(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: Loop1
/**
* A very simple loop over an array.
*
* All calls terminate.
*
* Julia + BinTerm prove that all calls terminate
*
* @author <A HREF="mailto:fausto.spoto@univr.it">Fausto Spoto</A>
*/

public class Loop1 {
public static void main(String[] args) {
for (int i = 0; i < args.length; i++) {}
}
}

(1) JBCToGraph (SOUND transformation)

Constructed TerminationGraph.

(2) Obligation:

Termination Graph based on JBC Program:
Loop1.main([Ljava/lang/String;)V: Graph of 40 nodes with 1 SCC.


(3) TerminationGraphToSCCProof (SOUND transformation)

Splitted TerminationGraph to 1 SCCs.

(4) Obligation:

SCC of termination graph based on JBC Program.
SCC contains nodes from the following methods: Loop1.main([Ljava/lang/String;)V
SCC calls the following helper methods:
Performed SCC analyses: UsedFieldsAnalysis

(5) SCCToIDPv1Proof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Log:

Generated 8 rules for P and 0 rules for R.


P rules:
203_0_main_Load(EOS(STATIC_203), java.lang.Object(ARRAY(i6)), i26, i26) → 205_0_main_ArrayLength(EOS(STATIC_205), java.lang.Object(ARRAY(i6)), i26, i26, java.lang.Object(ARRAY(i6)))
205_0_main_ArrayLength(EOS(STATIC_205), java.lang.Object(ARRAY(i6)), i26, i26, java.lang.Object(ARRAY(i6))) → 208_0_main_GE(EOS(STATIC_208), java.lang.Object(ARRAY(i6)), i26, i26, i6) | >=(i6, 0)
208_0_main_GE(EOS(STATIC_208), java.lang.Object(ARRAY(i6)), i26, i26, i6) → 211_0_main_GE(EOS(STATIC_211), java.lang.Object(ARRAY(i6)), i26, i26, i6)
211_0_main_GE(EOS(STATIC_211), java.lang.Object(ARRAY(i6)), i26, i26, i6) → 215_0_main_Inc(EOS(STATIC_215), java.lang.Object(ARRAY(i6)), i26) | <(i26, i6)
215_0_main_Inc(EOS(STATIC_215), java.lang.Object(ARRAY(i6)), i26) → 218_0_main_JMP(EOS(STATIC_218), java.lang.Object(ARRAY(i6)), +(i26, 1)) | >=(i26, 0)
218_0_main_JMP(EOS(STATIC_218), java.lang.Object(ARRAY(i6)), i30) → 223_0_main_Load(EOS(STATIC_223), java.lang.Object(ARRAY(i6)), i30)
223_0_main_Load(EOS(STATIC_223), java.lang.Object(ARRAY(i6)), i30) → 199_0_main_Load(EOS(STATIC_199), java.lang.Object(ARRAY(i6)), i30)
199_0_main_Load(EOS(STATIC_199), java.lang.Object(ARRAY(i6)), i26) → 203_0_main_Load(EOS(STATIC_203), java.lang.Object(ARRAY(i6)), i26, i26)
R rules:

Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.


P rules:
203_0_main_Load(EOS(STATIC_203), java.lang.Object(ARRAY(x0)), x1, x1) → 203_0_main_Load(EOS(STATIC_203), java.lang.Object(ARRAY(x0)), +(x1, 1), +(x1, 1)) | &&(&&(>(+(x1, 1), 0), <(x1, x0)), >(+(x0, 1), 0))
R rules:

Filtered ground terms:



203_0_main_Load(x1, x2, x3, x4) → 203_0_main_Load(x2, x3, x4)
EOS(x1) → EOS
Cond_203_0_main_Load(x1, x2, x3, x4, x5) → Cond_203_0_main_Load(x1, x3, x4, x5)

Filtered duplicate args:



203_0_main_Load(x1, x2, x3) → 203_0_main_Load(x1, x3)
Cond_203_0_main_Load(x1, x2, x3, x4) → Cond_203_0_main_Load(x1, x2, x4)

Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.


P rules:
203_0_main_Load(java.lang.Object(ARRAY(x0)), x1) → 203_0_main_Load(java.lang.Object(ARRAY(x0)), +(x1, 1)) | &&(&&(>(x1, -1), <(x1, x0)), >(x0, -1))
R rules:

Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.


P rules:
203_0_MAIN_LOAD(java.lang.Object(ARRAY(x0)), x1) → COND_203_0_MAIN_LOAD(&&(&&(>(x1, -1), <(x1, x0)), >(x0, -1)), java.lang.Object(ARRAY(x0)), x1)
COND_203_0_MAIN_LOAD(TRUE, java.lang.Object(ARRAY(x0)), x1) → 203_0_MAIN_LOAD(java.lang.Object(ARRAY(x0)), +(x1, 1))
R rules:

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 203_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[0])), x1[0]) → COND_203_0_MAIN_LOAD(x1[0] > -1 && x1[0] < x0[0] && x0[0] > -1, java.lang.Object(ARRAY(x0[0])), x1[0])
(1): COND_203_0_MAIN_LOAD(TRUE, java.lang.Object(ARRAY(x0[1])), x1[1]) → 203_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[1])), x1[1] + 1)

(0) -> (1), if (x1[0] > -1 && x1[0] < x0[0] && x0[0] > -1java.lang.Object(ARRAY(x0[0])) →* java.lang.Object(ARRAY(x0[1]))∧x1[0]* x1[1])


(1) -> (0), if (java.lang.Object(ARRAY(x0[1])) →* java.lang.Object(ARRAY(x0[0]))∧x1[1] + 1* x1[0])



The set Q is empty.

(7) IDPNonInfProof (SOUND transformation)

Used the following options for this NonInfProof:
IDPGPoloSolver: Range: [(-1,2)] IsNat: false Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpCand1ShapeHeuristic@4ab27bb5 Constraint Generator: NonInfConstraintGenerator: PathGenerator: MetricPathGenerator: Max Left Steps: 0 Max Right Steps: 0

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 203_0_MAIN_LOAD(java.lang.Object(ARRAY(x0)), x1) → COND_203_0_MAIN_LOAD(&&(&&(>(x1, -1), <(x1, x0)), >(x0, -1)), java.lang.Object(ARRAY(x0)), x1) the following chains were created:
  • We consider the chain 203_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[0])), x1[0]) → COND_203_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], -1)), java.lang.Object(ARRAY(x0[0])), x1[0]), COND_203_0_MAIN_LOAD(TRUE, java.lang.Object(ARRAY(x0[1])), x1[1]) → 203_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[1])), +(x1[1], 1)) which results in the following constraint:

    (1)    (&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], -1))=TRUEjava.lang.Object(ARRAY(x0[0]))=java.lang.Object(ARRAY(x0[1]))∧x1[0]=x1[1]203_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[0])), x1[0])≥NonInfC∧203_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[0])), x1[0])≥COND_203_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], -1)), java.lang.Object(ARRAY(x0[0])), x1[0])∧(UIncreasing(COND_203_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], -1)), java.lang.Object(ARRAY(x0[0])), x1[0])), ≥))



    We simplified constraint (1) using rules (I), (II), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>(x0[0], -1)=TRUE>(x1[0], -1)=TRUE<(x1[0], x0[0])=TRUE203_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[0])), x1[0])≥NonInfC∧203_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[0])), x1[0])≥COND_203_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], -1)), java.lang.Object(ARRAY(x0[0])), x1[0])∧(UIncreasing(COND_203_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], -1)), java.lang.Object(ARRAY(x0[0])), x1[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x0[0] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_203_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], -1)), java.lang.Object(ARRAY(x0[0])), x1[0])), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] + [(-1)bni_10]x1[0] + [bni_10]x0[0] ≥ 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x0[0] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_203_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], -1)), java.lang.Object(ARRAY(x0[0])), x1[0])), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] + [(-1)bni_10]x1[0] + [bni_10]x0[0] ≥ 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x0[0] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_203_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], -1)), java.lang.Object(ARRAY(x0[0])), x1[0])), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] + [(-1)bni_10]x1[0] + [bni_10]x0[0] ≥ 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    ([1] + x1[0] + x0[0] ≥ 0∧x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_203_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], -1)), java.lang.Object(ARRAY(x0[0])), x1[0])), ≥)∧[(-1)Bound*bni_10] + [bni_10]x0[0] ≥ 0∧[(-1)bso_11] ≥ 0)







For Pair COND_203_0_MAIN_LOAD(TRUE, java.lang.Object(ARRAY(x0)), x1) → 203_0_MAIN_LOAD(java.lang.Object(ARRAY(x0)), +(x1, 1)) the following chains were created:
  • We consider the chain COND_203_0_MAIN_LOAD(TRUE, java.lang.Object(ARRAY(x0[1])), x1[1]) → 203_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[1])), +(x1[1], 1)) which results in the following constraint:

    (7)    (COND_203_0_MAIN_LOAD(TRUE, java.lang.Object(ARRAY(x0[1])), x1[1])≥NonInfC∧COND_203_0_MAIN_LOAD(TRUE, java.lang.Object(ARRAY(x0[1])), x1[1])≥203_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[1])), +(x1[1], 1))∧(UIncreasing(203_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[1])), +(x1[1], 1))), ≥))



    We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (8)    ((UIncreasing(203_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[1])), +(x1[1], 1))), ≥)∧[bni_12] = 0∧[1 + (-1)bso_13] ≥ 0)



    We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (9)    ((UIncreasing(203_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[1])), +(x1[1], 1))), ≥)∧[bni_12] = 0∧[1 + (-1)bso_13] ≥ 0)



    We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (10)    ((UIncreasing(203_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[1])), +(x1[1], 1))), ≥)∧[bni_12] = 0∧[1 + (-1)bso_13] ≥ 0)



    We simplified constraint (10) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (11)    ((UIncreasing(203_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[1])), +(x1[1], 1))), ≥)∧[bni_12] = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_13] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 203_0_MAIN_LOAD(java.lang.Object(ARRAY(x0)), x1) → COND_203_0_MAIN_LOAD(&&(&&(>(x1, -1), <(x1, x0)), >(x0, -1)), java.lang.Object(ARRAY(x0)), x1)
    • ([1] + x1[0] + x0[0] ≥ 0∧x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_203_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], -1)), java.lang.Object(ARRAY(x0[0])), x1[0])), ≥)∧[(-1)Bound*bni_10] + [bni_10]x0[0] ≥ 0∧[(-1)bso_11] ≥ 0)

  • COND_203_0_MAIN_LOAD(TRUE, java.lang.Object(ARRAY(x0)), x1) → 203_0_MAIN_LOAD(java.lang.Object(ARRAY(x0)), +(x1, 1))
    • ((UIncreasing(203_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[1])), +(x1[1], 1))), ≥)∧[bni_12] = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_13] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(203_0_MAIN_LOAD(x1, x2)) = [-1] + [-1]x2 + x1   
POL(java.lang.Object(x1)) = x1   
POL(ARRAY(x1)) = x1   
POL(COND_203_0_MAIN_LOAD(x1, x2, x3)) = [-1] + [-1]x3 + x2   
POL(&&(x1, x2)) = [-1]   
POL(>(x1, x2)) = [-1]   
POL(-1) = [-1]   
POL(<(x1, x2)) = [-1]   
POL(+(x1, x2)) = x1 + x2   
POL(1) = [1]   

The following pairs are in P>:

COND_203_0_MAIN_LOAD(TRUE, java.lang.Object(ARRAY(x0[1])), x1[1]) → 203_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[1])), +(x1[1], 1))

The following pairs are in Pbound:

203_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[0])), x1[0]) → COND_203_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], -1)), java.lang.Object(ARRAY(x0[0])), x1[0])

The following pairs are in P:

203_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[0])), x1[0]) → COND_203_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], -1)), java.lang.Object(ARRAY(x0[0])), x1[0])

There are no usable rules.

(8) Complex Obligation (AND)

(9) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 203_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[0])), x1[0]) → COND_203_0_MAIN_LOAD(x1[0] > -1 && x1[0] < x0[0] && x0[0] > -1, java.lang.Object(ARRAY(x0[0])), x1[0])


The set Q is empty.

(10) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(11) TRUE

(12) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_203_0_MAIN_LOAD(TRUE, java.lang.Object(ARRAY(x0[1])), x1[1]) → 203_0_MAIN_LOAD(java.lang.Object(ARRAY(x0[1])), x1[1] + 1)


The set Q is empty.

(13) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(14) TRUE