATIC_437), i71, matching1, i71, matching2) → 467_0_ack_ConstantStackPush(EOS(STATIC_467), i71, 0, -(i71, 1)) | &&(&&(>(i71, 0), =(matching1, 0)), =(matching2, 1))
467_0_ack_ConstantStackPush(EOS(STATIC_467), i71, matching1, i88) → 480_0_ack_InvokeMethod(EOS(STATIC_480), i71, 0, i88, 1) | =(matching1, 0)
480_0_ack_InvokeMethod(EOS(STATIC_480), i71, matching1, i88, matching2) → 493_1_ack_InvokeMethod(493_0_ack_Load(EOS(STATIC_493), i88, 1), i71, 0, i88, 1) | &&(=(matching1, 0), =(matching2, 1))
493_0_ack_Load(EOS(STATIC_493), i88, matching1) → 506_0_ack_Load(EOS(STATIC_506), i88, 1) | =(matching1, 1)
506_0_ack_Load(EOS(STATIC_506), i88, matching1) → 372_0_ack_Load(EOS(STATIC_372), i88, 1) | =(matching1, 1)
372_0_ack_Load(EOS(STATIC_372), i66, i67) → 377_0_ack_GT(EOS(STATIC_377), i66, i67, i66)
400_0_ack_GT(EOS(STATIC_400), i71, i75, i75) → 408_0_ack_Load(EOS(STATIC_408), i71, i75) | >(i75, 0)
408_0_ack_Load(EOS(STATIC_408), i71, i75) → 419_0_ack_ConstantStackPush(EOS(STATIC_419), i71, i75, i71)
419_0_ack_ConstantStackPush(EOS(STATIC_419), i71, i75, i71) → 439_0_ack_IntArithmetic(EOS(STATIC_439), i71, i75, i71, 1)
439_0_ack_IntArithmetic(EOS(STATIC_439), i71, i75, i71, matching1) → 469_0_ack_Load(EOS(STATIC_469), i71, i75, -(i71, 1)) | &&(>(i71, 0), =(matching1, 1))
469_0_ack_Load(EOS(STATIC_469), i71, i75, i89) → 482_0_ack_Load(EOS(STATIC_482), i75, i89, i71)
482_0_ack_Load(EOS(STATIC_482), i75, i89, i71) → 495_0_ack_ConstantStackPush(EOS(STATIC_495), i89, i71, i75)
495_0_ack_ConstantStackPush(EOS(STATIC_495), i89, i71, i75) → 508_0_ack_IntArithmetic(EOS(STATIC_508), i89, i71, i75, 1)
508_0_ack_IntArithmetic(EOS(STATIC_508), i89, i71, i75, matching1) → 512_0_ack_InvokeMethod(EOS(STATIC_512), i89, i71, -(i75, 1)) | &&(>(i75, 0), =(matching1, 1))
512_0_ack_InvokeMethod(EOS(STATIC_512), i89, i71, i93) → 527_1_ack_InvokeMethod(527_0_ack_Load(EOS(STATIC_527), i71, i93), i89, i71, i93)
527_0_ack_Load(EOS(STATIC_527), i71, i93) → 533_0_ack_Load(EOS(STATIC_533), i71, i93)
527_1_ack_InvokeMethod(537_0_ack_Return(EOS(STATIC_537), i108, matching1, i76), i89, i108, matching2) → 566_0_ack_Return(EOS(STATIC_566), i89, i108, 0, i108, 0, i76) | &&(=(matching1, 0), =(matching2, 0))
527_1_ack_InvokeMethod(653_0_ack_Return(EOS(STATIC_653), i172, matching1, i128), i89, i172, matching2) → 700_0_ack_Return(EOS(STATIC_700), i89, i172, 0, i172, 0, i128) | &&(=(matching1, 0), =(matching2, 0))
527_1_ack_InvokeMethod(716_0_ack_Return(EOS(STATIC_716), i76), i89, i207, i208) → 756_0_ack_Return(EOS(STATIC_756), i89, i207, i208, i76)
527_1_ack_InvokeMethod(762_0_ack_Return(EOS(STATIC_762), i76), i89, i249, i250) → 801_0_ack_Return(EOS(STATIC_801), i89, i249, i250, i76)
533_0_ack_Load(EOS(STATIC_533), i71, i93) → 372_0_ack_Load(EOS(STATIC_372), i71, i93)
566_0_ack_Return(EOS(STATIC_566), i89, i108, matching1, i108, matching2, i76) → 574_0_ack_InvokeMethod(EOS(STATIC_574), i89, i76) | &&(=(matching1, 0), =(matching2, 0))
574_0_ack_InvokeMethod(EOS(STATIC_574), i89, i76) → 657_0_ack_InvokeMethod(EOS(STATIC_657), i89, i76)
657_0_ack_InvokeMethod(EOS(STATIC_657), i89, i128) → 663_1_ack_InvokeMethod(663_0_ack_Load(EOS(STATIC_663), i89, i128), i89, i128)
663_0_ack_Load(EOS(STATIC_663), i89, i128) → 687_0_ack_Load(EOS(STATIC_687), i89, i128)
687_0_ack_Load(EOS(STATIC_687), i89, i128) → 372_0_ack_Load(EOS(STATIC_372), i89, i128)
700_0_ack_Return(EOS(STATIC_700), i89, i172, matching1, i172, matching2, i128) → 566_0_ack_Return(EOS(STATIC_566), i89, i172, 0, i172, 0, i128) | &&(=(matching1, 0), =(matching2, 0))
756_0_ack_Return(EOS(STATIC_756), i89, i207, i208, i76) → 642_0_ack_Return(EOS(STATIC_642), i89, i207, i208, i76)
642_0_ack_Return(EOS(STATIC_642), i89, i143, i144, i128) → 657_0_ack_InvokeMethod(EOS(STATIC_657), i89, i128)
801_0_ack_Return(EOS(STATIC_801), i89, i249, i250, i76) → 642_0_ack_Return(EOS(STATIC_642), i89, i249, i250, i76)
R rules:
377_0_ack_GT(EOS(STATIC_377), matching1, i67, matching2) → 379_0_ack_GT(EOS(STATIC_379), 0, i67, 0) | &&(=(matching1, 0), =(matching2, 0))
379_0_ack_GT(EOS(STATIC_379), matching1, i67, matching2) → 384_0_ack_Load(EOS(STATIC_384), 0, i67) | &&(&&(<=(0, 0), =(matching1, 0)), =(matching2, 0))
384_0_ack_Load(EOS(STATIC_384), matching1, i67) → 391_0_ack_ConstantStackPush(EOS(STATIC_391), 0, i67, i67) | =(matching1, 0)
391_0_ack_ConstantStackPush(EOS(STATIC_391), matching1, i67, i67) → 397_0_ack_IntArithmetic(EOS(STATIC_397), 0, i67, i67, 1) | =(matching1, 0)
397_0_ack_IntArithmetic(EOS(STATIC_397), matching1, i67, i67, matching2) → 405_0_ack_Return(EOS(STATIC_405), 0, i67, +(i67, 1)) | &&(&&(>=(i67, 0), =(matching1, 0)), =(matching2, 1))
493_1_ack_InvokeMethod(405_0_ack_Return(EOS(STATIC_405), matching1, matching2, i76), i71, matching3, matching4, matching5) → 531_0_ack_Return(EOS(STATIC_531), i71, 0, 0, 1, 0, 1, i76) | &&(&&(&&(&&(=(matching1, 0), =(matching2, 1)), =(matching3, 0)), =(matching4, 0)), =(matching5, 1))
493_1_ack_InvokeMethod(716_0_ack_Return(EOS(STATIC_716), i76), i71, matching1, i203, matching2) → 753_0_ack_Return(EOS(STATIC_753), i71, 0, i203, 1, i76) | &&(=(matching1, 0), =(matching2, 1))
493_1_ack_InvokeMethod(762_0_ack_Return(EOS(STATIC_762), i76), i71, matching1, i244, matching2) → 799_0_ack_Return(EOS(STATIC_799), i71, 0, i244, 1, i76) | &&(=(matching1, 0), =(matching2, 1))
531_0_ack_Return(EOS(STATIC_531), i71, matching1, matching2, matching3, matching4, matching5, i76) → 537_0_ack_Return(EOS(STATIC_537), i71, 0, i76) | &&(&&(&&(&&(=(matching1, 0), =(matching2, 0)), =(matching3, 1)), =(matching4, 0)), =(matching5, 1))
537_0_ack_Return(EOS(STATIC_537), i71, matching1, i76) → 653_0_ack_Return(EOS(STATIC_653), i71, 0, i76) | =(matching1, 0)
641_0_ack_Return(EOS(STATIC_641), i71, matching1, i138, matching2, i128) → 653_0_ack_Return(EOS(STATIC_653), i71, 0, i128) | &&(=(matching1, 0), =(matching2, 1))
663_1_ack_InvokeMethod(405_0_ack_Return(EOS(STATIC_405), matching1, i190, i76), matching2, i190) → 712_0_ack_Return(EOS(STATIC_712), 0, i190, 0, i190, i76) | &&(=(matching1, 0), =(matching2, 0))
663_1_ack_InvokeMethod(716_0_ack_Return(EOS(STATIC_716), i76), i213, i214) → 758_0_ack_Return(EOS(STATIC_758), i213, i214, i76)
663_1_ack_InvokeMethod(762_0_ack_Return(EOS(STATIC_762), i76), i255, i256) → 804_0_ack_Return(EOS(STATIC_804), i255, i256, i76)
712_0_ack_Return(EOS(STATIC_712), matching1, i190, matching2, i190, i76) → 716_0_ack_Return(EOS(STATIC_716), i76) | &&(=(matching1, 0), =(matching2, 0))
716_0_ack_Return(EOS(STATIC_716), i76) → 762_0_ack_Return(EOS(STATIC_762), i76)
753_0_ack_Return(EOS(STATIC_753), i71, matching1, i203, matching2, i76) → 641_0_ack_Return(EOS(STATIC_641), i71, 0, i203, 1, i76) | &&(=(matching1, 0), =(matching2, 1))
758_0_ack_Return(EOS(STATIC_758), i213, i214, i76) → 762_0_ack_Return(EOS(STATIC_762), i76)
799_0_ack_Return(EOS(STATIC_799), i71, matching1, i244, matching2, i76) → 641_0_ack_Return(EOS(STATIC_641), i71, 0, i244, 1, i76) | &&(=(matching1, 0), =(matching2, 1))
804_0_ack_Return(EOS(STATIC_804), i255, i256, i76) → 758_0_ack_Return(EOS(STATIC_758), i255, i256, i76)
Combined rules. Obtained 6 conditional rules for P and 7 conditional rules for R.
P rules:
377_0_ack_GT(EOS(STATIC_377), x0, 0, x0) → 493_1_ack_InvokeMethod(377_0_ack_GT(EOS(STATIC_377), -(x0, 1), 1, -(x0, 1)), x0, 0, -(x0, 1), 1) | >(x0, 0)
377_0_ack_GT(EOS(STATIC_377), x0, x1, x0) → 527_1_ack_InvokeMethod(377_0_ack_GT(EOS(STATIC_377), x0, -(x1, 1), x0), -(x0, 1), x0, -(x1, 1)) | &&(>(x1, 0), >(x0, 0))
527_1_ack_InvokeMethod(537_0_ack_Return(EOS(STATIC_537), x0, 0, x2), x3, x0, 0) → 663_1_ack_InvokeMethod(377_0_ack_GT(EOS(STATIC_377), x3, x2, x3), x3, x2)
527_1_ack_InvokeMethod(653_0_ack_Return(EOS(STATIC_653), x0, 0, x2), x3, x0, 0) → 663_1_ack_InvokeMethod(377_0_ack_GT(EOS(STATIC_377), x3, x2, x3), x3, x2)
527_1_ack_InvokeMethod(716_0_ack_Return(EOS(STATIC_716), x0), x1, x2, x3) → 663_1_ack_InvokeMethod(377_0_ack_GT(EOS(STATIC_377), x1, x0, x1), x1, x0)
527_1_ack_InvokeMethod(762_0_ack_Return(EOS(STATIC_762), x0), x1, x2, x3) → 663_1_ack_InvokeMethod(377_0_ack_GT(EOS(STATIC_377), x1, x0, x1), x1, x0)
R rules:
377_0_ack_GT(EOS(STATIC_377), 0, x1, 0) → 405_0_ack_Return(EOS(STATIC_405), 0, x1, +(x1, 1)) | >(+(x1, 1), 0)
493_1_ack_InvokeMethod(405_0_ack_Return(EOS(STATIC_405), 0, 1, x2), x3, 0, 0, 1) → 653_0_ack_Return(EOS(STATIC_653), x3, 0, x2)
663_1_ack_InvokeMethod(716_0_ack_Return(EOS(STATIC_716), x0), x1, x2) → 762_0_ack_Return(EOS(STATIC_762), x0)
663_1_ack_InvokeMethod(762_0_ack_Return(EOS(STATIC_762), x0), x1, x2) → 762_0_ack_Return(EOS(STATIC_762), x0)
663_1_ack_InvokeMethod(405_0_ack_Return(EOS(STATIC_405), 0, x1, x2), 0, x1) → 762_0_ack_Return(EOS(STATIC_762), x2)
493_1_ack_InvokeMethod(716_0_ack_Return(EOS(STATIC_716), x0), x1, 0, x3, 1) → 653_0_ack_Return(EOS(STATIC_653), x1, 0, x0)
493_1_ack_InvokeMethod(762_0_ack_Return(EOS(STATIC_762), x0), x1, 0, x3, 1) → 653_0_ack_Return(EOS(STATIC_653), x1, 0, x0)
Filtered ground terms:
377_0_ack_GT(x1, x2, x3, x4) → 377_0_ack_GT(x2, x3, x4)
762_0_ack_Return(x1, x2) → 762_0_ack_Return(x2)
716_0_ack_Return(x1, x2) → 716_0_ack_Return(x2)
653_0_ack_Return(x1, x2, x3, x4) → 653_0_ack_Return(x2, x4)
537_0_ack_Return(x1, x2, x3, x4) → 537_0_ack_Return(x2, x4)
Cond_377_0_ack_GT1(x1, x2, x3, x4, x5) → Cond_377_0_ack_GT1(x1, x3, x4, x5)
493_1_ack_InvokeMethod(x1, x2, x3, x4, x5) → 493_1_ack_InvokeMethod(x1, x2, x4)
Cond_377_0_ack_GT(x1, x2, x3, x4, x5) → Cond_377_0_ack_GT(x1, x3, x4, x5)
405_0_ack_Return(x1, x2, x3, x4) → 405_0_ack_Return(x3, x4)
Filtered duplicate args:
377_0_ack_GT(x1, x2, x3) → 377_0_ack_GT(x2, x3)
Cond_377_0_ack_GT(x1, x2, x3, x4) → Cond_377_0_ack_GT(x1, x3, x4)
Cond_377_0_ack_GT1(x1, x2, x3, x4) → Cond_377_0_ack_GT1(x1, x3, x4)
Filtered unneeded arguments:
493_1_ack_InvokeMethod(x1, x2, x3) → 493_1_ack_InvokeMethod(x1, x3)
527_1_ack_InvokeMethod(x1, x2, x3, x4) → 527_1_ack_InvokeMethod(x1, x2, x4)
653_0_ack_Return(x1, x2) → 653_0_ack_Return(x2)
537_0_ack_Return(x1, x2) → 537_0_ack_Return(x2)
Combined rules. Obtained 6 conditional rules for P and 7 conditional rules for R.
P rules:
377_0_ack_GT(0, x0) → 493_1_ack_InvokeMethod(377_0_ack_GT(1, -(x0, 1)), -(x0, 1)) | >(x0, 0)
377_0_ack_GT(x1, x0) → 527_1_ack_InvokeMethod(377_0_ack_GT(-(x1, 1), x0), -(x0, 1), -(x1, 1)) | &&(>(x1, 0), >(x0, 0))
527_1_ack_InvokeMethod(537_0_ack_Return(x2), x3, 0) → 663_1_ack_InvokeMethod(377_0_ack_GT(x2, x3), x3, x2)
527_1_ack_InvokeMethod(653_0_ack_Return(x2), x3, 0) → 663_1_ack_InvokeMethod(377_0_ack_GT(x2, x3), x3, x2)
527_1_ack_InvokeMethod(716_0_ack_Return(x0), x1, x3) → 663_1_ack_InvokeMethod(377_0_ack_GT(x0, x1), x1, x0)
527_1_ack_InvokeMethod(762_0_ack_Return(x0), x1, x3) → 663_1_ack_InvokeMethod(377_0_ack_GT(x0, x1), x1, x0)
R rules:
377_0_ack_GT(x1, 0) → 405_0_ack_Return(x1, +(x1, 1)) | >(x1, -1)
493_1_ack_InvokeMethod(405_0_ack_Return(1, x2), 0) → 653_0_ack_Return(x2)
663_1_ack_InvokeMethod(716_0_ack_Return(x0), x1, x2) → 762_0_ack_Return(x0)
663_1_ack_InvokeMethod(762_0_ack_Return(x0), x1, x2) → 762_0_ack_Return(x0)
663_1_ack_InvokeMethod(405_0_ack_Return(x1, x2), 0, x1) → 762_0_ack_Return(x2)
493_1_ack_InvokeMethod(716_0_ack_Return(x0), x3) → 653_0_ack_Return(x0)
493_1_ack_InvokeMethod(762_0_ack_Return(x0), x3) → 653_0_ack_Return(x0)
Performed bisimulation on rules. Used the following equivalence classes: {[653_0_ack_Return_1, 716_0_ack_Return_1, 762_0_ack_Return_1, 537_0_ack_Return_1]=653_0_ack_Return_1}
Finished conversion. Obtained 7 rules for P and 6 rules for R. System has predefined symbols.
P rules:
377_0_ACK_GT(0, x0) → COND_377_0_ACK_GT(>(x0, 0), 0, x0)
COND_377_0_ACK_GT(TRUE, 0, x0) → 377_0_ACK_GT(1, -(x0, 1))
377_0_ACK_GT(x1, x0) → COND_377_0_ACK_GT1(&&(>(x1, 0), >(x0, 0)), x1, x0)
COND_377_0_ACK_GT1(TRUE, x1, x0) → 527_1_ACK_INVOKEMETHOD(377_0_ack_GT(-(x1, 1), x0), -(x0, 1), -(x1, 1))
COND_377_0_ACK_GT1(TRUE, x1, x0) → 377_0_ACK_GT(-(x1, 1), x0)
527_1_ACK_INVOKEMETHOD(653_0_ack_Return(x2), x3, 0) → 377_0_ACK_GT(x2, x3)
527_1_ACK_INVOKEMETHOD(653_0_ack_Return(x0), x1, x3) → 377_0_ACK_GT(x0, x1)
R rules:
377_0_ack_GT(x1, 0) → Cond_377_0_ack_GT(>(x1, -1), x1, 0)
Cond_377_0_ack_GT(TRUE, x1, 0) → 405_0_ack_Return(x1, +(x1, 1))
493_1_ack_InvokeMethod(405_0_ack_Return(1, x2), 0) → 653_0_ack_Return(x2)
663_1_ack_InvokeMethod(653_0_ack_Return(x0), x1, x2) → 653_0_ack_Return(x0)
663_1_ack_InvokeMethod(405_0_ack_Return(x1, x2), 0, x1) → 653_0_ack_Return(x2)
493_1_ack_InvokeMethod(653_0_ack_Return(x0), x3) → 653_0_ack_Return(x0)
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(0) -> (1), if (x0[0] > 0 ∧x0[0] →* x0[1])
(1) -> (0), if (1 →* 0∧x0[1] - 1 →* x0[0])
(1) -> (2), if (1 →* x1[2]∧x0[1] - 1 →* x0[2])
(2) -> (3), if (x1[2] > 0 && x0[2] > 0 ∧x1[2] →* x1[3]∧x0[2] →* x0[3])
(2) -> (4), if (x1[2] > 0 && x0[2] > 0 ∧x1[2] →* x1[4]∧x0[2] →* x0[4])
(3) -> (5), if (377_0_ack_GT(x1[3] - 1, x0[3]) →* 653_0_ack_Return(x2[5])∧x0[3] - 1 →* x3[5]∧x1[3] - 1 →* 0)
(3) -> (6), if (377_0_ack_GT(x1[3] - 1, x0[3]) →* 653_0_ack_Return(x0[6])∧x0[3] - 1 →* x1[6]∧x1[3] - 1 →* x3[6])
(4) -> (0), if (x1[4] - 1 →* 0∧x0[4] →* x0[0])
(4) -> (2), if (x1[4] - 1 →* x1[2]∧x0[4] →* x0[2])
(5) -> (0), if (x2[5] →* 0∧x3[5] →* x0[0])
(5) -> (2), if (x2[5] →* x1[2]∧x3[5] →* x0[2])
(6) -> (0), if (x0[6] →* 0∧x1[6] →* x0[0])
(6) -> (2), if (x0[6] →* x1[2]∧x1[6] →* x0[2])
(1) (>(x0[0], 0)=TRUE∧x0[0]=x0[1] ⇒ 377_0_ACK_GT(0, x0[0])≥NonInfC∧377_0_ACK_GT(0, x0[0])≥COND_377_0_ACK_GT(>(x0[0], 0), 0, x0[0])∧(UIncreasing(COND_377_0_ACK_GT(>(x0[0], 0), 0, x0[0])), ≥))
(2) (>(x0[0], 0)=TRUE ⇒ 377_0_ACK_GT(0, x0[0])≥NonInfC∧377_0_ACK_GT(0, x0[0])≥COND_377_0_ACK_GT(>(x0[0], 0), 0, x0[0])∧(UIncreasing(COND_377_0_ACK_GT(>(x0[0], 0), 0, x0[0])), ≥))
(3) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_377_0_ACK_GT(>(x0[0], 0), 0, x0[0])), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[0] ≥ 0∧[(-1)bso_24] ≥ 0)
(4) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_377_0_ACK_GT(>(x0[0], 0), 0, x0[0])), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[0] ≥ 0∧[(-1)bso_24] ≥ 0)
(5) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_377_0_ACK_GT(>(x0[0], 0), 0, x0[0])), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[0] ≥ 0∧[(-1)bso_24] ≥ 0)
(6) (x0[0] ≥ 0 ⇒ (UIncreasing(COND_377_0_ACK_GT(>(x0[0], 0), 0, x0[0])), ≥)∧[(-1)Bound*bni_23] + [bni_23]x0[0] ≥ 0∧[(-1)bso_24] ≥ 0)
(7) (COND_377_0_ACK_GT(TRUE, 0, x0[1])≥NonInfC∧COND_377_0_ACK_GT(TRUE, 0, x0[1])≥377_0_ACK_GT(1, -(x0[1], 1))∧(UIncreasing(377_0_ACK_GT(1, -(x0[1], 1))), ≥))
(8) ((UIncreasing(377_0_ACK_GT(1, -(x0[1], 1))), ≥)∧[bni_25] = 0∧[1 + (-1)bso_26] ≥ 0)
(9) ((UIncreasing(377_0_ACK_GT(1, -(x0[1], 1))), ≥)∧[bni_25] = 0∧[1 + (-1)bso_26] ≥ 0)
(10) ((UIncreasing(377_0_ACK_GT(1, -(x0[1], 1))), ≥)∧[bni_25] = 0∧[1 + (-1)bso_26] ≥ 0)
(11) ((UIncreasing(377_0_ACK_GT(1, -(x0[1], 1))), ≥)∧[bni_25] = 0∧0 = 0∧[1 + (-1)bso_26] ≥ 0)
(12) (&&(>(x1[2], 0), >(x0[2], 0))=TRUE∧x1[2]=x1[3]∧x0[2]=x0[3] ⇒ 377_0_ACK_GT(x1[2], x0[2])≥NonInfC∧377_0_ACK_GT(x1[2], x0[2])≥COND_377_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])∧(UIncreasing(COND_377_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥))
(13) (>(x1[2], 0)=TRUE∧>(x0[2], 0)=TRUE ⇒ 377_0_ACK_GT(x1[2], x0[2])≥NonInfC∧377_0_ACK_GT(x1[2], x0[2])≥COND_377_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])∧(UIncreasing(COND_377_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥))
(14) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_377_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [bni_27]x0[2] ≥ 0∧[(-1)bso_28] ≥ 0)
(15) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_377_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [bni_27]x0[2] ≥ 0∧[(-1)bso_28] ≥ 0)
(16) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_377_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [bni_27]x0[2] ≥ 0∧[(-1)bso_28] ≥ 0)
(17) (x1[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_377_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [bni_27]x0[2] ≥ 0∧[(-1)bso_28] ≥ 0)
(18) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_377_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)Bound*bni_27] + [bni_27]x0[2] ≥ 0∧[(-1)bso_28] ≥ 0)
(19) (&&(>(x1[2], 0), >(x0[2], 0))=TRUE∧x1[2]=x1[4]∧x0[2]=x0[4] ⇒ 377_0_ACK_GT(x1[2], x0[2])≥NonInfC∧377_0_ACK_GT(x1[2], x0[2])≥COND_377_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])∧(UIncreasing(COND_377_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥))
(20) (>(x1[2], 0)=TRUE∧>(x0[2], 0)=TRUE ⇒ 377_0_ACK_GT(x1[2], x0[2])≥NonInfC∧377_0_ACK_GT(x1[2], x0[2])≥COND_377_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])∧(UIncreasing(COND_377_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥))
(21) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_377_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [bni_27]x0[2] ≥ 0∧[(-1)bso_28] ≥ 0)
(22) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_377_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [bni_27]x0[2] ≥ 0∧[(-1)bso_28] ≥ 0)
(23) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_377_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [bni_27]x0[2] ≥ 0∧[(-1)bso_28] ≥ 0)
(24) (x1[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_377_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [bni_27]x0[2] ≥ 0∧[(-1)bso_28] ≥ 0)
(25) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_377_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)Bound*bni_27] + [bni_27]x0[2] ≥ 0∧[(-1)bso_28] ≥ 0)
(26) (COND_377_0_ACK_GT1(TRUE, x1[3], x0[3])≥NonInfC∧COND_377_0_ACK_GT1(TRUE, x1[3], x0[3])≥527_1_ACK_INVOKEMETHOD(377_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), -(x1[3], 1))∧(UIncreasing(527_1_ACK_INVOKEMETHOD(377_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), -(x1[3], 1))), ≥))
(27) ((UIncreasing(527_1_ACK_INVOKEMETHOD(377_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), -(x1[3], 1))), ≥)∧[bni_29] = 0∧[1 + (-1)bso_30] ≥ 0)
(28) ((UIncreasing(527_1_ACK_INVOKEMETHOD(377_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), -(x1[3], 1))), ≥)∧[bni_29] = 0∧[1 + (-1)bso_30] ≥ 0)
(29) ((UIncreasing(527_1_ACK_INVOKEMETHOD(377_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), -(x1[3], 1))), ≥)∧[bni_29] = 0∧[1 + (-1)bso_30] ≥ 0)
(30) ((UIncreasing(527_1_ACK_INVOKEMETHOD(377_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), -(x1[3], 1))), ≥)∧[bni_29] = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_30] ≥ 0)
(31) (COND_377_0_ACK_GT1(TRUE, x1[4], x0[4])≥NonInfC∧COND_377_0_ACK_GT1(TRUE, x1[4], x0[4])≥377_0_ACK_GT(-(x1[4], 1), x0[4])∧(UIncreasing(377_0_ACK_GT(-(x1[4], 1), x0[4])), ≥))
(32) ((UIncreasing(377_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[bni_31] = 0∧[(-1)bso_32] ≥ 0)
(33) ((UIncreasing(377_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[bni_31] = 0∧[(-1)bso_32] ≥ 0)
(34) ((UIncreasing(377_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[bni_31] = 0∧[(-1)bso_32] ≥ 0)
(35) ((UIncreasing(377_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[bni_31] = 0∧0 = 0∧0 = 0∧[(-1)bso_32] ≥ 0)
(36) (527_1_ACK_INVOKEMETHOD(653_0_ack_Return(x2[5]), x3[5], 0)≥NonInfC∧527_1_ACK_INVOKEMETHOD(653_0_ack_Return(x2[5]), x3[5], 0)≥377_0_ACK_GT(x2[5], x3[5])∧(UIncreasing(377_0_ACK_GT(x2[5], x3[5])), ≥))
(37) ((UIncreasing(377_0_ACK_GT(x2[5], x3[5])), ≥)∧[bni_33] = 0∧[(-1)bso_34] ≥ 0)
(38) ((UIncreasing(377_0_ACK_GT(x2[5], x3[5])), ≥)∧[bni_33] = 0∧[(-1)bso_34] ≥ 0)
(39) ((UIncreasing(377_0_ACK_GT(x2[5], x3[5])), ≥)∧[bni_33] = 0∧[(-1)bso_34] ≥ 0)
(40) ((UIncreasing(377_0_ACK_GT(x2[5], x3[5])), ≥)∧[bni_33] = 0∧0 = 0∧0 = 0∧[(-1)bso_34] ≥ 0)
(41) (527_1_ACK_INVOKEMETHOD(653_0_ack_Return(x0[6]), x1[6], x3[6])≥NonInfC∧527_1_ACK_INVOKEMETHOD(653_0_ack_Return(x0[6]), x1[6], x3[6])≥377_0_ACK_GT(x0[6], x1[6])∧(UIncreasing(377_0_ACK_GT(x0[6], x1[6])), ≥))
(42) ((UIncreasing(377_0_ACK_GT(x0[6], x1[6])), ≥)∧[bni_35] = 0∧[(-1)bso_36] ≥ 0)
(43) ((UIncreasing(377_0_ACK_GT(x0[6], x1[6])), ≥)∧[bni_35] = 0∧[(-1)bso_36] ≥ 0)
(44) ((UIncreasing(377_0_ACK_GT(x0[6], x1[6])), ≥)∧[bni_35] = 0∧[(-1)bso_36] ≥ 0)
(45) ((UIncreasing(377_0_ACK_GT(x0[6], x1[6])), ≥)∧[bni_35] = 0∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_36] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(377_0_ack_GT(x1, x2)) = [-1]x2 + [-1]x1
POL(0) = 0
POL(Cond_377_0_ack_GT(x1, x2, x3)) = [1]
POL(>(x1, x2)) = [-1]
POL(-1) = [-1]
POL(405_0_ack_Return(x1, x2)) = x2 + [-1]x1
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
POL(493_1_ack_InvokeMethod(x1, x2)) = [-1]
POL(653_0_ack_Return(x1)) = x1
POL(663_1_ack_InvokeMethod(x1, x2, x3)) = [-1]
POL(377_0_ACK_GT(x1, x2)) = [-1] + x2
POL(COND_377_0_ACK_GT(x1, x2, x3)) = [-1] + x3
POL(-(x1, x2)) = x1 + [-1]x2
POL(COND_377_0_ACK_GT1(x1, x2, x3)) = [-1] + x3
POL(&&(x1, x2)) = [-1]
POL(527_1_ACK_INVOKEMETHOD(x1, x2, x3)) = [-1] + x2
COND_377_0_ACK_GT(TRUE, 0, x0[1]) → 377_0_ACK_GT(1, -(x0[1], 1))
COND_377_0_ACK_GT1(TRUE, x1[3], x0[3]) → 527_1_ACK_INVOKEMETHOD(377_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), -(x1[3], 1))
377_0_ACK_GT(0, x0[0]) → COND_377_0_ACK_GT(>(x0[0], 0), 0, x0[0])
377_0_ACK_GT(x1[2], x0[2]) → COND_377_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])
377_0_ACK_GT(0, x0[0]) → COND_377_0_ACK_GT(>(x0[0], 0), 0, x0[0])
377_0_ACK_GT(x1[2], x0[2]) → COND_377_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])
COND_377_0_ACK_GT1(TRUE, x1[4], x0[4]) → 377_0_ACK_GT(-(x1[4], 1), x0[4])
527_1_ACK_INVOKEMETHOD(653_0_ack_Return(x2[5]), x3[5], 0) → 377_0_ACK_GT(x2[5], x3[5])
527_1_ACK_INVOKEMETHOD(653_0_ack_Return(x0[6]), x1[6], x3[6]) → 377_0_ACK_GT(x0[6], x1[6])
405_0_ack_Return(x1, +(x1, 1))1 → Cond_377_0_ack_GT(TRUE, x1, 0)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(4) -> (0), if (x1[4] - 1 →* 0∧x0[4] →* x0[0])
(5) -> (0), if (x2[5] →* 0∧x3[5] →* x0[0])
(6) -> (0), if (x0[6] →* 0∧x1[6] →* x0[0])
(4) -> (2), if (x1[4] - 1 →* x1[2]∧x0[4] →* x0[2])
(5) -> (2), if (x2[5] →* x1[2]∧x3[5] →* x0[2])
(6) -> (2), if (x0[6] →* x1[2]∧x1[6] →* x0[2])
(2) -> (4), if (x1[2] > 0 && x0[2] > 0 ∧x1[2] →* x1[4]∧x0[2] →* x0[4])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(4) -> (2), if (x1[4] - 1 →* x1[2]∧x0[4] →* x0[2])
(2) -> (4), if (x1[2] > 0 && x0[2] > 0 ∧x1[2] →* x1[4]∧x0[2] →* x0[4])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(4) -> (2), if (x1[4] - 1 →* x1[2]∧x0[4] →* x0[2])
(2) -> (4), if (x1[2] > 0 && x0[2] > 0 ∧x1[2] →* x1[4]∧x0[2] →* x0[4])
(1) (COND_377_0_ACK_GT1(TRUE, x1[4], x0[4])≥NonInfC∧COND_377_0_ACK_GT1(TRUE, x1[4], x0[4])≥377_0_ACK_GT(-(x1[4], 1), x0[4])∧(UIncreasing(377_0_ACK_GT(-(x1[4], 1), x0[4])), ≥))
(2) ((UIncreasing(377_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[bni_9] = 0∧[1 + (-1)bso_10] ≥ 0)
(3) ((UIncreasing(377_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[bni_9] = 0∧[1 + (-1)bso_10] ≥ 0)
(4) ((UIncreasing(377_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[bni_9] = 0∧[1 + (-1)bso_10] ≥ 0)
(5) ((UIncreasing(377_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[bni_9] = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_10] ≥ 0)
(6) (&&(>(x1[2], 0), >(x0[2], 0))=TRUE∧x1[2]=x1[4]∧x0[2]=x0[4] ⇒ 377_0_ACK_GT(x1[2], x0[2])≥NonInfC∧377_0_ACK_GT(x1[2], x0[2])≥COND_377_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])∧(UIncreasing(COND_377_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥))
(7) (>(x1[2], 0)=TRUE∧>(x0[2], 0)=TRUE ⇒ 377_0_ACK_GT(x1[2], x0[2])≥NonInfC∧377_0_ACK_GT(x1[2], x0[2])≥COND_377_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])∧(UIncreasing(COND_377_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥))
(8) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_377_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x1[2] + [bni_11]x0[2] ≥ 0∧[(-1)bso_12] ≥ 0)
(9) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_377_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x1[2] + [bni_11]x0[2] ≥ 0∧[(-1)bso_12] ≥ 0)
(10) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_377_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x1[2] + [bni_11]x0[2] ≥ 0∧[(-1)bso_12] ≥ 0)
(11) (x1[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_377_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)Bound*bni_11] + [bni_11]x1[2] + [bni_11]x0[2] ≥ 0∧[(-1)bso_12] ≥ 0)
(12) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_377_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)Bound*bni_11 + bni_11] + [bni_11]x1[2] + [bni_11]x0[2] ≥ 0∧[(-1)bso_12] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_377_0_ACK_GT1(x1, x2, x3)) = [-1] + x3 + x2
POL(377_0_ACK_GT(x1, x2)) = [-1] + x1 + x2
POL(-(x1, x2)) = x1 + [-1]x2
POL(1) = [1]
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
COND_377_0_ACK_GT1(TRUE, x1[4], x0[4]) → 377_0_ACK_GT(-(x1[4], 1), x0[4])
377_0_ACK_GT(x1[2], x0[2]) → COND_377_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])
377_0_ACK_GT(x1[2], x0[2]) → COND_377_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(3) -> (5), if (377_0_ack_GT(x1[3] - 1, x0[3]) →* 653_0_ack_Return(x2[5])∧x0[3] - 1 →* x3[5]∧x1[3] - 1 →* 0)
(3) -> (6), if (377_0_ack_GT(x1[3] - 1, x0[3]) →* 653_0_ack_Return(x0[6])∧x0[3] - 1 →* x1[6]∧x1[3] - 1 →* x3[6])