0 JBC
↳1 JBCToGraph (⇒, 170 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 80 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 120 ms)
↳8 IDP
↳9 IDependencyGraphProof (⇔, 0 ms)
↳10 TRUE
package example_2;
public class Test {
public static int divBy(int x){
int r = 0;
int y;
while (x > 0) {
y = 2;
x = x/y;
r = r + x;
}
return r;
}
public static void main(String[] args) {
if (args.length > 0) {
int x = args[0].length();
int r = divBy(x);
// System.out.println("Result: " + r);
}
// else System.out.println("Error: Incorrect call");
}
}
Generated 15 rules for P and 0 rules for R.
P rules:
197_0_divBy_LE(EOS(STATIC_197), i37, i37) → 201_0_divBy_LE(EOS(STATIC_201), i37, i37)
201_0_divBy_LE(EOS(STATIC_201), i37, i37) → 206_0_divBy_ConstantStackPush(EOS(STATIC_206), i37) | >(i37, 0)
206_0_divBy_ConstantStackPush(EOS(STATIC_206), i37) → 210_0_divBy_Store(EOS(STATIC_210), i37, 2)
210_0_divBy_Store(EOS(STATIC_210), i37, matching1) → 215_0_divBy_Load(EOS(STATIC_215), i37, 2) | =(matching1, 2)
215_0_divBy_Load(EOS(STATIC_215), i37, matching1) → 219_0_divBy_Load(EOS(STATIC_219), 2, i37) | =(matching1, 2)
219_0_divBy_Load(EOS(STATIC_219), matching1, i37) → 223_0_divBy_IntArithmetic(EOS(STATIC_223), i37, 2) | =(matching1, 2)
223_0_divBy_IntArithmetic(EOS(STATIC_223), i37, matching1) → 225_0_divBy_Store(EOS(STATIC_225), /(i37, 2)) | &&(>=(i37, 1), =(matching1, 2))
225_0_divBy_Store(EOS(STATIC_225), i39) → 227_0_divBy_Load(EOS(STATIC_227), i39)
227_0_divBy_Load(EOS(STATIC_227), i39) → 229_0_divBy_Load(EOS(STATIC_229), i39)
229_0_divBy_Load(EOS(STATIC_229), i39) → 232_0_divBy_IntArithmetic(EOS(STATIC_232), i39, i39)
232_0_divBy_IntArithmetic(EOS(STATIC_232), i39, i39) → 234_0_divBy_Store(EOS(STATIC_234), i39) | >=(i39, 0)
234_0_divBy_Store(EOS(STATIC_234), i39) → 235_0_divBy_JMP(EOS(STATIC_235), i39)
235_0_divBy_JMP(EOS(STATIC_235), i39) → 254_0_divBy_Load(EOS(STATIC_254), i39)
254_0_divBy_Load(EOS(STATIC_254), i39) → 192_0_divBy_Load(EOS(STATIC_192), i39)
192_0_divBy_Load(EOS(STATIC_192), i26) → 197_0_divBy_LE(EOS(STATIC_197), i26, i26)
R rules:
Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.
P rules:
197_0_divBy_LE(EOS(STATIC_197), x0, x0) → 197_0_divBy_LE(EOS(STATIC_197), /(x0, 2), /(x0, 2)) | &&(>(+(x0, 1), 1), <=(0, /(x0, 2)))
R rules:
Filtered ground terms:
197_0_divBy_LE(x1, x2, x3) → 197_0_divBy_LE(x2, x3)
EOS(x1) → EOS
Cond_197_0_divBy_LE(x1, x2, x3, x4) → Cond_197_0_divBy_LE(x1, x3, x4)
Filtered duplicate args:
197_0_divBy_LE(x1, x2) → 197_0_divBy_LE(x2)
Cond_197_0_divBy_LE(x1, x2, x3) → Cond_197_0_divBy_LE(x1, x3)
Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.
P rules:
197_0_divBy_LE(x0) → 197_0_divBy_LE(/(x0, 2)) | &&(>(x0, 0), <=(0, /(x0, 2)))
R rules:
Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.
P rules:
197_0_DIVBY_LE(x0) → COND_197_0_DIVBY_LE(&&(>(x0, 0), <=(0, /(x0, 2))), x0)
COND_197_0_DIVBY_LE(TRUE, x0) → 197_0_DIVBY_LE(/(x0, 2))
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if (x0[0] > 0 && 0 <= x0[0] / 2 ∧x0[0] →* x0[1])
(1) -> (0), if (x0[1] / 2 →* x0[0])
(1) (&&(>(x0[0], 0), <=(0, /(x0[0], 2)))=TRUE∧x0[0]=x0[1] ⇒ 197_0_DIVBY_LE(x0[0])≥NonInfC∧197_0_DIVBY_LE(x0[0])≥COND_197_0_DIVBY_LE(&&(>(x0[0], 0), <=(0, /(x0[0], 2))), x0[0])∧(UIncreasing(COND_197_0_DIVBY_LE(&&(>(x0[0], 0), <=(0, /(x0[0], 2))), x0[0])), ≥))
(2) (>(x0[0], 0)=TRUE∧<=(0, /(x0[0], 2))=TRUE ⇒ 197_0_DIVBY_LE(x0[0])≥NonInfC∧197_0_DIVBY_LE(x0[0])≥COND_197_0_DIVBY_LE(&&(>(x0[0], 0), <=(0, /(x0[0], 2))), x0[0])∧(UIncreasing(COND_197_0_DIVBY_LE(&&(>(x0[0], 0), <=(0, /(x0[0], 2))), x0[0])), ≥))
(3) (x0[0] + [-1] ≥ 0∧max{x0[0], [-1]x0[0]} + [-1] ≥ 0 ⇒ (UIncreasing(COND_197_0_DIVBY_LE(&&(>(x0[0], 0), <=(0, /(x0[0], 2))), x0[0])), ≥)∧[(-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(4) (x0[0] + [-1] ≥ 0∧max{x0[0], [-1]x0[0]} + [-1] ≥ 0 ⇒ (UIncreasing(COND_197_0_DIVBY_LE(&&(>(x0[0], 0), <=(0, /(x0[0], 2))), x0[0])), ≥)∧[(-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(5) (x0[0] + [-1] ≥ 0∧[2]x0[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_197_0_DIVBY_LE(&&(>(x0[0], 0), <=(0, /(x0[0], 2))), x0[0])), ≥)∧[(-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(6) (x0[0] ≥ 0∧[2] + [2]x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_197_0_DIVBY_LE(&&(>(x0[0], 0), <=(0, /(x0[0], 2))), x0[0])), ≥)∧[(-1)Bound*bni_11 + bni_11] + [bni_11]x0[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(7) (x0[0] ≥ 0∧x0[0] ≥ 0∧[1] + x0[0] ≥ 0 ⇒ (UIncreasing(COND_197_0_DIVBY_LE(&&(>(x0[0], 0), <=(0, /(x0[0], 2))), x0[0])), ≥)∧[(-1)Bound*bni_11 + bni_11] + [bni_11]x0[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(8) (&&(>(x0[0], 0), <=(0, /(x0[0], 2)))=TRUE∧x0[0]=x0[1] ⇒ COND_197_0_DIVBY_LE(TRUE, x0[1])≥NonInfC∧COND_197_0_DIVBY_LE(TRUE, x0[1])≥197_0_DIVBY_LE(/(x0[1], 2))∧(UIncreasing(197_0_DIVBY_LE(/(x0[1], 2))), ≥))
(9) (>(x0[0], 0)=TRUE∧<=(0, /(x0[0], 2))=TRUE ⇒ COND_197_0_DIVBY_LE(TRUE, x0[0])≥NonInfC∧COND_197_0_DIVBY_LE(TRUE, x0[0])≥197_0_DIVBY_LE(/(x0[0], 2))∧(UIncreasing(197_0_DIVBY_LE(/(x0[1], 2))), ≥))
(10) (x0[0] + [-1] ≥ 0∧max{x0[0], [-1]x0[0]} + [-1] ≥ 0 ⇒ (UIncreasing(197_0_DIVBY_LE(/(x0[1], 2))), ≥)∧[(-1)Bound*bni_13] + [bni_13]x0[0] ≥ 0∧[1 + (-1)bso_17] + x0[0] + [-1]max{x0[0], [-1]x0[0]} ≥ 0)
(11) (x0[0] + [-1] ≥ 0∧max{x0[0], [-1]x0[0]} + [-1] ≥ 0 ⇒ (UIncreasing(197_0_DIVBY_LE(/(x0[1], 2))), ≥)∧[(-1)Bound*bni_13] + [bni_13]x0[0] ≥ 0∧[1 + (-1)bso_17] + x0[0] + [-1]max{x0[0], [-1]x0[0]} ≥ 0)
(12) (x0[0] + [-1] ≥ 0∧[2]x0[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(197_0_DIVBY_LE(/(x0[1], 2))), ≥)∧[(-1)Bound*bni_13] + [bni_13]x0[0] ≥ 0∧[1 + (-1)bso_17] ≥ 0)
(13) (x0[0] ≥ 0∧[2] + [2]x0[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(197_0_DIVBY_LE(/(x0[1], 2))), ≥)∧[(-1)Bound*bni_13 + bni_13] + [bni_13]x0[0] ≥ 0∧[1 + (-1)bso_17] ≥ 0)
(14) (x0[0] ≥ 0∧x0[0] ≥ 0∧[1] + x0[0] ≥ 0 ⇒ (UIncreasing(197_0_DIVBY_LE(/(x0[1], 2))), ≥)∧[(-1)Bound*bni_13 + bni_13] + [bni_13]x0[0] ≥ 0∧[1 + (-1)bso_17] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(197_0_DIVBY_LE(x1)) = x1
POL(COND_197_0_DIVBY_LE(x1, x2)) = x2 + [-1]x1
POL(&&(x1, x2)) = 0
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(<=(x1, x2)) = [-1]
POL(2) = [2]
Polynomial Interpretations with Context Sensitive Arithemetic Replacement
POL(TermCSAR-Mode @ Context)
POL(/(x1, 2)1 @ {}) = max{x1, [-1]x1} + [-1]
POL(/(x1, 2)1 @ {197_0_DIVBY_LE_1/0}) = max{x1, [-1]x1} + [-1]
COND_197_0_DIVBY_LE(TRUE, x0[1]) → 197_0_DIVBY_LE(/(x0[1], 2))
197_0_DIVBY_LE(x0[0]) → COND_197_0_DIVBY_LE(&&(>(x0[0], 0), <=(0, /(x0[0], 2))), x0[0])
COND_197_0_DIVBY_LE(TRUE, x0[1]) → 197_0_DIVBY_LE(/(x0[1], 2))
197_0_DIVBY_LE(x0[0]) → COND_197_0_DIVBY_LE(&&(>(x0[0], 0), <=(0, /(x0[0], 2))), x0[0])
&&(TRUE, TRUE)1 ↔ TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(FALSE, FALSE)1 ↔ FALSE1
/1 →
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer