0 JBC
↳1 JBCToGraph (⇒, 210 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 260 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 1990 ms)
↳8 IDP
↳9 IDependencyGraphProof (⇔, 0 ms)
↳10 IDP
↳11 IDPNonInfProof (⇒, 670 ms)
↳12 IDP
↳13 IDependencyGraphProof (⇔, 0 ms)
↳14 IDP
↳15 IDPNonInfProof (⇒, 120 ms)
↳16 IDP
↳17 IDependencyGraphProof (⇔, 0 ms)
↳18 TRUE
public class Test2 {
public static void main(String[] args) {
iter(args.length, args.length % 5, args.length % 4);
}
private static void iter(int x, int y, int z) {
while (x + y + 3 * z >= 0) {
if (x > y)
x--;
else if (y > z) {
x++;
y -= 2;
}
else if (y <= z) {
x = add(x, 1);
y = add(y, 1);
z = z - 1;
}
}
}
private static int add(int v, int w) {
return v + w;
}
}
Generated 57 rules for P and 0 rules for R.
P rules:
1140_0_iter_Load(EOS(STATIC_1140), i328, i329, i330, i328) → 1142_0_iter_IntArithmetic(EOS(STATIC_1142), i328, i329, i330, i328, i329)
1142_0_iter_IntArithmetic(EOS(STATIC_1142), i328, i329, i330, i328, i329) → 1144_0_iter_ConstantStackPush(EOS(STATIC_1144), i328, i329, i330, +(i328, i329))
1144_0_iter_ConstantStackPush(EOS(STATIC_1144), i328, i329, i330, i341) → 1147_0_iter_Load(EOS(STATIC_1147), i328, i329, i330, i341, 3)
1147_0_iter_Load(EOS(STATIC_1147), i328, i329, i330, i341, matching1) → 1149_0_iter_IntArithmetic(EOS(STATIC_1149), i328, i329, i330, i341, 3, i330) | =(matching1, 3)
1149_0_iter_IntArithmetic(EOS(STATIC_1149), i328, i329, i330, i341, matching1, i330) → 1151_0_iter_IntArithmetic(EOS(STATIC_1151), i328, i329, i330, i341, *(3, i330)) | =(matching1, 3)
1151_0_iter_IntArithmetic(EOS(STATIC_1151), i328, i329, i330, i341, i346) → 1154_0_iter_LT(EOS(STATIC_1154), i328, i329, i330, +(i341, i346))
1154_0_iter_LT(EOS(STATIC_1154), i328, i329, i330, i353) → 1158_0_iter_LT(EOS(STATIC_1158), i328, i329, i330, i353)
1158_0_iter_LT(EOS(STATIC_1158), i328, i329, i330, i353) → 1163_0_iter_Load(EOS(STATIC_1163), i328, i329, i330) | >=(i353, 0)
1163_0_iter_Load(EOS(STATIC_1163), i328, i329, i330) → 1168_0_iter_Load(EOS(STATIC_1168), i328, i329, i330, i328)
1168_0_iter_Load(EOS(STATIC_1168), i328, i329, i330, i328) → 1172_0_iter_LE(EOS(STATIC_1172), i328, i329, i330, i328, i329)
1172_0_iter_LE(EOS(STATIC_1172), i328, i329, i330, i328, i329) → 1174_0_iter_LE(EOS(STATIC_1174), i328, i329, i330, i328, i329)
1172_0_iter_LE(EOS(STATIC_1172), i328, i329, i330, i328, i329) → 1176_0_iter_LE(EOS(STATIC_1176), i328, i329, i330, i328, i329)
1174_0_iter_LE(EOS(STATIC_1174), i328, i329, i330, i328, i329) → 1178_0_iter_Load(EOS(STATIC_1178), i328, i329, i330) | <=(i328, i329)
1178_0_iter_Load(EOS(STATIC_1178), i328, i329, i330) → 1182_0_iter_Load(EOS(STATIC_1182), i328, i329, i330, i329)
1182_0_iter_Load(EOS(STATIC_1182), i328, i329, i330, i329) → 1187_0_iter_LE(EOS(STATIC_1187), i328, i329, i330, i329, i330)
1187_0_iter_LE(EOS(STATIC_1187), i328, i329, i330, i329, i330) → 1193_0_iter_LE(EOS(STATIC_1193), i328, i329, i330, i329, i330)
1187_0_iter_LE(EOS(STATIC_1187), i328, i329, i330, i329, i330) → 1195_0_iter_LE(EOS(STATIC_1195), i328, i329, i330, i329, i330)
1193_0_iter_LE(EOS(STATIC_1193), i328, i329, i330, i329, i330) → 1196_0_iter_Load(EOS(STATIC_1196), i328, i329, i330) | <=(i329, i330)
1196_0_iter_Load(EOS(STATIC_1196), i328, i329, i330) → 1199_0_iter_Load(EOS(STATIC_1199), i328, i329, i330, i329)
1199_0_iter_Load(EOS(STATIC_1199), i328, i329, i330, i329) → 1202_0_iter_GT(EOS(STATIC_1202), i328, i329, i330, i329, i330)
1202_0_iter_GT(EOS(STATIC_1202), i328, i329, i330, i329, i330) → 1205_0_iter_GT(EOS(STATIC_1205), i328, i329, i330, i329, i330)
1202_0_iter_GT(EOS(STATIC_1202), i328, i329, i330, i329, i330) → 1206_0_iter_GT(EOS(STATIC_1206), i328, i329, i330, i329, i330)
1205_0_iter_GT(EOS(STATIC_1205), i328, i329, i330, i329, i330) → 1211_0_iter_Load(EOS(STATIC_1211), i328, i329, i330) | >(i329, i330)
1211_0_iter_Load(EOS(STATIC_1211), i328, i329, i330) → 1135_0_iter_Load(EOS(STATIC_1135), i328, i329, i330)
1135_0_iter_Load(EOS(STATIC_1135), i328, i329, i330) → 1140_0_iter_Load(EOS(STATIC_1140), i328, i329, i330, i328)
1206_0_iter_GT(EOS(STATIC_1206), i328, i329, i330, i329, i330) → 1212_0_iter_Load(EOS(STATIC_1212), i328, i329, i330) | <=(i329, i330)
1212_0_iter_Load(EOS(STATIC_1212), i328, i329, i330) → 1213_0_iter_ConstantStackPush(EOS(STATIC_1213), i329, i330, i328)
1213_0_iter_ConstantStackPush(EOS(STATIC_1213), i329, i330, i328) → 1216_0_iter_InvokeMethod(EOS(STATIC_1216), i329, i330, i328, 1)
1216_0_iter_InvokeMethod(EOS(STATIC_1216), i329, i330, i328, matching1) → 1217_0_add_Load(EOS(STATIC_1217), i329, i330, i328, 1, i328, 1) | =(matching1, 1)
1217_0_add_Load(EOS(STATIC_1217), i329, i330, i328, matching1, i328, matching2) → 1219_0_add_Load(EOS(STATIC_1219), i329, i330, i328, 1, 1, i328) | &&(=(matching1, 1), =(matching2, 1))
1219_0_add_Load(EOS(STATIC_1219), i329, i330, i328, matching1, matching2, i328) → 1220_0_add_IntArithmetic(EOS(STATIC_1220), i329, i330, i328, 1, i328, 1) | &&(=(matching1, 1), =(matching2, 1))
1220_0_add_IntArithmetic(EOS(STATIC_1220), i329, i330, i328, matching1, i328, matching2) → 1221_0_add_Return(EOS(STATIC_1221), i329, i330, i328, 1, +(i328, 1)) | &&(=(matching1, 1), =(matching2, 1))
1221_0_add_Return(EOS(STATIC_1221), i329, i330, i328, matching1, i370) → 1223_0_iter_Store(EOS(STATIC_1223), i329, i330, i370) | =(matching1, 1)
1223_0_iter_Store(EOS(STATIC_1223), i329, i330, i370) → 1225_0_iter_Load(EOS(STATIC_1225), i370, i329, i330)
1225_0_iter_Load(EOS(STATIC_1225), i370, i329, i330) → 1226_0_iter_ConstantStackPush(EOS(STATIC_1226), i370, i330, i329)
1226_0_iter_ConstantStackPush(EOS(STATIC_1226), i370, i330, i329) → 1227_0_iter_InvokeMethod(EOS(STATIC_1227), i370, i330, i329, 1)
1227_0_iter_InvokeMethod(EOS(STATIC_1227), i370, i330, i329, matching1) → 1228_0_add_Load(EOS(STATIC_1228), i370, i330, i329, 1, i329, 1) | =(matching1, 1)
1228_0_add_Load(EOS(STATIC_1228), i370, i330, i329, matching1, i329, matching2) → 1230_0_add_Load(EOS(STATIC_1230), i370, i330, i329, 1, 1, i329) | &&(=(matching1, 1), =(matching2, 1))
1230_0_add_Load(EOS(STATIC_1230), i370, i330, i329, matching1, matching2, i329) → 1232_0_add_IntArithmetic(EOS(STATIC_1232), i370, i330, i329, 1, i329, 1) | &&(=(matching1, 1), =(matching2, 1))
1232_0_add_IntArithmetic(EOS(STATIC_1232), i370, i330, i329, matching1, i329, matching2) → 1233_0_add_Return(EOS(STATIC_1233), i370, i330, i329, 1, +(i329, 1)) | &&(=(matching1, 1), =(matching2, 1))
1233_0_add_Return(EOS(STATIC_1233), i370, i330, i329, matching1, i373) → 1235_0_iter_Store(EOS(STATIC_1235), i370, i330, i373) | =(matching1, 1)
1235_0_iter_Store(EOS(STATIC_1235), i370, i330, i373) → 1236_0_iter_Load(EOS(STATIC_1236), i370, i373, i330)
1236_0_iter_Load(EOS(STATIC_1236), i370, i373, i330) → 1238_0_iter_ConstantStackPush(EOS(STATIC_1238), i370, i373, i330)
1238_0_iter_ConstantStackPush(EOS(STATIC_1238), i370, i373, i330) → 1240_0_iter_IntArithmetic(EOS(STATIC_1240), i370, i373, i330, 1)
1240_0_iter_IntArithmetic(EOS(STATIC_1240), i370, i373, i330, matching1) → 1242_0_iter_Store(EOS(STATIC_1242), i370, i373, -(i330, 1)) | =(matching1, 1)
1242_0_iter_Store(EOS(STATIC_1242), i370, i373, i377) → 1243_0_iter_JMP(EOS(STATIC_1243), i370, i373, i377)
1243_0_iter_JMP(EOS(STATIC_1243), i370, i373, i377) → 1245_0_iter_Load(EOS(STATIC_1245), i370, i373, i377)
1245_0_iter_Load(EOS(STATIC_1245), i370, i373, i377) → 1135_0_iter_Load(EOS(STATIC_1135), i370, i373, i377)
1195_0_iter_LE(EOS(STATIC_1195), i328, i329, i330, i329, i330) → 1198_0_iter_Inc(EOS(STATIC_1198), i328, i329, i330) | >(i329, i330)
1198_0_iter_Inc(EOS(STATIC_1198), i328, i329, i330) → 1201_0_iter_Inc(EOS(STATIC_1201), +(i328, 1), i329, i330)
1201_0_iter_Inc(EOS(STATIC_1201), i362, i329, i330) → 1204_0_iter_JMP(EOS(STATIC_1204), i362, +(i329, -2), i330)
1204_0_iter_JMP(EOS(STATIC_1204), i362, i363, i330) → 1209_0_iter_Load(EOS(STATIC_1209), i362, i363, i330)
1209_0_iter_Load(EOS(STATIC_1209), i362, i363, i330) → 1135_0_iter_Load(EOS(STATIC_1135), i362, i363, i330)
1176_0_iter_LE(EOS(STATIC_1176), i328, i329, i330, i328, i329) → 1180_0_iter_Inc(EOS(STATIC_1180), i328, i329, i330) | >(i328, i329)
1180_0_iter_Inc(EOS(STATIC_1180), i328, i329, i330) → 1184_0_iter_JMP(EOS(STATIC_1184), +(i328, -1), i329, i330)
1184_0_iter_JMP(EOS(STATIC_1184), i357, i329, i330) → 1191_0_iter_Load(EOS(STATIC_1191), i357, i329, i330)
1191_0_iter_Load(EOS(STATIC_1191), i357, i329, i330) → 1135_0_iter_Load(EOS(STATIC_1135), i357, i329, i330)
R rules:
Combined rules. Obtained 4 conditional rules for P and 0 conditional rules for R.
P rules:
1140_0_iter_Load(EOS(STATIC_1140), x0, x1, x2, x0) → 1140_0_iter_Load(EOS(STATIC_1140), x0, x1, x2, x0) | FALSE
1140_0_iter_Load(EOS(STATIC_1140), x0, x1, x2, x0) → 1140_0_iter_Load(EOS(STATIC_1140), +(x0, 1), +(x1, 1), -(x2, 1), +(x0, 1)) | &&(&&(>=(x2, x1), >=(x1, x0)), <=(0, +(+(x0, x1), *(3, x2))))
1140_0_iter_Load(EOS(STATIC_1140), x0, x1, x2, x0) → 1140_0_iter_Load(EOS(STATIC_1140), +(x0, 1), +(x1, -2), x2, +(x0, 1)) | &&(&&(<(x2, x1), >=(x1, x0)), <=(0, +(+(x0, x1), *(3, x2))))
1140_0_iter_Load(EOS(STATIC_1140), x0, x1, x2, x0) → 1140_0_iter_Load(EOS(STATIC_1140), +(x0, -1), x1, x2, +(x0, -1)) | &&(<(x1, x0), <=(0, +(+(x0, x1), *(3, x2))))
R rules:
Filtered ground terms:
1140_0_iter_Load(x1, x2, x3, x4, x5) → 1140_0_iter_Load(x2, x3, x4, x5)
EOS(x1) → EOS
Cond_1140_0_iter_Load2(x1, x2, x3, x4, x5, x6) → Cond_1140_0_iter_Load2(x1, x3, x4, x5, x6)
Cond_1140_0_iter_Load1(x1, x2, x3, x4, x5, x6) → Cond_1140_0_iter_Load1(x1, x3, x4, x5, x6)
Cond_1140_0_iter_Load(x1, x2, x3, x4, x5, x6) → Cond_1140_0_iter_Load(x1, x3, x4, x5, x6)
Filtered duplicate args:
1140_0_iter_Load(x1, x2, x3, x4) → 1140_0_iter_Load(x2, x3, x4)
Cond_1140_0_iter_Load(x1, x2, x3, x4, x5) → Cond_1140_0_iter_Load(x1, x3, x4, x5)
Cond_1140_0_iter_Load1(x1, x2, x3, x4, x5) → Cond_1140_0_iter_Load1(x1, x3, x4, x5)
Cond_1140_0_iter_Load2(x1, x2, x3, x4, x5) → Cond_1140_0_iter_Load2(x1, x3, x4, x5)
Combined rules. Obtained 3 conditional rules for P and 0 conditional rules for R.
P rules:
1140_0_iter_Load(x1, x2, x0) → 1140_0_iter_Load(+(x1, 1), -(x2, 1), +(x0, 1)) | &&(&&(>=(x2, x1), >=(x1, x0)), <=(0, +(+(x0, x1), *(3, x2))))
1140_0_iter_Load(x1, x2, x0) → 1140_0_iter_Load(+(x1, -2), x2, +(x0, 1)) | &&(&&(<(x2, x1), >=(x1, x0)), <=(0, +(+(x0, x1), *(3, x2))))
1140_0_iter_Load(x1, x2, x0) → 1140_0_iter_Load(x1, x2, +(x0, -1)) | &&(<(x1, x0), <=(0, +(+(x0, x1), *(3, x2))))
R rules:
Finished conversion. Obtained 6 rules for P and 0 rules for R. System has predefined symbols.
P rules:
1140_0_ITER_LOAD(x1, x2, x0) → COND_1140_0_ITER_LOAD(&&(&&(>=(x2, x1), >=(x1, x0)), <=(0, +(+(x0, x1), *(3, x2)))), x1, x2, x0)
COND_1140_0_ITER_LOAD(TRUE, x1, x2, x0) → 1140_0_ITER_LOAD(+(x1, 1), -(x2, 1), +(x0, 1))
1140_0_ITER_LOAD(x1, x2, x0) → COND_1140_0_ITER_LOAD1(&&(&&(<(x2, x1), >=(x1, x0)), <=(0, +(+(x0, x1), *(3, x2)))), x1, x2, x0)
COND_1140_0_ITER_LOAD1(TRUE, x1, x2, x0) → 1140_0_ITER_LOAD(+(x1, -2), x2, +(x0, 1))
1140_0_ITER_LOAD(x1, x2, x0) → COND_1140_0_ITER_LOAD2(&&(<(x1, x0), <=(0, +(+(x0, x1), *(3, x2)))), x1, x2, x0)
COND_1140_0_ITER_LOAD2(TRUE, x1, x2, x0) → 1140_0_ITER_LOAD(x1, x2, +(x0, -1))
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if (x2[0] >= x1[0] && x1[0] >= x0[0] && 0 <= x0[0] + x1[0] + 3 * x2[0] ∧x1[0] →* x1[1]∧x2[0] →* x2[1]∧x0[0] →* x0[1])
(1) -> (0), if (x1[1] + 1 →* x1[0]∧x2[1] - 1 →* x2[0]∧x0[1] + 1 →* x0[0])
(1) -> (2), if (x1[1] + 1 →* x1[2]∧x2[1] - 1 →* x2[2]∧x0[1] + 1 →* x0[2])
(1) -> (4), if (x1[1] + 1 →* x1[4]∧x2[1] - 1 →* x2[4]∧x0[1] + 1 →* x0[4])
(2) -> (3), if (x2[2] < x1[2] && x1[2] >= x0[2] && 0 <= x0[2] + x1[2] + 3 * x2[2] ∧x1[2] →* x1[3]∧x2[2] →* x2[3]∧x0[2] →* x0[3])
(3) -> (0), if (x1[3] + -2 →* x1[0]∧x2[3] →* x2[0]∧x0[3] + 1 →* x0[0])
(3) -> (2), if (x1[3] + -2 →* x1[2]∧x2[3] →* x2[2]∧x0[3] + 1 →* x0[2])
(3) -> (4), if (x1[3] + -2 →* x1[4]∧x2[3] →* x2[4]∧x0[3] + 1 →* x0[4])
(4) -> (5), if (x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4] ∧x1[4] →* x1[5]∧x2[4] →* x2[5]∧x0[4] →* x0[5])
(5) -> (0), if (x1[5] →* x1[0]∧x2[5] →* x2[0]∧x0[5] + -1 →* x0[0])
(5) -> (2), if (x1[5] →* x1[2]∧x2[5] →* x2[2]∧x0[5] + -1 →* x0[2])
(5) -> (4), if (x1[5] →* x1[4]∧x2[5] →* x2[4]∧x0[5] + -1 →* x0[4])
(1) (&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0]))))=TRUE∧x1[0]=x1[1]∧x2[0]=x2[1]∧x0[0]=x0[1] ⇒ 1140_0_ITER_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1140_0_ITER_LOAD(x1[0], x2[0], x0[0])≥COND_1140_0_ITER_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1140_0_ITER_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥))
(2) (<=(0, +(+(x0[0], x1[0]), *(3, x2[0])))=TRUE∧>=(x2[0], x1[0])=TRUE∧>=(x1[0], x0[0])=TRUE ⇒ 1140_0_ITER_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧1140_0_ITER_LOAD(x1[0], x2[0], x0[0])≥COND_1140_0_ITER_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])∧(UIncreasing(COND_1140_0_ITER_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥))
(3) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [bni_26]x2[0] ≥ 0∧[(-1)bso_27] ≥ 0)
(4) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [bni_26]x2[0] ≥ 0∧[(-1)bso_27] ≥ 0)
(5) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [bni_26]x2[0] ≥ 0∧[(-1)bso_27] ≥ 0)
(6) (x0[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧[2]x1[0] + [3]x2[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [bni_26]x2[0] ≥ 0∧[(-1)bso_27] ≥ 0)
(7) (x0[0] ≥ 0∧x1[0] ≥ 0∧[5]x2[0] + [-2]x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [bni_26]x2[0] ≥ 0∧[(-1)bso_27] ≥ 0)
(8) (&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0]))))=TRUE∧x1[0]=x1[1]∧x2[0]=x2[1]∧x0[0]=x0[1]∧+(x1[1], 1)=x1[0]1∧-(x2[1], 1)=x2[0]1∧+(x0[1], 1)=x0[0]1 ⇒ COND_1140_0_ITER_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1140_0_ITER_LOAD(TRUE, x1[1], x2[1], x0[1])≥1140_0_ITER_LOAD(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1))∧(UIncreasing(1140_0_ITER_LOAD(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1))), ≥))
(9) (<=(0, +(+(x0[0], x1[0]), *(3, x2[0])))=TRUE∧>=(x2[0], x1[0])=TRUE∧>=(x1[0], x0[0])=TRUE ⇒ COND_1140_0_ITER_LOAD(TRUE, x1[0], x2[0], x0[0])≥NonInfC∧COND_1140_0_ITER_LOAD(TRUE, x1[0], x2[0], x0[0])≥1140_0_ITER_LOAD(+(x1[0], 1), -(x2[0], 1), +(x0[0], 1))∧(UIncreasing(1140_0_ITER_LOAD(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1))), ≥))
(10) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1))), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [bni_28]x2[0] ≥ 0∧[1 + (-1)bso_29] ≥ 0)
(11) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1))), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [bni_28]x2[0] ≥ 0∧[1 + (-1)bso_29] ≥ 0)
(12) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1))), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [bni_28]x2[0] ≥ 0∧[1 + (-1)bso_29] ≥ 0)
(13) (x0[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧[2]x1[0] + [3]x2[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1))), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [bni_28]x2[0] ≥ 0∧[1 + (-1)bso_29] ≥ 0)
(14) (x0[0] ≥ 0∧x1[0] ≥ 0∧[5]x2[0] + [-2]x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1))), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [bni_28]x2[0] ≥ 0∧[1 + (-1)bso_29] ≥ 0)
(15) (&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0]))))=TRUE∧x1[0]=x1[1]∧x2[0]=x2[1]∧x0[0]=x0[1]∧+(x1[1], 1)=x1[2]∧-(x2[1], 1)=x2[2]∧+(x0[1], 1)=x0[2] ⇒ COND_1140_0_ITER_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1140_0_ITER_LOAD(TRUE, x1[1], x2[1], x0[1])≥1140_0_ITER_LOAD(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1))∧(UIncreasing(1140_0_ITER_LOAD(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1))), ≥))
(16) (<=(0, +(+(x0[0], x1[0]), *(3, x2[0])))=TRUE∧>=(x2[0], x1[0])=TRUE∧>=(x1[0], x0[0])=TRUE ⇒ COND_1140_0_ITER_LOAD(TRUE, x1[0], x2[0], x0[0])≥NonInfC∧COND_1140_0_ITER_LOAD(TRUE, x1[0], x2[0], x0[0])≥1140_0_ITER_LOAD(+(x1[0], 1), -(x2[0], 1), +(x0[0], 1))∧(UIncreasing(1140_0_ITER_LOAD(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1))), ≥))
(17) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1))), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [bni_28]x2[0] ≥ 0∧[1 + (-1)bso_29] ≥ 0)
(18) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1))), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [bni_28]x2[0] ≥ 0∧[1 + (-1)bso_29] ≥ 0)
(19) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1))), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [bni_28]x2[0] ≥ 0∧[1 + (-1)bso_29] ≥ 0)
(20) (x0[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧[2]x1[0] + [3]x2[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1))), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [bni_28]x2[0] ≥ 0∧[1 + (-1)bso_29] ≥ 0)
(21) (x0[0] ≥ 0∧x1[0] ≥ 0∧[5]x2[0] + [-2]x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1))), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [bni_28]x2[0] ≥ 0∧[1 + (-1)bso_29] ≥ 0)
(22) (&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0]))))=TRUE∧x1[0]=x1[1]∧x2[0]=x2[1]∧x0[0]=x0[1]∧+(x1[1], 1)=x1[4]∧-(x2[1], 1)=x2[4]∧+(x0[1], 1)=x0[4] ⇒ COND_1140_0_ITER_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_1140_0_ITER_LOAD(TRUE, x1[1], x2[1], x0[1])≥1140_0_ITER_LOAD(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1))∧(UIncreasing(1140_0_ITER_LOAD(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1))), ≥))
(23) (<=(0, +(+(x0[0], x1[0]), *(3, x2[0])))=TRUE∧>=(x2[0], x1[0])=TRUE∧>=(x1[0], x0[0])=TRUE ⇒ COND_1140_0_ITER_LOAD(TRUE, x1[0], x2[0], x0[0])≥NonInfC∧COND_1140_0_ITER_LOAD(TRUE, x1[0], x2[0], x0[0])≥1140_0_ITER_LOAD(+(x1[0], 1), -(x2[0], 1), +(x0[0], 1))∧(UIncreasing(1140_0_ITER_LOAD(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1))), ≥))
(24) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1))), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [bni_28]x2[0] ≥ 0∧[1 + (-1)bso_29] ≥ 0)
(25) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1))), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [bni_28]x2[0] ≥ 0∧[1 + (-1)bso_29] ≥ 0)
(26) (x0[0] + x1[0] + [3]x2[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1))), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [bni_28]x2[0] ≥ 0∧[1 + (-1)bso_29] ≥ 0)
(27) (x0[0] ≥ 0∧x2[0] + [-1]x1[0] ≥ 0∧[2]x1[0] + [3]x2[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1))), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [bni_28]x2[0] ≥ 0∧[1 + (-1)bso_29] ≥ 0)
(28) (x0[0] ≥ 0∧x1[0] ≥ 0∧[5]x2[0] + [-2]x1[0] + [-1]x0[0] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1))), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [bni_28]x2[0] ≥ 0∧[1 + (-1)bso_29] ≥ 0)
(29) (&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2]))))=TRUE∧x1[2]=x1[3]∧x2[2]=x2[3]∧x0[2]=x0[3] ⇒ 1140_0_ITER_LOAD(x1[2], x2[2], x0[2])≥NonInfC∧1140_0_ITER_LOAD(x1[2], x2[2], x0[2])≥COND_1140_0_ITER_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])∧(UIncreasing(COND_1140_0_ITER_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥))
(30) (<=(0, +(+(x0[2], x1[2]), *(3, x2[2])))=TRUE∧<(x2[2], x1[2])=TRUE∧>=(x1[2], x0[2])=TRUE ⇒ 1140_0_ITER_LOAD(x1[2], x2[2], x0[2])≥NonInfC∧1140_0_ITER_LOAD(x1[2], x2[2], x0[2])≥COND_1140_0_ITER_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])∧(UIncreasing(COND_1140_0_ITER_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥))
(31) (x0[2] + x1[2] + [3]x2[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[(-1)bni_30 + (-1)Bound*bni_30] + [bni_30]x2[2] ≥ 0∧[(-1)bso_31] ≥ 0)
(32) (x0[2] + x1[2] + [3]x2[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[(-1)bni_30 + (-1)Bound*bni_30] + [bni_30]x2[2] ≥ 0∧[(-1)bso_31] ≥ 0)
(33) (x0[2] + x1[2] + [3]x2[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[(-1)bni_30 + (-1)Bound*bni_30] + [bni_30]x2[2] ≥ 0∧[(-1)bso_31] ≥ 0)
(34) (x0[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧[2]x1[2] + [3]x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[(-1)bni_30 + (-1)Bound*bni_30] + [bni_30]x2[2] ≥ 0∧[(-1)bso_31] ≥ 0)
(35) (x0[2] ≥ 0∧x1[2] ≥ 0∧[2] + [5]x2[2] + [2]x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[(-1)bni_30 + (-1)Bound*bni_30] + [bni_30]x2[2] ≥ 0∧[(-1)bso_31] ≥ 0)
(36) (x0[2] ≥ 0∧x1[2] ≥ 0∧[2] + [5]x2[2] + [2]x1[2] + [-1]x0[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[(-1)bni_30 + (-1)Bound*bni_30] + [bni_30]x2[2] ≥ 0∧[(-1)bso_31] ≥ 0)
(37) (x0[2] ≥ 0∧x1[2] ≥ 0∧[2] + [-5]x2[2] + [2]x1[2] + [-1]x0[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[(-1)bni_30 + (-1)Bound*bni_30] + [(-1)bni_30]x2[2] ≥ 0∧[(-1)bso_31] ≥ 0)
(38) (&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2]))))=TRUE∧x1[2]=x1[3]∧x2[2]=x2[3]∧x0[2]=x0[3]∧+(x1[3], -2)=x1[0]∧x2[3]=x2[0]∧+(x0[3], 1)=x0[0] ⇒ COND_1140_0_ITER_LOAD1(TRUE, x1[3], x2[3], x0[3])≥NonInfC∧COND_1140_0_ITER_LOAD1(TRUE, x1[3], x2[3], x0[3])≥1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))∧(UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥))
(39) (<=(0, +(+(x0[2], x1[2]), *(3, x2[2])))=TRUE∧<(x2[2], x1[2])=TRUE∧>=(x1[2], x0[2])=TRUE ⇒ COND_1140_0_ITER_LOAD1(TRUE, x1[2], x2[2], x0[2])≥NonInfC∧COND_1140_0_ITER_LOAD1(TRUE, x1[2], x2[2], x0[2])≥1140_0_ITER_LOAD(+(x1[2], -2), x2[2], +(x0[2], 1))∧(UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥))
(40) (x0[2] + x1[2] + [3]x2[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_32 + (-1)Bound*bni_32] + [bni_32]x2[2] ≥ 0∧[(-1)bso_33] ≥ 0)
(41) (x0[2] + x1[2] + [3]x2[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_32 + (-1)Bound*bni_32] + [bni_32]x2[2] ≥ 0∧[(-1)bso_33] ≥ 0)
(42) (x0[2] + x1[2] + [3]x2[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_32 + (-1)Bound*bni_32] + [bni_32]x2[2] ≥ 0∧[(-1)bso_33] ≥ 0)
(43) (x0[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧[2]x1[2] + [3]x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_32 + (-1)Bound*bni_32] + [bni_32]x2[2] ≥ 0∧[(-1)bso_33] ≥ 0)
(44) (x0[2] ≥ 0∧x1[2] ≥ 0∧[2] + [5]x2[2] + [2]x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_32 + (-1)Bound*bni_32] + [bni_32]x2[2] ≥ 0∧[(-1)bso_33] ≥ 0)
(45) (x0[2] ≥ 0∧x1[2] ≥ 0∧[2] + [5]x2[2] + [2]x1[2] + [-1]x0[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_32 + (-1)Bound*bni_32] + [bni_32]x2[2] ≥ 0∧[(-1)bso_33] ≥ 0)
(46) (x0[2] ≥ 0∧x1[2] ≥ 0∧[2] + [-5]x2[2] + [2]x1[2] + [-1]x0[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_32 + (-1)Bound*bni_32] + [(-1)bni_32]x2[2] ≥ 0∧[(-1)bso_33] ≥ 0)
(47) (&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2]))))=TRUE∧x1[2]=x1[3]∧x2[2]=x2[3]∧x0[2]=x0[3]∧+(x1[3], -2)=x1[2]1∧x2[3]=x2[2]1∧+(x0[3], 1)=x0[2]1 ⇒ COND_1140_0_ITER_LOAD1(TRUE, x1[3], x2[3], x0[3])≥NonInfC∧COND_1140_0_ITER_LOAD1(TRUE, x1[3], x2[3], x0[3])≥1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))∧(UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥))
(48) (<=(0, +(+(x0[2], x1[2]), *(3, x2[2])))=TRUE∧<(x2[2], x1[2])=TRUE∧>=(x1[2], x0[2])=TRUE ⇒ COND_1140_0_ITER_LOAD1(TRUE, x1[2], x2[2], x0[2])≥NonInfC∧COND_1140_0_ITER_LOAD1(TRUE, x1[2], x2[2], x0[2])≥1140_0_ITER_LOAD(+(x1[2], -2), x2[2], +(x0[2], 1))∧(UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥))
(49) (x0[2] + x1[2] + [3]x2[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_32 + (-1)Bound*bni_32] + [bni_32]x2[2] ≥ 0∧[(-1)bso_33] ≥ 0)
(50) (x0[2] + x1[2] + [3]x2[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_32 + (-1)Bound*bni_32] + [bni_32]x2[2] ≥ 0∧[(-1)bso_33] ≥ 0)
(51) (x0[2] + x1[2] + [3]x2[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_32 + (-1)Bound*bni_32] + [bni_32]x2[2] ≥ 0∧[(-1)bso_33] ≥ 0)
(52) (x0[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧[2]x1[2] + [3]x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_32 + (-1)Bound*bni_32] + [bni_32]x2[2] ≥ 0∧[(-1)bso_33] ≥ 0)
(53) (x0[2] ≥ 0∧x1[2] ≥ 0∧[2] + [5]x2[2] + [2]x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_32 + (-1)Bound*bni_32] + [bni_32]x2[2] ≥ 0∧[(-1)bso_33] ≥ 0)
(54) (x0[2] ≥ 0∧x1[2] ≥ 0∧[2] + [5]x2[2] + [2]x1[2] + [-1]x0[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_32 + (-1)Bound*bni_32] + [bni_32]x2[2] ≥ 0∧[(-1)bso_33] ≥ 0)
(55) (x0[2] ≥ 0∧x1[2] ≥ 0∧[2] + [-5]x2[2] + [2]x1[2] + [-1]x0[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_32 + (-1)Bound*bni_32] + [(-1)bni_32]x2[2] ≥ 0∧[(-1)bso_33] ≥ 0)
(56) (&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2]))))=TRUE∧x1[2]=x1[3]∧x2[2]=x2[3]∧x0[2]=x0[3]∧+(x1[3], -2)=x1[4]∧x2[3]=x2[4]∧+(x0[3], 1)=x0[4] ⇒ COND_1140_0_ITER_LOAD1(TRUE, x1[3], x2[3], x0[3])≥NonInfC∧COND_1140_0_ITER_LOAD1(TRUE, x1[3], x2[3], x0[3])≥1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))∧(UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥))
(57) (<=(0, +(+(x0[2], x1[2]), *(3, x2[2])))=TRUE∧<(x2[2], x1[2])=TRUE∧>=(x1[2], x0[2])=TRUE ⇒ COND_1140_0_ITER_LOAD1(TRUE, x1[2], x2[2], x0[2])≥NonInfC∧COND_1140_0_ITER_LOAD1(TRUE, x1[2], x2[2], x0[2])≥1140_0_ITER_LOAD(+(x1[2], -2), x2[2], +(x0[2], 1))∧(UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥))
(58) (x0[2] + x1[2] + [3]x2[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_32 + (-1)Bound*bni_32] + [bni_32]x2[2] ≥ 0∧[(-1)bso_33] ≥ 0)
(59) (x0[2] + x1[2] + [3]x2[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_32 + (-1)Bound*bni_32] + [bni_32]x2[2] ≥ 0∧[(-1)bso_33] ≥ 0)
(60) (x0[2] + x1[2] + [3]x2[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_32 + (-1)Bound*bni_32] + [bni_32]x2[2] ≥ 0∧[(-1)bso_33] ≥ 0)
(61) (x0[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧[2]x1[2] + [3]x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_32 + (-1)Bound*bni_32] + [bni_32]x2[2] ≥ 0∧[(-1)bso_33] ≥ 0)
(62) (x0[2] ≥ 0∧x1[2] ≥ 0∧[2] + [5]x2[2] + [2]x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_32 + (-1)Bound*bni_32] + [bni_32]x2[2] ≥ 0∧[(-1)bso_33] ≥ 0)
(63) (x0[2] ≥ 0∧x1[2] ≥ 0∧[2] + [5]x2[2] + [2]x1[2] + [-1]x0[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_32 + (-1)Bound*bni_32] + [bni_32]x2[2] ≥ 0∧[(-1)bso_33] ≥ 0)
(64) (x0[2] ≥ 0∧x1[2] ≥ 0∧[2] + [-5]x2[2] + [2]x1[2] + [-1]x0[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_32 + (-1)Bound*bni_32] + [(-1)bni_32]x2[2] ≥ 0∧[(-1)bso_33] ≥ 0)
(65) (&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4]))))=TRUE∧x1[4]=x1[5]∧x2[4]=x2[5]∧x0[4]=x0[5] ⇒ 1140_0_ITER_LOAD(x1[4], x2[4], x0[4])≥NonInfC∧1140_0_ITER_LOAD(x1[4], x2[4], x0[4])≥COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])∧(UIncreasing(COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥))
(66) (<(x1[4], x0[4])=TRUE∧<=(0, +(+(x0[4], x1[4]), *(3, x2[4])))=TRUE ⇒ 1140_0_ITER_LOAD(x1[4], x2[4], x0[4])≥NonInfC∧1140_0_ITER_LOAD(x1[4], x2[4], x0[4])≥COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])∧(UIncreasing(COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥))
(67) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_34 + (-1)Bound*bni_34] + [bni_34]x2[4] ≥ 0∧[(-1)bso_35] ≥ 0)
(68) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_34 + (-1)Bound*bni_34] + [bni_34]x2[4] ≥ 0∧[(-1)bso_35] ≥ 0)
(69) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_34 + (-1)Bound*bni_34] + [bni_34]x2[4] ≥ 0∧[(-1)bso_35] ≥ 0)
(70) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_34 + (-1)Bound*bni_34] + [bni_34]x2[4] ≥ 0∧[(-1)bso_35] ≥ 0)
(71) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_34 + (-1)Bound*bni_34] + [bni_34]x2[4] ≥ 0∧[(-1)bso_35] ≥ 0)
(72) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_34 + (-1)Bound*bni_34] + [bni_34]x2[4] ≥ 0∧[(-1)bso_35] ≥ 0)
(73) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_34 + (-1)Bound*bni_34] + [bni_34]x2[4] ≥ 0∧[(-1)bso_35] ≥ 0)
(74) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_34 + (-1)Bound*bni_34] + [(-1)bni_34]x2[4] ≥ 0∧[(-1)bso_35] ≥ 0)
(75) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_34 + (-1)Bound*bni_34] + [(-1)bni_34]x2[4] ≥ 0∧[(-1)bso_35] ≥ 0)
(76) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_34 + (-1)Bound*bni_34] + [bni_34]x2[4] ≥ 0∧[(-1)bso_35] ≥ 0)
(77) (&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4]))))=TRUE∧x1[4]=x1[5]∧x2[4]=x2[5]∧x0[4]=x0[5]∧x1[5]=x1[0]∧x2[5]=x2[0]∧+(x0[5], -1)=x0[0] ⇒ COND_1140_0_ITER_LOAD2(TRUE, x1[5], x2[5], x0[5])≥NonInfC∧COND_1140_0_ITER_LOAD2(TRUE, x1[5], x2[5], x0[5])≥1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))∧(UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥))
(78) (<(x1[4], x0[4])=TRUE∧<=(0, +(+(x0[4], x1[4]), *(3, x2[4])))=TRUE ⇒ COND_1140_0_ITER_LOAD2(TRUE, x1[4], x2[4], x0[4])≥NonInfC∧COND_1140_0_ITER_LOAD2(TRUE, x1[4], x2[4], x0[4])≥1140_0_ITER_LOAD(x1[4], x2[4], +(x0[4], -1))∧(UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥))
(79) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_36 + (-1)Bound*bni_36] + [bni_36]x2[4] ≥ 0∧[(-1)bso_37] ≥ 0)
(80) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_36 + (-1)Bound*bni_36] + [bni_36]x2[4] ≥ 0∧[(-1)bso_37] ≥ 0)
(81) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_36 + (-1)Bound*bni_36] + [bni_36]x2[4] ≥ 0∧[(-1)bso_37] ≥ 0)
(82) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_36 + (-1)Bound*bni_36] + [bni_36]x2[4] ≥ 0∧[(-1)bso_37] ≥ 0)
(83) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_36 + (-1)Bound*bni_36] + [bni_36]x2[4] ≥ 0∧[(-1)bso_37] ≥ 0)
(84) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_36 + (-1)Bound*bni_36] + [bni_36]x2[4] ≥ 0∧[(-1)bso_37] ≥ 0)
(85) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_36 + (-1)Bound*bni_36] + [bni_36]x2[4] ≥ 0∧[(-1)bso_37] ≥ 0)
(86) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_36 + (-1)Bound*bni_36] + [(-1)bni_36]x2[4] ≥ 0∧[(-1)bso_37] ≥ 0)
(87) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_36 + (-1)Bound*bni_36] + [bni_36]x2[4] ≥ 0∧[(-1)bso_37] ≥ 0)
(88) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_36 + (-1)Bound*bni_36] + [(-1)bni_36]x2[4] ≥ 0∧[(-1)bso_37] ≥ 0)
(89) (&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4]))))=TRUE∧x1[4]=x1[5]∧x2[4]=x2[5]∧x0[4]=x0[5]∧x1[5]=x1[2]∧x2[5]=x2[2]∧+(x0[5], -1)=x0[2] ⇒ COND_1140_0_ITER_LOAD2(TRUE, x1[5], x2[5], x0[5])≥NonInfC∧COND_1140_0_ITER_LOAD2(TRUE, x1[5], x2[5], x0[5])≥1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))∧(UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥))
(90) (<(x1[4], x0[4])=TRUE∧<=(0, +(+(x0[4], x1[4]), *(3, x2[4])))=TRUE ⇒ COND_1140_0_ITER_LOAD2(TRUE, x1[4], x2[4], x0[4])≥NonInfC∧COND_1140_0_ITER_LOAD2(TRUE, x1[4], x2[4], x0[4])≥1140_0_ITER_LOAD(x1[4], x2[4], +(x0[4], -1))∧(UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥))
(91) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_36 + (-1)Bound*bni_36] + [bni_36]x2[4] ≥ 0∧[(-1)bso_37] ≥ 0)
(92) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_36 + (-1)Bound*bni_36] + [bni_36]x2[4] ≥ 0∧[(-1)bso_37] ≥ 0)
(93) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_36 + (-1)Bound*bni_36] + [bni_36]x2[4] ≥ 0∧[(-1)bso_37] ≥ 0)
(94) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_36 + (-1)Bound*bni_36] + [bni_36]x2[4] ≥ 0∧[(-1)bso_37] ≥ 0)
(95) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_36 + (-1)Bound*bni_36] + [bni_36]x2[4] ≥ 0∧[(-1)bso_37] ≥ 0)
(96) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_36 + (-1)Bound*bni_36] + [bni_36]x2[4] ≥ 0∧[(-1)bso_37] ≥ 0)
(97) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_36 + (-1)Bound*bni_36] + [bni_36]x2[4] ≥ 0∧[(-1)bso_37] ≥ 0)
(98) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_36 + (-1)Bound*bni_36] + [(-1)bni_36]x2[4] ≥ 0∧[(-1)bso_37] ≥ 0)
(99) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_36 + (-1)Bound*bni_36] + [(-1)bni_36]x2[4] ≥ 0∧[(-1)bso_37] ≥ 0)
(100) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_36 + (-1)Bound*bni_36] + [bni_36]x2[4] ≥ 0∧[(-1)bso_37] ≥ 0)
(101) (&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4]))))=TRUE∧x1[4]=x1[5]∧x2[4]=x2[5]∧x0[4]=x0[5]∧x1[5]=x1[4]1∧x2[5]=x2[4]1∧+(x0[5], -1)=x0[4]1 ⇒ COND_1140_0_ITER_LOAD2(TRUE, x1[5], x2[5], x0[5])≥NonInfC∧COND_1140_0_ITER_LOAD2(TRUE, x1[5], x2[5], x0[5])≥1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))∧(UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥))
(102) (<(x1[4], x0[4])=TRUE∧<=(0, +(+(x0[4], x1[4]), *(3, x2[4])))=TRUE ⇒ COND_1140_0_ITER_LOAD2(TRUE, x1[4], x2[4], x0[4])≥NonInfC∧COND_1140_0_ITER_LOAD2(TRUE, x1[4], x2[4], x0[4])≥1140_0_ITER_LOAD(x1[4], x2[4], +(x0[4], -1))∧(UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥))
(103) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_36 + (-1)Bound*bni_36] + [bni_36]x2[4] ≥ 0∧[(-1)bso_37] ≥ 0)
(104) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_36 + (-1)Bound*bni_36] + [bni_36]x2[4] ≥ 0∧[(-1)bso_37] ≥ 0)
(105) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_36 + (-1)Bound*bni_36] + [bni_36]x2[4] ≥ 0∧[(-1)bso_37] ≥ 0)
(106) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_36 + (-1)Bound*bni_36] + [bni_36]x2[4] ≥ 0∧[(-1)bso_37] ≥ 0)
(107) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_36 + (-1)Bound*bni_36] + [bni_36]x2[4] ≥ 0∧[(-1)bso_37] ≥ 0)
(108) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_36 + (-1)Bound*bni_36] + [bni_36]x2[4] ≥ 0∧[(-1)bso_37] ≥ 0)
(109) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_36 + (-1)Bound*bni_36] + [bni_36]x2[4] ≥ 0∧[(-1)bso_37] ≥ 0)
(110) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_36 + (-1)Bound*bni_36] + [(-1)bni_36]x2[4] ≥ 0∧[(-1)bso_37] ≥ 0)
(111) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_36 + (-1)Bound*bni_36] + [bni_36]x2[4] ≥ 0∧[(-1)bso_37] ≥ 0)
(112) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_36 + (-1)Bound*bni_36] + [(-1)bni_36]x2[4] ≥ 0∧[(-1)bso_37] ≥ 0)
POL(TRUE) = [1]
POL(FALSE) = [3]
POL(1140_0_ITER_LOAD(x1, x2, x3)) = [-1] + x2
POL(COND_1140_0_ITER_LOAD(x1, x2, x3, x4)) = [-1] + x3
POL(&&(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(<=(x1, x2)) = [-1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
POL(*(x1, x2)) = x1·x2
POL(3) = [3]
POL(1) = [1]
POL(-(x1, x2)) = x1 + [-1]x2
POL(COND_1140_0_ITER_LOAD1(x1, x2, x3, x4)) = [-1] + x3
POL(<(x1, x2)) = [-1]
POL(-2) = [-2]
POL(COND_1140_0_ITER_LOAD2(x1, x2, x3, x4)) = [-1] + x3
POL(-1) = [-1]
COND_1140_0_ITER_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1140_0_ITER_LOAD(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1))
1140_0_ITER_LOAD(x1[0], x2[0], x0[0]) → COND_1140_0_ITER_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])
COND_1140_0_ITER_LOAD(TRUE, x1[1], x2[1], x0[1]) → 1140_0_ITER_LOAD(+(x1[1], 1), -(x2[1], 1), +(x0[1], 1))
1140_0_ITER_LOAD(x1[0], x2[0], x0[0]) → COND_1140_0_ITER_LOAD(&&(&&(>=(x2[0], x1[0]), >=(x1[0], x0[0])), <=(0, +(+(x0[0], x1[0]), *(3, x2[0])))), x1[0], x2[0], x0[0])
1140_0_ITER_LOAD(x1[2], x2[2], x0[2]) → COND_1140_0_ITER_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])
COND_1140_0_ITER_LOAD1(TRUE, x1[3], x2[3], x0[3]) → 1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))
1140_0_ITER_LOAD(x1[4], x2[4], x0[4]) → COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])
COND_1140_0_ITER_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(3) -> (0), if (x1[3] + -2 →* x1[0]∧x2[3] →* x2[0]∧x0[3] + 1 →* x0[0])
(5) -> (0), if (x1[5] →* x1[0]∧x2[5] →* x2[0]∧x0[5] + -1 →* x0[0])
(3) -> (2), if (x1[3] + -2 →* x1[2]∧x2[3] →* x2[2]∧x0[3] + 1 →* x0[2])
(5) -> (2), if (x1[5] →* x1[2]∧x2[5] →* x2[2]∧x0[5] + -1 →* x0[2])
(2) -> (3), if (x2[2] < x1[2] && x1[2] >= x0[2] && 0 <= x0[2] + x1[2] + 3 * x2[2] ∧x1[2] →* x1[3]∧x2[2] →* x2[3]∧x0[2] →* x0[3])
(3) -> (4), if (x1[3] + -2 →* x1[4]∧x2[3] →* x2[4]∧x0[3] + 1 →* x0[4])
(5) -> (4), if (x1[5] →* x1[4]∧x2[5] →* x2[4]∧x0[5] + -1 →* x0[4])
(4) -> (5), if (x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4] ∧x1[4] →* x1[5]∧x2[4] →* x2[5]∧x0[4] →* x0[5])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(3) -> (2), if (x1[3] + -2 →* x1[2]∧x2[3] →* x2[2]∧x0[3] + 1 →* x0[2])
(5) -> (2), if (x1[5] →* x1[2]∧x2[5] →* x2[2]∧x0[5] + -1 →* x0[2])
(2) -> (3), if (x2[2] < x1[2] && x1[2] >= x0[2] && 0 <= x0[2] + x1[2] + 3 * x2[2] ∧x1[2] →* x1[3]∧x2[2] →* x2[3]∧x0[2] →* x0[3])
(3) -> (4), if (x1[3] + -2 →* x1[4]∧x2[3] →* x2[4]∧x0[3] + 1 →* x0[4])
(5) -> (4), if (x1[5] →* x1[4]∧x2[5] →* x2[4]∧x0[5] + -1 →* x0[4])
(4) -> (5), if (x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4] ∧x1[4] →* x1[5]∧x2[4] →* x2[5]∧x0[4] →* x0[5])
(1) (&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4]))))=TRUE∧x1[4]=x1[5]∧x2[4]=x2[5]∧x0[4]=x0[5]∧x1[5]=x1[2]∧x2[5]=x2[2]∧+(x0[5], -1)=x0[2] ⇒ COND_1140_0_ITER_LOAD2(TRUE, x1[5], x2[5], x0[5])≥NonInfC∧COND_1140_0_ITER_LOAD2(TRUE, x1[5], x2[5], x0[5])≥1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))∧(UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥))
(2) (<(x1[4], x0[4])=TRUE∧<=(0, +(+(x0[4], x1[4]), *(3, x2[4])))=TRUE ⇒ COND_1140_0_ITER_LOAD2(TRUE, x1[4], x2[4], x0[4])≥NonInfC∧COND_1140_0_ITER_LOAD2(TRUE, x1[4], x2[4], x0[4])≥1140_0_ITER_LOAD(x1[4], x2[4], +(x0[4], -1))∧(UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥))
(3) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [(-1)bni_21]x2[4] + [bni_21]x1[4] ≥ 0∧[(-1)bso_22] ≥ 0)
(4) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [(-1)bni_21]x2[4] + [bni_21]x1[4] ≥ 0∧[(-1)bso_22] ≥ 0)
(5) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [(-1)bni_21]x2[4] + [bni_21]x1[4] ≥ 0∧[(-1)bso_22] ≥ 0)
(6) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]x1[4] + [(-1)bni_21]x2[4] ≥ 0∧[(-1)bso_22] ≥ 0)
(7) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]x1[4] + [(-1)bni_21]x2[4] ≥ 0∧[(-1)bso_22] ≥ 0)
(8) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [(-1)bni_21]x1[4] + [(-1)bni_21]x2[4] ≥ 0∧[(-1)bso_22] ≥ 0)
(9) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]x1[4] + [(-1)bni_21]x2[4] ≥ 0∧[(-1)bso_22] ≥ 0)
(10) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]x1[4] + [bni_21]x2[4] ≥ 0∧[(-1)bso_22] ≥ 0)
(11) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [(-1)bni_21]x1[4] + [(-1)bni_21]x2[4] ≥ 0∧[(-1)bso_22] ≥ 0)
(12) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [(-1)bni_21]x1[4] + [bni_21]x2[4] ≥ 0∧[(-1)bso_22] ≥ 0)
(13) (&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4]))))=TRUE∧x1[4]=x1[5]∧x2[4]=x2[5]∧x0[4]=x0[5]∧x1[5]=x1[4]1∧x2[5]=x2[4]1∧+(x0[5], -1)=x0[4]1 ⇒ COND_1140_0_ITER_LOAD2(TRUE, x1[5], x2[5], x0[5])≥NonInfC∧COND_1140_0_ITER_LOAD2(TRUE, x1[5], x2[5], x0[5])≥1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))∧(UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥))
(14) (<(x1[4], x0[4])=TRUE∧<=(0, +(+(x0[4], x1[4]), *(3, x2[4])))=TRUE ⇒ COND_1140_0_ITER_LOAD2(TRUE, x1[4], x2[4], x0[4])≥NonInfC∧COND_1140_0_ITER_LOAD2(TRUE, x1[4], x2[4], x0[4])≥1140_0_ITER_LOAD(x1[4], x2[4], +(x0[4], -1))∧(UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥))
(15) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [(-1)bni_21]x2[4] + [bni_21]x1[4] ≥ 0∧[(-1)bso_22] ≥ 0)
(16) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [(-1)bni_21]x2[4] + [bni_21]x1[4] ≥ 0∧[(-1)bso_22] ≥ 0)
(17) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [(-1)bni_21]x2[4] + [bni_21]x1[4] ≥ 0∧[(-1)bso_22] ≥ 0)
(18) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]x1[4] + [(-1)bni_21]x2[4] ≥ 0∧[(-1)bso_22] ≥ 0)
(19) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]x1[4] + [(-1)bni_21]x2[4] ≥ 0∧[(-1)bso_22] ≥ 0)
(20) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [(-1)bni_21]x1[4] + [(-1)bni_21]x2[4] ≥ 0∧[(-1)bso_22] ≥ 0)
(21) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]x1[4] + [(-1)bni_21]x2[4] ≥ 0∧[(-1)bso_22] ≥ 0)
(22) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]x1[4] + [bni_21]x2[4] ≥ 0∧[(-1)bso_22] ≥ 0)
(23) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [(-1)bni_21]x1[4] + [(-1)bni_21]x2[4] ≥ 0∧[(-1)bso_22] ≥ 0)
(24) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)bni_21 + (-1)Bound*bni_21] + [(-1)bni_21]x1[4] + [bni_21]x2[4] ≥ 0∧[(-1)bso_22] ≥ 0)
(25) (&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4]))))=TRUE∧x1[4]=x1[5]∧x2[4]=x2[5]∧x0[4]=x0[5] ⇒ 1140_0_ITER_LOAD(x1[4], x2[4], x0[4])≥NonInfC∧1140_0_ITER_LOAD(x1[4], x2[4], x0[4])≥COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])∧(UIncreasing(COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥))
(26) (<(x1[4], x0[4])=TRUE∧<=(0, +(+(x0[4], x1[4]), *(3, x2[4])))=TRUE ⇒ 1140_0_ITER_LOAD(x1[4], x2[4], x0[4])≥NonInfC∧1140_0_ITER_LOAD(x1[4], x2[4], x0[4])≥COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])∧(UIncreasing(COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥))
(27) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [(-1)bni_23]x2[4] + [bni_23]x1[4] ≥ 0∧[(-1)bso_24] ≥ 0)
(28) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [(-1)bni_23]x2[4] + [bni_23]x1[4] ≥ 0∧[(-1)bso_24] ≥ 0)
(29) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [(-1)bni_23]x2[4] + [bni_23]x1[4] ≥ 0∧[(-1)bso_24] ≥ 0)
(30) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[4] + [(-1)bni_23]x2[4] ≥ 0∧[(-1)bso_24] ≥ 0)
(31) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[4] + [(-1)bni_23]x2[4] ≥ 0∧[(-1)bso_24] ≥ 0)
(32) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [(-1)bni_23]x1[4] + [(-1)bni_23]x2[4] ≥ 0∧[(-1)bso_24] ≥ 0)
(33) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[4] + [(-1)bni_23]x2[4] ≥ 0∧[(-1)bso_24] ≥ 0)
(34) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[4] + [bni_23]x2[4] ≥ 0∧[(-1)bso_24] ≥ 0)
(35) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [(-1)bni_23]x1[4] + [(-1)bni_23]x2[4] ≥ 0∧[(-1)bso_24] ≥ 0)
(36) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [(-1)bni_23]x1[4] + [bni_23]x2[4] ≥ 0∧[(-1)bso_24] ≥ 0)
(37) (&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2]))))=TRUE∧x1[2]=x1[3]∧x2[2]=x2[3]∧x0[2]=x0[3]∧+(x1[3], -2)=x1[2]1∧x2[3]=x2[2]1∧+(x0[3], 1)=x0[2]1 ⇒ COND_1140_0_ITER_LOAD1(TRUE, x1[3], x2[3], x0[3])≥NonInfC∧COND_1140_0_ITER_LOAD1(TRUE, x1[3], x2[3], x0[3])≥1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))∧(UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥))
(38) (<=(0, +(+(x0[2], x1[2]), *(3, x2[2])))=TRUE∧<(x2[2], x1[2])=TRUE∧>=(x1[2], x0[2])=TRUE ⇒ COND_1140_0_ITER_LOAD1(TRUE, x1[2], x2[2], x0[2])≥NonInfC∧COND_1140_0_ITER_LOAD1(TRUE, x1[2], x2[2], x0[2])≥1140_0_ITER_LOAD(+(x1[2], -2), x2[2], +(x0[2], 1))∧(UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥))
(39) (x0[2] + x1[2] + [3]x2[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_25 + (-1)Bound*bni_25] + [(-1)bni_25]x2[2] + [bni_25]x1[2] ≥ 0∧[2 + (-1)bso_26] ≥ 0)
(40) (x0[2] + x1[2] + [3]x2[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_25 + (-1)Bound*bni_25] + [(-1)bni_25]x2[2] + [bni_25]x1[2] ≥ 0∧[2 + (-1)bso_26] ≥ 0)
(41) (x0[2] + x1[2] + [3]x2[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_25 + (-1)Bound*bni_25] + [(-1)bni_25]x2[2] + [bni_25]x1[2] ≥ 0∧[2 + (-1)bso_26] ≥ 0)
(42) (x0[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧[2]x1[2] + [3]x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_25 + (-1)Bound*bni_25] + [bni_25]x1[2] + [(-1)bni_25]x2[2] ≥ 0∧[2 + (-1)bso_26] ≥ 0)
(43) (x0[2] ≥ 0∧x1[2] ≥ 0∧[2] + [5]x2[2] + [2]x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥)∧[(-1)Bound*bni_25] + [bni_25]x1[2] ≥ 0∧[2 + (-1)bso_26] ≥ 0)
(44) (x0[2] ≥ 0∧x1[2] ≥ 0∧[2] + [-5]x2[2] + [2]x1[2] + [-1]x0[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥)∧[(-1)Bound*bni_25] + [bni_25]x1[2] ≥ 0∧[2 + (-1)bso_26] ≥ 0)
(45) (x0[2] ≥ 0∧x1[2] ≥ 0∧[2] + [5]x2[2] + [2]x1[2] + [-1]x0[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥)∧[(-1)Bound*bni_25] + [bni_25]x1[2] ≥ 0∧[2 + (-1)bso_26] ≥ 0)
(46) (&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2]))))=TRUE∧x1[2]=x1[3]∧x2[2]=x2[3]∧x0[2]=x0[3]∧+(x1[3], -2)=x1[4]∧x2[3]=x2[4]∧+(x0[3], 1)=x0[4] ⇒ COND_1140_0_ITER_LOAD1(TRUE, x1[3], x2[3], x0[3])≥NonInfC∧COND_1140_0_ITER_LOAD1(TRUE, x1[3], x2[3], x0[3])≥1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))∧(UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥))
(47) (<=(0, +(+(x0[2], x1[2]), *(3, x2[2])))=TRUE∧<(x2[2], x1[2])=TRUE∧>=(x1[2], x0[2])=TRUE ⇒ COND_1140_0_ITER_LOAD1(TRUE, x1[2], x2[2], x0[2])≥NonInfC∧COND_1140_0_ITER_LOAD1(TRUE, x1[2], x2[2], x0[2])≥1140_0_ITER_LOAD(+(x1[2], -2), x2[2], +(x0[2], 1))∧(UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥))
(48) (x0[2] + x1[2] + [3]x2[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_25 + (-1)Bound*bni_25] + [(-1)bni_25]x2[2] + [bni_25]x1[2] ≥ 0∧[2 + (-1)bso_26] ≥ 0)
(49) (x0[2] + x1[2] + [3]x2[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_25 + (-1)Bound*bni_25] + [(-1)bni_25]x2[2] + [bni_25]x1[2] ≥ 0∧[2 + (-1)bso_26] ≥ 0)
(50) (x0[2] + x1[2] + [3]x2[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_25 + (-1)Bound*bni_25] + [(-1)bni_25]x2[2] + [bni_25]x1[2] ≥ 0∧[2 + (-1)bso_26] ≥ 0)
(51) (x0[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧[2]x1[2] + [3]x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_25 + (-1)Bound*bni_25] + [bni_25]x1[2] + [(-1)bni_25]x2[2] ≥ 0∧[2 + (-1)bso_26] ≥ 0)
(52) (x0[2] ≥ 0∧x1[2] ≥ 0∧[2] + [5]x2[2] + [2]x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥)∧[(-1)Bound*bni_25] + [bni_25]x1[2] ≥ 0∧[2 + (-1)bso_26] ≥ 0)
(53) (x0[2] ≥ 0∧x1[2] ≥ 0∧[2] + [5]x2[2] + [2]x1[2] + [-1]x0[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥)∧[(-1)Bound*bni_25] + [bni_25]x1[2] ≥ 0∧[2 + (-1)bso_26] ≥ 0)
(54) (x0[2] ≥ 0∧x1[2] ≥ 0∧[2] + [-5]x2[2] + [2]x1[2] + [-1]x0[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))), ≥)∧[(-1)Bound*bni_25] + [bni_25]x1[2] ≥ 0∧[2 + (-1)bso_26] ≥ 0)
(55) (&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2]))))=TRUE∧x1[2]=x1[3]∧x2[2]=x2[3]∧x0[2]=x0[3] ⇒ 1140_0_ITER_LOAD(x1[2], x2[2], x0[2])≥NonInfC∧1140_0_ITER_LOAD(x1[2], x2[2], x0[2])≥COND_1140_0_ITER_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])∧(UIncreasing(COND_1140_0_ITER_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥))
(56) (<=(0, +(+(x0[2], x1[2]), *(3, x2[2])))=TRUE∧<(x2[2], x1[2])=TRUE∧>=(x1[2], x0[2])=TRUE ⇒ 1140_0_ITER_LOAD(x1[2], x2[2], x0[2])≥NonInfC∧1140_0_ITER_LOAD(x1[2], x2[2], x0[2])≥COND_1140_0_ITER_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])∧(UIncreasing(COND_1140_0_ITER_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥))
(57) (x0[2] + x1[2] + [3]x2[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [(-1)bni_27]x2[2] + [bni_27]x1[2] ≥ 0∧[(-1)bso_28] ≥ 0)
(58) (x0[2] + x1[2] + [3]x2[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [(-1)bni_27]x2[2] + [bni_27]x1[2] ≥ 0∧[(-1)bso_28] ≥ 0)
(59) (x0[2] + x1[2] + [3]x2[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [(-1)bni_27]x2[2] + [bni_27]x1[2] ≥ 0∧[(-1)bso_28] ≥ 0)
(60) (x0[2] ≥ 0∧x1[2] + [-1] + [-1]x2[2] ≥ 0∧[2]x1[2] + [3]x2[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[(-1)bni_27 + (-1)Bound*bni_27] + [bni_27]x1[2] + [(-1)bni_27]x2[2] ≥ 0∧[(-1)bso_28] ≥ 0)
(61) (x0[2] ≥ 0∧x1[2] ≥ 0∧[2] + [5]x2[2] + [2]x1[2] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[(-1)Bound*bni_27] + [bni_27]x1[2] ≥ 0∧[(-1)bso_28] ≥ 0)
(62) (x0[2] ≥ 0∧x1[2] ≥ 0∧[2] + [5]x2[2] + [2]x1[2] + [-1]x0[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[(-1)Bound*bni_27] + [bni_27]x1[2] ≥ 0∧[(-1)bso_28] ≥ 0)
(63) (x0[2] ≥ 0∧x1[2] ≥ 0∧[2] + [-5]x2[2] + [2]x1[2] + [-1]x0[2] ≥ 0∧x2[2] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])), ≥)∧[(-1)Bound*bni_27] + [bni_27]x1[2] ≥ 0∧[(-1)bso_28] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = [3]
POL(COND_1140_0_ITER_LOAD2(x1, x2, x3, x4)) = [-1] + [-1]x3 + x2
POL(1140_0_ITER_LOAD(x1, x2, x3)) = [-1] + [-1]x2 + x1
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(&&(x1, x2)) = [-1]
POL(<(x1, x2)) = [-1]
POL(<=(x1, x2)) = [-1]
POL(0) = 0
POL(*(x1, x2)) = x1·x2
POL(3) = [3]
POL(COND_1140_0_ITER_LOAD1(x1, x2, x3, x4)) = [-1] + [-1]x3 + x2
POL(-2) = [-2]
POL(1) = [1]
POL(>=(x1, x2)) = [-1]
COND_1140_0_ITER_LOAD1(TRUE, x1[3], x2[3], x0[3]) → 1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))
COND_1140_0_ITER_LOAD1(TRUE, x1[3], x2[3], x0[3]) → 1140_0_ITER_LOAD(+(x1[3], -2), x2[3], +(x0[3], 1))
1140_0_ITER_LOAD(x1[2], x2[2], x0[2]) → COND_1140_0_ITER_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])
COND_1140_0_ITER_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))
1140_0_ITER_LOAD(x1[4], x2[4], x0[4]) → COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])
1140_0_ITER_LOAD(x1[2], x2[2], x0[2]) → COND_1140_0_ITER_LOAD1(&&(&&(<(x2[2], x1[2]), >=(x1[2], x0[2])), <=(0, +(+(x0[2], x1[2]), *(3, x2[2])))), x1[2], x2[2], x0[2])
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(5) -> (2), if (x1[5] →* x1[2]∧x2[5] →* x2[2]∧x0[5] + -1 →* x0[2])
(5) -> (4), if (x1[5] →* x1[4]∧x2[5] →* x2[4]∧x0[5] + -1 →* x0[4])
(4) -> (5), if (x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4] ∧x1[4] →* x1[5]∧x2[4] →* x2[5]∧x0[4] →* x0[5])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(5) -> (4), if (x1[5] →* x1[4]∧x2[5] →* x2[4]∧x0[5] + -1 →* x0[4])
(4) -> (5), if (x1[4] < x0[4] && 0 <= x0[4] + x1[4] + 3 * x2[4] ∧x1[4] →* x1[5]∧x2[4] →* x2[5]∧x0[4] →* x0[5])
(1) (&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4]))))=TRUE∧x1[4]=x1[5]∧x2[4]=x2[5]∧x0[4]=x0[5] ⇒ 1140_0_ITER_LOAD(x1[4], x2[4], x0[4])≥NonInfC∧1140_0_ITER_LOAD(x1[4], x2[4], x0[4])≥COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])∧(UIncreasing(COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥))
(2) (<(x1[4], x0[4])=TRUE∧<=(0, +(+(x0[4], x1[4]), *(3, x2[4])))=TRUE ⇒ 1140_0_ITER_LOAD(x1[4], x2[4], x0[4])≥NonInfC∧1140_0_ITER_LOAD(x1[4], x2[4], x0[4])≥COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])∧(UIncreasing(COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥))
(3) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [bni_15]x0[4] + [(-1)bni_15]x1[4] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
(4) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [bni_15]x0[4] + [(-1)bni_15]x1[4] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
(5) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [bni_15]x0[4] + [(-1)bni_15]x1[4] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
(6) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_15 + (-1)Bound*bni_15] + [bni_15]x0[4] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
(7) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_15 + (-1)Bound*bni_15] + [bni_15]x0[4] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
(8) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_15 + (-1)Bound*bni_15] + [bni_15]x0[4] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
(9) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_15 + (-1)Bound*bni_15] + [bni_15]x0[4] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
(10) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_15 + (-1)Bound*bni_15] + [bni_15]x0[4] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
(11) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_15 + (-1)Bound*bni_15] + [bni_15]x0[4] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
(12) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])), ≥)∧[(2)bni_15 + (-1)Bound*bni_15] + [bni_15]x0[4] ≥ 0∧[1 + (-1)bso_16] ≥ 0)
(13) (&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4]))))=TRUE∧x1[4]=x1[5]∧x2[4]=x2[5]∧x0[4]=x0[5]∧x1[5]=x1[4]1∧x2[5]=x2[4]1∧+(x0[5], -1)=x0[4]1 ⇒ COND_1140_0_ITER_LOAD2(TRUE, x1[5], x2[5], x0[5])≥NonInfC∧COND_1140_0_ITER_LOAD2(TRUE, x1[5], x2[5], x0[5])≥1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))∧(UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥))
(14) (<(x1[4], x0[4])=TRUE∧<=(0, +(+(x0[4], x1[4]), *(3, x2[4])))=TRUE ⇒ COND_1140_0_ITER_LOAD2(TRUE, x1[4], x2[4], x0[4])≥NonInfC∧COND_1140_0_ITER_LOAD2(TRUE, x1[4], x2[4], x0[4])≥1140_0_ITER_LOAD(x1[4], x2[4], +(x0[4], -1))∧(UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥))
(15) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)Bound*bni_17] + [bni_17]x0[4] + [(-1)bni_17]x1[4] ≥ 0∧[(-1)bso_18] ≥ 0)
(16) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)Bound*bni_17] + [bni_17]x0[4] + [(-1)bni_17]x1[4] ≥ 0∧[(-1)bso_18] ≥ 0)
(17) (x0[4] + [-1] + [-1]x1[4] ≥ 0∧x0[4] + x1[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)Bound*bni_17] + [bni_17]x0[4] + [(-1)bni_17]x1[4] ≥ 0∧[(-1)bso_18] ≥ 0)
(18) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)Bound*bni_17 + bni_17] + [bni_17]x0[4] ≥ 0∧[(-1)bso_18] ≥ 0)
(19) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)Bound*bni_17 + bni_17] + [bni_17]x0[4] ≥ 0∧[(-1)bso_18] ≥ 0)
(20) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)Bound*bni_17 + bni_17] + [bni_17]x0[4] ≥ 0∧[(-1)bso_18] ≥ 0)
(21) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)Bound*bni_17 + bni_17] + [bni_17]x0[4] ≥ 0∧[(-1)bso_18] ≥ 0)
(22) (x0[4] ≥ 0∧[1] + [2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)Bound*bni_17 + bni_17] + [bni_17]x0[4] ≥ 0∧[(-1)bso_18] ≥ 0)
(23) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)Bound*bni_17 + bni_17] + [bni_17]x0[4] ≥ 0∧[(-1)bso_18] ≥ 0)
(24) (x0[4] ≥ 0∧[1] + [-2]x1[4] + x0[4] + [-3]x2[4] ≥ 0∧x1[4] ≥ 0∧x2[4] ≥ 0 ⇒ (UIncreasing(1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))), ≥)∧[(-1)Bound*bni_17 + bni_17] + [bni_17]x0[4] ≥ 0∧[(-1)bso_18] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(1140_0_ITER_LOAD(x1, x2, x3)) = [1] + x3 + [-1]x1
POL(COND_1140_0_ITER_LOAD2(x1, x2, x3, x4)) = x4 + [-1]x2 + [-1]x1
POL(&&(x1, x2)) = 0
POL(<(x1, x2)) = [-1]
POL(<=(x1, x2)) = [-1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
POL(*(x1, x2)) = x1·x2
POL(3) = [3]
POL(-1) = [-1]
1140_0_ITER_LOAD(x1[4], x2[4], x0[4]) → COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])
1140_0_ITER_LOAD(x1[4], x2[4], x0[4]) → COND_1140_0_ITER_LOAD2(&&(<(x1[4], x0[4]), <=(0, +(+(x0[4], x1[4]), *(3, x2[4])))), x1[4], x2[4], x0[4])
COND_1140_0_ITER_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))
COND_1140_0_ITER_LOAD2(TRUE, x1[5], x2[5], x0[5]) → 1140_0_ITER_LOAD(x1[5], x2[5], +(x0[5], -1))
&&(TRUE, TRUE)1 ↔ TRUE1
FALSE1 → &&(TRUE, FALSE)1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(FALSE, FALSE)1 ↔ FALSE1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer