(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: BubbleSort
class BubbleSort {
public static void main(String[] args) {
sort(new int[100]);
}

public static void sort(int[] x) {
int n = x.length;
for (int pass=1; pass < n; pass++) // count how many times
// This next loop becomes shorter and shorter
for (int i=0; i < n - pass; i++)
if (x[i] > x[i+1]) {
// exchange elements
int temp = x[i]; x[i] = x[i+1]; x[i+1] = temp;
}
}
}


(1) JBCToGraph (SOUND transformation)

Constructed TerminationGraph.

(2) Obligation:

Termination Graph based on JBC Program:
BubbleSort.main([Ljava/lang/String;)V: Graph of 193 nodes with 1 SCC.


(3) TerminationGraphToSCCProof (SOUND transformation)

Splitted TerminationGraph to 1 SCCs.

(4) Obligation:

SCC of termination graph based on JBC Program.
SCC contains nodes from the following methods: BubbleSort.main([Ljava/lang/String;)V
SCC calls the following helper methods:
Performed SCC analyses: UsedFieldsAnalysis

(5) SCCToIDPv1Proof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Log:

Generated 59 rules for P and 0 rules for R.


P rules:
1766_0_sort_Load(EOS(STATIC_1766), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i108, i108) → 1767_0_sort_GE(EOS(STATIC_1767), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i108, i108, 100) | &&(&&(=(matching1, 100), =(matching2, 100)), =(matching3, 100))
1767_0_sort_GE(EOS(STATIC_1767), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i111, matching4) → 1769_0_sort_GE(EOS(STATIC_1769), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i111, 100) | &&(&&(&&(=(matching1, 100), =(matching2, 100)), =(matching3, 100)), =(matching4, 100))
1769_0_sort_GE(EOS(STATIC_1769), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i111, matching4) → 1772_0_sort_ConstantStackPush(EOS(STATIC_1772), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111) | &&(&&(&&(&&(<(i111, 100), =(matching1, 100)), =(matching2, 100)), =(matching3, 100)), =(matching4, 100))
1772_0_sort_ConstantStackPush(EOS(STATIC_1772), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111) → 1775_0_sort_Store(EOS(STATIC_1775), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, 0) | &&(&&(=(matching1, 100), =(matching2, 100)), =(matching3, 100))
1775_0_sort_Store(EOS(STATIC_1775), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, matching4) → 1778_0_sort_Load(EOS(STATIC_1778), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, 0) | &&(&&(&&(=(matching1, 100), =(matching2, 100)), =(matching3, 100)), =(matching4, 0))
1778_0_sort_Load(EOS(STATIC_1778), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, matching4) → 1822_0_sort_Load(EOS(STATIC_1822), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, 0) | &&(&&(&&(=(matching1, 100), =(matching2, 100)), =(matching3, 100)), =(matching4, 0))
1822_0_sort_Load(EOS(STATIC_1822), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i113) → 2806_0_sort_Load(EOS(STATIC_2806), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i113) | &&(&&(=(matching1, 100), =(matching2, 100)), =(matching3, 100))
2806_0_sort_Load(EOS(STATIC_2806), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i149) → 3010_0_sort_Load(EOS(STATIC_3010), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i149) | &&(&&(=(matching1, 100), =(matching2, 100)), =(matching3, 100))
3010_0_sort_Load(EOS(STATIC_3010), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i185) → 3287_0_sort_Load(EOS(STATIC_3287), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i185) | &&(&&(=(matching1, 100), =(matching2, 100)), =(matching3, 100))
3287_0_sort_Load(EOS(STATIC_3287), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i221) → 3289_0_sort_Load(EOS(STATIC_3289), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i221, i221) | &&(&&(=(matching1, 100), =(matching2, 100)), =(matching3, 100))
3289_0_sort_Load(EOS(STATIC_3289), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i221, i221) → 3290_0_sort_Load(EOS(STATIC_3290), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i221, i221, 100) | &&(&&(=(matching1, 100), =(matching2, 100)), =(matching3, 100))
3290_0_sort_Load(EOS(STATIC_3290), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i221, i221, matching4) → 3292_0_sort_IntArithmetic(EOS(STATIC_3292), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i221, i221, 100, i111) | &&(&&(&&(=(matching1, 100), =(matching2, 100)), =(matching3, 100)), =(matching4, 100))
3292_0_sort_IntArithmetic(EOS(STATIC_3292), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i221, i221, matching4, i111) → 3293_0_sort_GE(EOS(STATIC_3293), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i221, i221, -(100, i111)) | &&(&&(&&(&&(>(i111, 0), =(matching1, 100)), =(matching2, 100)), =(matching3, 100)), =(matching4, 100))
3293_0_sort_GE(EOS(STATIC_3293), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i221, i221, i223) → 3294_0_sort_GE(EOS(STATIC_3294), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i221, i221, i223) | &&(&&(=(matching1, 100), =(matching2, 100)), =(matching3, 100))
3293_0_sort_GE(EOS(STATIC_3293), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i221, i221, i223) → 3295_0_sort_GE(EOS(STATIC_3295), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i221, i221, i223) | &&(&&(=(matching1, 100), =(matching2, 100)), =(matching3, 100))
3294_0_sort_GE(EOS(STATIC_3294), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i221, i221, i223) → 3297_0_sort_Inc(EOS(STATIC_3297), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111) | &&(&&(&&(>=(i221, i223), =(matching1, 100)), =(matching2, 100)), =(matching3, 100))
3297_0_sort_Inc(EOS(STATIC_3297), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111) → 3300_0_sort_JMP(EOS(STATIC_3300), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, +(i111, 1)) | &&(&&(&&(>(i111, 0), =(matching1, 100)), =(matching2, 100)), =(matching3, 100))
3300_0_sort_JMP(EOS(STATIC_3300), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i224) → 3307_0_sort_Load(EOS(STATIC_3307), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i224) | &&(&&(=(matching1, 100), =(matching2, 100)), =(matching3, 100))
3307_0_sort_Load(EOS(STATIC_3307), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i224) → 1764_0_sort_Load(EOS(STATIC_1764), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i224) | &&(&&(=(matching1, 100), =(matching2, 100)), =(matching3, 100))
1764_0_sort_Load(EOS(STATIC_1764), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i108) → 1766_0_sort_Load(EOS(STATIC_1766), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i108, i108) | &&(&&(=(matching1, 100), =(matching2, 100)), =(matching3, 100))
3295_0_sort_GE(EOS(STATIC_3295), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i221, i221, i223) → 3298_0_sort_Load(EOS(STATIC_3298), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i221) | &&(&&(&&(<(i221, i223), =(matching1, 100)), =(matching2, 100)), =(matching3, 100))
3298_0_sort_Load(EOS(STATIC_3298), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i221) → 3301_0_sort_Load(EOS(STATIC_3301), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i221, java.lang.Object(ARRAY(100))) | &&(&&(=(matching1, 100), =(matching2, 100)), =(matching3, 100))
3301_0_sort_Load(EOS(STATIC_3301), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i221, java.lang.Object(ARRAY(matching4))) → 3309_0_sort_ArrayAccess(EOS(STATIC_3309), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i221, java.lang.Object(ARRAY(100)), i221) | &&(&&(&&(=(matching1, 100), =(matching2, 100)), =(matching3, 100)), =(matching4, 100))
3309_0_sort_ArrayAccess(EOS(STATIC_3309), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i255, java.lang.Object(ARRAY(matching4)), i255) → 3573_0_sort_ArrayAccess(EOS(STATIC_3573), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i255, java.lang.Object(ARRAY(100)), i255) | &&(&&(&&(=(matching1, 100), =(matching2, 100)), =(matching3, 100)), =(matching4, 100))
3573_0_sort_ArrayAccess(EOS(STATIC_3573), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i255, java.lang.Object(ARRAY(matching4)), i255) → 3575_0_sort_Load(EOS(STATIC_3575), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i255, i257) | &&(&&(&&(&&(<(i255, 100), =(matching1, 100)), =(matching2, 100)), =(matching3, 100)), =(matching4, 100))
3575_0_sort_Load(EOS(STATIC_3575), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i255, i257) → 3579_0_sort_Load(EOS(STATIC_3579), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i255, i257, java.lang.Object(ARRAY(100))) | &&(&&(=(matching1, 100), =(matching2, 100)), =(matching3, 100))
3579_0_sort_Load(EOS(STATIC_3579), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i255, i257, java.lang.Object(ARRAY(matching4))) → 3581_0_sort_ConstantStackPush(EOS(STATIC_3581), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i255, i257, java.lang.Object(ARRAY(100)), i255) | &&(&&(&&(=(matching1, 100), =(matching2, 100)), =(matching3, 100)), =(matching4, 100))
3581_0_sort_ConstantStackPush(EOS(STATIC_3581), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i255, i257, java.lang.Object(ARRAY(matching4)), i255) → 3583_0_sort_IntArithmetic(EOS(STATIC_3583), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i255, i257, java.lang.Object(ARRAY(100)), i255, 1) | &&(&&(&&(=(matching1, 100), =(matching2, 100)), =(matching3, 100)), =(matching4, 100))
3583_0_sort_IntArithmetic(EOS(STATIC_3583), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i255, i257, java.lang.Object(ARRAY(matching4)), i255, matching5) → 3587_0_sort_ArrayAccess(EOS(STATIC_3587), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i255, i257, java.lang.Object(ARRAY(100)), +(i255, 1)) | &&(&&(&&(&&(&&(>=(i255, 0), =(matching1, 100)), =(matching2, 100)), =(matching3, 100)), =(matching4, 100)), =(matching5, 1))
3587_0_sort_ArrayAccess(EOS(STATIC_3587), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i255, i257, java.lang.Object(ARRAY(matching4)), i260) → 3588_0_sort_ArrayAccess(EOS(STATIC_3588), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i255, i257, java.lang.Object(ARRAY(100)), i260) | &&(&&(&&(=(matching1, 100), =(matching2, 100)), =(matching3, 100)), =(matching4, 100))
3588_0_sort_ArrayAccess(EOS(STATIC_3588), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i255, i257, java.lang.Object(ARRAY(matching4)), i260) → 3593_0_sort_LE(EOS(STATIC_3593), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i255, i257, i261) | &&(&&(&&(&&(<(i260, 100), =(matching1, 100)), =(matching2, 100)), =(matching3, 100)), =(matching4, 100))
3593_0_sort_LE(EOS(STATIC_3593), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i255, i257, i261) → 3598_0_sort_LE(EOS(STATIC_3598), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i255, i257, i261) | &&(&&(=(matching1, 100), =(matching2, 100)), =(matching3, 100))
3593_0_sort_LE(EOS(STATIC_3593), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i255, i257, i261) → 3599_0_sort_LE(EOS(STATIC_3599), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i255, i257, i261) | &&(&&(=(matching1, 100), =(matching2, 100)), =(matching3, 100))
3598_0_sort_LE(EOS(STATIC_3598), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i255, i257, i261) → 3601_0_sort_Inc(EOS(STATIC_3601), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i255) | &&(&&(&&(<=(i257, i261), =(matching1, 100)), =(matching2, 100)), =(matching3, 100))
3601_0_sort_Inc(EOS(STATIC_3601), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i255) → 4099_0_sort_Inc(EOS(STATIC_4099), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i255) | &&(&&(=(matching1, 100), =(matching2, 100)), =(matching3, 100))
4099_0_sort_Inc(EOS(STATIC_4099), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i255) → 4107_0_sort_JMP(EOS(STATIC_4107), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, +(i255, 1)) | &&(&&(&&(>=(i255, 0), =(matching1, 100)), =(matching2, 100)), =(matching3, 100))
4107_0_sort_JMP(EOS(STATIC_4107), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i344) → 4116_0_sort_Load(EOS(STATIC_4116), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i344) | &&(&&(=(matching1, 100), =(matching2, 100)), =(matching3, 100))
4116_0_sort_Load(EOS(STATIC_4116), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i344) → 3287_0_sort_Load(EOS(STATIC_3287), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i344) | &&(&&(=(matching1, 100), =(matching2, 100)), =(matching3, 100))
3599_0_sort_LE(EOS(STATIC_3599), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i255, i257, i261) → 3603_0_sort_Load(EOS(STATIC_3603), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i255) | &&(&&(&&(>(i257, i261), =(matching1, 100)), =(matching2, 100)), =(matching3, 100))
3603_0_sort_Load(EOS(STATIC_3603), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i255) → 3610_0_sort_Load(EOS(STATIC_3610), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i255, java.lang.Object(ARRAY(100))) | &&(&&(=(matching1, 100), =(matching2, 100)), =(matching3, 100))
3610_0_sort_Load(EOS(STATIC_3610), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i255, java.lang.Object(ARRAY(matching4))) → 3622_0_sort_ArrayAccess(EOS(STATIC_3622), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i255, java.lang.Object(ARRAY(100)), i255) | &&(&&(&&(=(matching1, 100), =(matching2, 100)), =(matching3, 100)), =(matching4, 100))
3622_0_sort_ArrayAccess(EOS(STATIC_3622), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i255, java.lang.Object(ARRAY(matching4)), i255) → 3914_0_sort_Store(EOS(STATIC_3914), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i255) | &&(&&(&&(&&(<(i255, 100), =(matching1, 100)), =(matching2, 100)), =(matching3, 100)), =(matching4, 100))
3914_0_sort_Store(EOS(STATIC_3914), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i255) → 3918_0_sort_Load(EOS(STATIC_3918), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i255) | &&(&&(=(matching1, 100), =(matching2, 100)), =(matching3, 100))
3918_0_sort_Load(EOS(STATIC_3918), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i255) → 3922_0_sort_Load(EOS(STATIC_3922), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i255, java.lang.Object(ARRAY(100))) | &&(&&(=(matching1, 100), =(matching2, 100)), =(matching3, 100))
3922_0_sort_Load(EOS(STATIC_3922), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i255, java.lang.Object(ARRAY(matching4))) → 3924_0_sort_Load(EOS(STATIC_3924), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i255, java.lang.Object(ARRAY(100)), i255) | &&(&&(&&(=(matching1, 100), =(matching2, 100)), =(matching3, 100)), =(matching4, 100))
3924_0_sort_Load(EOS(STATIC_3924), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i255, java.lang.Object(ARRAY(matching4)), i255) → 3929_0_sort_Load(EOS(STATIC_3929), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i255, java.lang.Object(ARRAY(100)), i255, java.lang.Object(ARRAY(100))) | &&(&&(&&(=(matching1, 100), =(matching2, 100)), =(matching3, 100)), =(matching4, 100))
3929_0_sort_Load(EOS(STATIC_3929), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i255, java.lang.Object(ARRAY(matching4)), i255, java.lang.Object(ARRAY(matching5))) → 3932_0_sort_ConstantStackPush(EOS(STATIC_3932), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i255, java.lang.Object(ARRAY(100)), i255, java.lang.Object(ARRAY(100)), i255) | &&(&&(&&(&&(=(matching1, 100), =(matching2, 100)), =(matching3, 100)), =(matching4, 100)), =(matching5, 100))
3932_0_sort_ConstantStackPush(EOS(STATIC_3932), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i255, java.lang.Object(ARRAY(matching4)), i255, java.lang.Object(ARRAY(matching5)), i255) → 3935_0_sort_IntArithmetic(EOS(STATIC_3935), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i255, java.lang.Object(ARRAY(100)), i255, java.lang.Object(ARRAY(100)), i255, 1) | &&(&&(&&(&&(=(matching1, 100), =(matching2, 100)), =(matching3, 100)), =(matching4, 100)), =(matching5, 100))
3935_0_sort_IntArithmetic(EOS(STATIC_3935), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i255, java.lang.Object(ARRAY(matching4)), i255, java.lang.Object(ARRAY(matching5)), i255, matching6) → 3940_0_sort_ArrayAccess(EOS(STATIC_3940), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i255, java.lang.Object(ARRAY(100)), i255, java.lang.Object(ARRAY(100)), +(i255, 1)) | &&(&&(&&(&&(&&(&&(>=(i255, 0), =(matching1, 100)), =(matching2, 100)), =(matching3, 100)), =(matching4, 100)), =(matching5, 100)), =(matching6, 1))
3940_0_sort_ArrayAccess(EOS(STATIC_3940), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i255, java.lang.Object(ARRAY(matching4)), i255, java.lang.Object(ARRAY(matching5)), i339) → 3948_0_sort_ArrayAccess(EOS(STATIC_3948), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i255, java.lang.Object(ARRAY(100)), i255, java.lang.Object(ARRAY(100)), i339) | &&(&&(&&(&&(=(matching1, 100), =(matching2, 100)), =(matching3, 100)), =(matching4, 100)), =(matching5, 100))
3948_0_sort_ArrayAccess(EOS(STATIC_3948), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i255, java.lang.Object(ARRAY(matching4)), i255, java.lang.Object(ARRAY(matching5)), i339) → 3952_0_sort_ArrayAccess(EOS(STATIC_3952), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i255, java.lang.Object(ARRAY(100)), i255) | &&(&&(&&(&&(&&(<(i339, 100), =(matching1, 100)), =(matching2, 100)), =(matching3, 100)), =(matching4, 100)), =(matching5, 100))
3952_0_sort_ArrayAccess(EOS(STATIC_3952), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i255, java.lang.Object(ARRAY(matching4)), i255) → 4046_0_sort_Load(EOS(STATIC_4046), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i255) | &&(&&(&&(&&(<(i255, 100), =(matching1, 100)), =(matching2, 100)), =(matching3, 100)), =(matching4, 100))
4046_0_sort_Load(EOS(STATIC_4046), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i255) → 4050_0_sort_Load(EOS(STATIC_4050), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i255, java.lang.Object(ARRAY(100))) | &&(&&(=(matching1, 100), =(matching2, 100)), =(matching3, 100))
4050_0_sort_Load(EOS(STATIC_4050), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i255, java.lang.Object(ARRAY(matching4))) → 4057_0_sort_ConstantStackPush(EOS(STATIC_4057), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i255, java.lang.Object(ARRAY(100)), i255) | &&(&&(&&(=(matching1, 100), =(matching2, 100)), =(matching3, 100)), =(matching4, 100))
4057_0_sort_ConstantStackPush(EOS(STATIC_4057), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i255, java.lang.Object(ARRAY(matching4)), i255) → 4063_0_sort_IntArithmetic(EOS(STATIC_4063), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i255, java.lang.Object(ARRAY(100)), i255, 1) | &&(&&(&&(=(matching1, 100), =(matching2, 100)), =(matching3, 100)), =(matching4, 100))
4063_0_sort_IntArithmetic(EOS(STATIC_4063), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i255, java.lang.Object(ARRAY(matching4)), i255, matching5) → 4076_0_sort_Load(EOS(STATIC_4076), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i255, java.lang.Object(ARRAY(100)), +(i255, 1)) | &&(&&(&&(&&(&&(>=(i255, 0), =(matching1, 100)), =(matching2, 100)), =(matching3, 100)), =(matching4, 100)), =(matching5, 1))
4076_0_sort_Load(EOS(STATIC_4076), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i255, java.lang.Object(ARRAY(matching4)), i341) → 4083_0_sort_ArrayAccess(EOS(STATIC_4083), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i255, java.lang.Object(ARRAY(100)), i341) | &&(&&(&&(=(matching1, 100), =(matching2, 100)), =(matching3, 100)), =(matching4, 100))
4083_0_sort_ArrayAccess(EOS(STATIC_4083), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i255, java.lang.Object(ARRAY(matching4)), i343) → 4089_0_sort_ArrayAccess(EOS(STATIC_4089), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i255, java.lang.Object(ARRAY(100)), i343) | &&(&&(&&(=(matching1, 100), =(matching2, 100)), =(matching3, 100)), =(matching4, 100))
4089_0_sort_ArrayAccess(EOS(STATIC_4089), java.lang.Object(ARRAY(matching1)), java.lang.Object(ARRAY(matching2)), matching3, i111, i255, java.lang.Object(ARRAY(matching4)), i343) → 4099_0_sort_Inc(EOS(STATIC_4099), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, i111, i255) | &&(&&(&&(&&(<(i343, 100), =(matching1, 100)), =(matching2, 100)), =(matching3, 100)), =(matching4, 100))
R rules:

Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.


P rules:
3293_0_sort_GE(EOS(STATIC_3293), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, x3, x4, x4, x5) → 3293_0_sort_GE(EOS(STATIC_3293), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, +(x3, 1), 0, 0, -(100, +(x3, 1))) | &&(&&(<=(x5, x4), >(x3, 0)), <(x3, 99))
3293_0_sort_GE(EOS(STATIC_3293), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, x3, x4, x4, x5) → 3293_0_sort_GE(EOS(STATIC_3293), java.lang.Object(ARRAY(100)), java.lang.Object(ARRAY(100)), 100, x3, +(x4, 1), +(x4, 1), -(100, x3)) | &&(&&(&&(&&(>(x5, x4), >(+(x4, 1), 0)), <(x4, 99)), <(x4, 100)), >(x3, 0))
R rules:

Filtered ground terms:



3293_0_sort_GE(x1, x2, x3, x4, x5, x6, x7, x8) → 3293_0_sort_GE(x5, x6, x7, x8)
ARRAY(x1) → ARRAY
java.lang.Object(x1) → java.lang.Object
EOS(x1) → EOS
Cond_3293_0_sort_GE1(x1, x2, x3, x4, x5, x6, x7, x8, x9) → Cond_3293_0_sort_GE1(x1, x6, x7, x8, x9)
Cond_3293_0_sort_GE(x1, x2, x3, x4, x5, x6, x7, x8, x9) → Cond_3293_0_sort_GE(x1, x6, x7, x8, x9)

Filtered duplicate args:



3293_0_sort_GE(x1, x2, x3, x4) → 3293_0_sort_GE(x1, x3, x4)
Cond_3293_0_sort_GE(x1, x2, x3, x4, x5) → Cond_3293_0_sort_GE(x1, x2, x4, x5)
Cond_3293_0_sort_GE1(x1, x2, x3, x4, x5) → Cond_3293_0_sort_GE1(x1, x2, x4, x5)

Filtered unneeded arguments:



Cond_3293_0_sort_GE(x1, x2, x3, x4) → Cond_3293_0_sort_GE(x1, x2)
Cond_3293_0_sort_GE1(x1, x2, x3, x4) → Cond_3293_0_sort_GE1(x1, x2, x3)

Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.


P rules:
3293_0_sort_GE(x3, x4, x5) → 3293_0_sort_GE(+(x3, 1), 0, -(100, +(x3, 1))) | &&(&&(<=(x5, x4), >(x3, 0)), <(x3, 99))
3293_0_sort_GE(x3, x4, x5) → 3293_0_sort_GE(x3, +(x4, 1), -(100, x3)) | &&(&&(&&(&&(>(x5, x4), >(x4, -1)), <(x4, 99)), <(x4, 100)), >(x3, 0))
R rules:

Finished conversion. Obtained 4 rules for P and 0 rules for R. System has predefined symbols.


P rules:
3293_0_SORT_GE(x3, x4, x5) → COND_3293_0_SORT_GE(&&(&&(<=(x5, x4), >(x3, 0)), <(x3, 99)), x3, x4, x5)
COND_3293_0_SORT_GE(TRUE, x3, x4, x5) → 3293_0_SORT_GE(+(x3, 1), 0, -(100, +(x3, 1)))
3293_0_SORT_GE(x3, x4, x5) → COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5, x4), >(x4, -1)), <(x4, 99)), <(x4, 100)), >(x3, 0)), x3, x4, x5)
COND_3293_0_SORT_GE1(TRUE, x3, x4, x5) → 3293_0_SORT_GE(x3, +(x4, 1), -(100, x3))
R rules:

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 3293_0_SORT_GE(x3[0], x4[0], x5[0]) → COND_3293_0_SORT_GE(x5[0] <= x4[0] && x3[0] > 0 && x3[0] < 99, x3[0], x4[0], x5[0])
(1): COND_3293_0_SORT_GE(TRUE, x3[1], x4[1], x5[1]) → 3293_0_SORT_GE(x3[1] + 1, 0, 100 - x3[1] + 1)
(2): 3293_0_SORT_GE(x3[2], x4[2], x5[2]) → COND_3293_0_SORT_GE1(x5[2] > x4[2] && x4[2] > -1 && x4[2] < 99 && x4[2] < 100 && x3[2] > 0, x3[2], x4[2], x5[2])
(3): COND_3293_0_SORT_GE1(TRUE, x3[3], x4[3], x5[3]) → 3293_0_SORT_GE(x3[3], x4[3] + 1, 100 - x3[3])

(0) -> (1), if (x5[0] <= x4[0] && x3[0] > 0 && x3[0] < 99x3[0]* x3[1]x4[0]* x4[1]x5[0]* x5[1])


(1) -> (0), if (x3[1] + 1* x3[0]0* x4[0]100 - x3[1] + 1* x5[0])


(1) -> (2), if (x3[1] + 1* x3[2]0* x4[2]100 - x3[1] + 1* x5[2])


(2) -> (3), if (x5[2] > x4[2] && x4[2] > -1 && x4[2] < 99 && x4[2] < 100 && x3[2] > 0x3[2]* x3[3]x4[2]* x4[3]x5[2]* x5[3])


(3) -> (0), if (x3[3]* x3[0]x4[3] + 1* x4[0]100 - x3[3]* x5[0])


(3) -> (2), if (x3[3]* x3[2]x4[3] + 1* x4[2]100 - x3[3]* x5[2])



The set Q is empty.

(7) IDPNonInfProof (SOUND transformation)

Used the following options for this NonInfProof:
IDPGPoloSolver: Range: [(-1,2)] IsNat: false Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpCand1ShapeHeuristic@4cb89e1d Constraint Generator: NonInfConstraintGenerator: PathGenerator: MetricPathGenerator: Max Left Steps: 0 Max Right Steps: 0

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 3293_0_SORT_GE(x3, x4, x5) → COND_3293_0_SORT_GE(&&(&&(<=(x5, x4), >(x3, 0)), <(x3, 99)), x3, x4, x5) the following chains were created:
  • We consider the chain 3293_0_SORT_GE(x3[0], x4[0], x5[0]) → COND_3293_0_SORT_GE(&&(&&(<=(x5[0], x4[0]), >(x3[0], 0)), <(x3[0], 99)), x3[0], x4[0], x5[0]), COND_3293_0_SORT_GE(TRUE, x3[1], x4[1], x5[1]) → 3293_0_SORT_GE(+(x3[1], 1), 0, -(100, +(x3[1], 1))) which results in the following constraint:

    (1)    (&&(&&(<=(x5[0], x4[0]), >(x3[0], 0)), <(x3[0], 99))=TRUEx3[0]=x3[1]x4[0]=x4[1]x5[0]=x5[1]3293_0_SORT_GE(x3[0], x4[0], x5[0])≥NonInfC∧3293_0_SORT_GE(x3[0], x4[0], x5[0])≥COND_3293_0_SORT_GE(&&(&&(<=(x5[0], x4[0]), >(x3[0], 0)), <(x3[0], 99)), x3[0], x4[0], x5[0])∧(UIncreasing(COND_3293_0_SORT_GE(&&(&&(<=(x5[0], x4[0]), >(x3[0], 0)), <(x3[0], 99)), x3[0], x4[0], x5[0])), ≥))



    We simplified constraint (1) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (<(x3[0], 99)=TRUE<=(x5[0], x4[0])=TRUE>(x3[0], 0)=TRUE3293_0_SORT_GE(x3[0], x4[0], x5[0])≥NonInfC∧3293_0_SORT_GE(x3[0], x4[0], x5[0])≥COND_3293_0_SORT_GE(&&(&&(<=(x5[0], x4[0]), >(x3[0], 0)), <(x3[0], 99)), x3[0], x4[0], x5[0])∧(UIncreasing(COND_3293_0_SORT_GE(&&(&&(<=(x5[0], x4[0]), >(x3[0], 0)), <(x3[0], 99)), x3[0], x4[0], x5[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    ([98] + [-1]x3[0] ≥ 0∧x4[0] + [-1]x5[0] ≥ 0∧x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_3293_0_SORT_GE(&&(&&(<=(x5[0], x4[0]), >(x3[0], 0)), <(x3[0], 99)), x3[0], x4[0], x5[0])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x3[0] ≥ 0∧[(-1)bso_14] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    ([98] + [-1]x3[0] ≥ 0∧x4[0] + [-1]x5[0] ≥ 0∧x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_3293_0_SORT_GE(&&(&&(<=(x5[0], x4[0]), >(x3[0], 0)), <(x3[0], 99)), x3[0], x4[0], x5[0])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x3[0] ≥ 0∧[(-1)bso_14] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    ([98] + [-1]x3[0] ≥ 0∧x4[0] + [-1]x5[0] ≥ 0∧x3[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_3293_0_SORT_GE(&&(&&(<=(x5[0], x4[0]), >(x3[0], 0)), <(x3[0], 99)), x3[0], x4[0], x5[0])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x3[0] ≥ 0∧[(-1)bso_14] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    ([97] + [-1]x3[0] ≥ 0∧x4[0] + [-1]x5[0] ≥ 0∧x3[0] ≥ 0 ⇒ (UIncreasing(COND_3293_0_SORT_GE(&&(&&(<=(x5[0], x4[0]), >(x3[0], 0)), <(x3[0], 99)), x3[0], x4[0], x5[0])), ≥)∧[(-2)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x3[0] ≥ 0∧[(-1)bso_14] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (7)    ([97] + [-1]x3[0] ≥ 0∧x4[0] ≥ 0∧x3[0] ≥ 0 ⇒ (UIncreasing(COND_3293_0_SORT_GE(&&(&&(<=(x5[0], x4[0]), >(x3[0], 0)), <(x3[0], 99)), x3[0], x4[0], x5[0])), ≥)∧[(-2)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x3[0] ≥ 0∧[(-1)bso_14] ≥ 0)



    We simplified constraint (7) using rule (IDP_SMT_SPLIT) which results in the following new constraints:

    (8)    ([97] + [-1]x3[0] ≥ 0∧x4[0] ≥ 0∧x3[0] ≥ 0∧x5[0] ≥ 0 ⇒ (UIncreasing(COND_3293_0_SORT_GE(&&(&&(<=(x5[0], x4[0]), >(x3[0], 0)), <(x3[0], 99)), x3[0], x4[0], x5[0])), ≥)∧[(-2)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x3[0] ≥ 0∧[(-1)bso_14] ≥ 0)


    (9)    ([97] + [-1]x3[0] ≥ 0∧x4[0] ≥ 0∧x3[0] ≥ 0∧x5[0] ≥ 0 ⇒ (UIncreasing(COND_3293_0_SORT_GE(&&(&&(<=(x5[0], x4[0]), >(x3[0], 0)), <(x3[0], 99)), x3[0], x4[0], x5[0])), ≥)∧[(-2)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x3[0] ≥ 0∧[(-1)bso_14] ≥ 0)







For Pair COND_3293_0_SORT_GE(TRUE, x3, x4, x5) → 3293_0_SORT_GE(+(x3, 1), 0, -(100, +(x3, 1))) the following chains were created:
  • We consider the chain COND_3293_0_SORT_GE(TRUE, x3[1], x4[1], x5[1]) → 3293_0_SORT_GE(+(x3[1], 1), 0, -(100, +(x3[1], 1))) which results in the following constraint:

    (10)    (COND_3293_0_SORT_GE(TRUE, x3[1], x4[1], x5[1])≥NonInfC∧COND_3293_0_SORT_GE(TRUE, x3[1], x4[1], x5[1])≥3293_0_SORT_GE(+(x3[1], 1), 0, -(100, +(x3[1], 1)))∧(UIncreasing(3293_0_SORT_GE(+(x3[1], 1), 0, -(100, +(x3[1], 1)))), ≥))



    We simplified constraint (10) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (11)    ((UIncreasing(3293_0_SORT_GE(+(x3[1], 1), 0, -(100, +(x3[1], 1)))), ≥)∧[bni_15] = 0∧[1 + (-1)bso_16] ≥ 0)



    We simplified constraint (11) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (12)    ((UIncreasing(3293_0_SORT_GE(+(x3[1], 1), 0, -(100, +(x3[1], 1)))), ≥)∧[bni_15] = 0∧[1 + (-1)bso_16] ≥ 0)



    We simplified constraint (12) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (13)    ((UIncreasing(3293_0_SORT_GE(+(x3[1], 1), 0, -(100, +(x3[1], 1)))), ≥)∧[bni_15] = 0∧[1 + (-1)bso_16] ≥ 0)



    We simplified constraint (13) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (14)    ((UIncreasing(3293_0_SORT_GE(+(x3[1], 1), 0, -(100, +(x3[1], 1)))), ≥)∧[bni_15] = 0∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_16] ≥ 0)







For Pair 3293_0_SORT_GE(x3, x4, x5) → COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5, x4), >(x4, -1)), <(x4, 99)), <(x4, 100)), >(x3, 0)), x3, x4, x5) the following chains were created:
  • We consider the chain 3293_0_SORT_GE(x3[2], x4[2], x5[2]) → COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0)), x3[2], x4[2], x5[2]), COND_3293_0_SORT_GE1(TRUE, x3[3], x4[3], x5[3]) → 3293_0_SORT_GE(x3[3], +(x4[3], 1), -(100, x3[3])) which results in the following constraint:

    (15)    (&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0))=TRUEx3[2]=x3[3]x4[2]=x4[3]x5[2]=x5[3]3293_0_SORT_GE(x3[2], x4[2], x5[2])≥NonInfC∧3293_0_SORT_GE(x3[2], x4[2], x5[2])≥COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0)), x3[2], x4[2], x5[2])∧(UIncreasing(COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0)), x3[2], x4[2], x5[2])), ≥))



    We simplified constraint (15) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (16)    (>(x3[2], 0)=TRUE<(x4[2], 100)=TRUE<(x4[2], 99)=TRUE>(x5[2], x4[2])=TRUE>(x4[2], -1)=TRUE3293_0_SORT_GE(x3[2], x4[2], x5[2])≥NonInfC∧3293_0_SORT_GE(x3[2], x4[2], x5[2])≥COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0)), x3[2], x4[2], x5[2])∧(UIncreasing(COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0)), x3[2], x4[2], x5[2])), ≥))



    We simplified constraint (16) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (17)    (x3[2] + [-1] ≥ 0∧[99] + [-1]x4[2] ≥ 0∧[98] + [-1]x4[2] ≥ 0∧x5[2] + [-1] + [-1]x4[2] ≥ 0∧x4[2] ≥ 0 ⇒ (UIncreasing(COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0)), x3[2], x4[2], x5[2])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]x3[2] ≥ 0∧[(-1)bso_18] ≥ 0)



    We simplified constraint (17) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (18)    (x3[2] + [-1] ≥ 0∧[99] + [-1]x4[2] ≥ 0∧[98] + [-1]x4[2] ≥ 0∧x5[2] + [-1] + [-1]x4[2] ≥ 0∧x4[2] ≥ 0 ⇒ (UIncreasing(COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0)), x3[2], x4[2], x5[2])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]x3[2] ≥ 0∧[(-1)bso_18] ≥ 0)



    We simplified constraint (18) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (19)    (x3[2] + [-1] ≥ 0∧[99] + [-1]x4[2] ≥ 0∧[98] + [-1]x4[2] ≥ 0∧x5[2] + [-1] + [-1]x4[2] ≥ 0∧x4[2] ≥ 0 ⇒ (UIncreasing(COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0)), x3[2], x4[2], x5[2])), ≥)∧[(-1)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]x3[2] ≥ 0∧[(-1)bso_18] ≥ 0)



    We simplified constraint (19) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (20)    (x3[2] ≥ 0∧[99] + [-1]x4[2] ≥ 0∧[98] + [-1]x4[2] ≥ 0∧x5[2] + [-1] + [-1]x4[2] ≥ 0∧x4[2] ≥ 0 ⇒ (UIncreasing(COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0)), x3[2], x4[2], x5[2])), ≥)∧[(-2)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]x3[2] ≥ 0∧[(-1)bso_18] ≥ 0)



    We simplified constraint (20) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (21)    (x3[2] ≥ 0∧[99] + [-1]x4[2] ≥ 0∧[98] + [-1]x4[2] ≥ 0∧x5[2] ≥ 0∧x4[2] ≥ 0 ⇒ (UIncreasing(COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0)), x3[2], x4[2], x5[2])), ≥)∧[(-2)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]x3[2] ≥ 0∧[(-1)bso_18] ≥ 0)







For Pair COND_3293_0_SORT_GE1(TRUE, x3, x4, x5) → 3293_0_SORT_GE(x3, +(x4, 1), -(100, x3)) the following chains were created:
  • We consider the chain COND_3293_0_SORT_GE1(TRUE, x3[3], x4[3], x5[3]) → 3293_0_SORT_GE(x3[3], +(x4[3], 1), -(100, x3[3])) which results in the following constraint:

    (22)    (COND_3293_0_SORT_GE1(TRUE, x3[3], x4[3], x5[3])≥NonInfC∧COND_3293_0_SORT_GE1(TRUE, x3[3], x4[3], x5[3])≥3293_0_SORT_GE(x3[3], +(x4[3], 1), -(100, x3[3]))∧(UIncreasing(3293_0_SORT_GE(x3[3], +(x4[3], 1), -(100, x3[3]))), ≥))



    We simplified constraint (22) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (23)    ((UIncreasing(3293_0_SORT_GE(x3[3], +(x4[3], 1), -(100, x3[3]))), ≥)∧[bni_19] = 0∧[(-1)bso_20] ≥ 0)



    We simplified constraint (23) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (24)    ((UIncreasing(3293_0_SORT_GE(x3[3], +(x4[3], 1), -(100, x3[3]))), ≥)∧[bni_19] = 0∧[(-1)bso_20] ≥ 0)



    We simplified constraint (24) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (25)    ((UIncreasing(3293_0_SORT_GE(x3[3], +(x4[3], 1), -(100, x3[3]))), ≥)∧[bni_19] = 0∧[(-1)bso_20] ≥ 0)



    We simplified constraint (25) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (26)    ((UIncreasing(3293_0_SORT_GE(x3[3], +(x4[3], 1), -(100, x3[3]))), ≥)∧[bni_19] = 0∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_20] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 3293_0_SORT_GE(x3, x4, x5) → COND_3293_0_SORT_GE(&&(&&(<=(x5, x4), >(x3, 0)), <(x3, 99)), x3, x4, x5)
    • ([97] + [-1]x3[0] ≥ 0∧x4[0] ≥ 0∧x3[0] ≥ 0∧x5[0] ≥ 0 ⇒ (UIncreasing(COND_3293_0_SORT_GE(&&(&&(<=(x5[0], x4[0]), >(x3[0], 0)), <(x3[0], 99)), x3[0], x4[0], x5[0])), ≥)∧[(-2)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x3[0] ≥ 0∧[(-1)bso_14] ≥ 0)
    • ([97] + [-1]x3[0] ≥ 0∧x4[0] ≥ 0∧x3[0] ≥ 0∧x5[0] ≥ 0 ⇒ (UIncreasing(COND_3293_0_SORT_GE(&&(&&(<=(x5[0], x4[0]), >(x3[0], 0)), <(x3[0], 99)), x3[0], x4[0], x5[0])), ≥)∧[(-2)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x3[0] ≥ 0∧[(-1)bso_14] ≥ 0)

  • COND_3293_0_SORT_GE(TRUE, x3, x4, x5) → 3293_0_SORT_GE(+(x3, 1), 0, -(100, +(x3, 1)))
    • ((UIncreasing(3293_0_SORT_GE(+(x3[1], 1), 0, -(100, +(x3[1], 1)))), ≥)∧[bni_15] = 0∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_16] ≥ 0)

  • 3293_0_SORT_GE(x3, x4, x5) → COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5, x4), >(x4, -1)), <(x4, 99)), <(x4, 100)), >(x3, 0)), x3, x4, x5)
    • (x3[2] ≥ 0∧[99] + [-1]x4[2] ≥ 0∧[98] + [-1]x4[2] ≥ 0∧x5[2] ≥ 0∧x4[2] ≥ 0 ⇒ (UIncreasing(COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0)), x3[2], x4[2], x5[2])), ≥)∧[(-2)bni_17 + (-1)Bound*bni_17] + [(-1)bni_17]x3[2] ≥ 0∧[(-1)bso_18] ≥ 0)

  • COND_3293_0_SORT_GE1(TRUE, x3, x4, x5) → 3293_0_SORT_GE(x3, +(x4, 1), -(100, x3))
    • ((UIncreasing(3293_0_SORT_GE(x3[3], +(x4[3], 1), -(100, x3[3]))), ≥)∧[bni_19] = 0∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_20] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(3293_0_SORT_GE(x1, x2, x3)) = [-1] + [-1]x1   
POL(COND_3293_0_SORT_GE(x1, x2, x3, x4)) = [-1] + [-1]x2   
POL(&&(x1, x2)) = [-1]   
POL(<=(x1, x2)) = [-1]   
POL(>(x1, x2)) = [-1]   
POL(0) = 0   
POL(<(x1, x2)) = [-1]   
POL(99) = [99]   
POL(+(x1, x2)) = x1 + x2   
POL(1) = [1]   
POL(-(x1, x2)) = x1 + [-1]x2   
POL(100) = [100]   
POL(COND_3293_0_SORT_GE1(x1, x2, x3, x4)) = [-1] + [-1]x2   
POL(-1) = [-1]   

The following pairs are in P>:

COND_3293_0_SORT_GE(TRUE, x3[1], x4[1], x5[1]) → 3293_0_SORT_GE(+(x3[1], 1), 0, -(100, +(x3[1], 1)))

The following pairs are in Pbound:

3293_0_SORT_GE(x3[0], x4[0], x5[0]) → COND_3293_0_SORT_GE(&&(&&(<=(x5[0], x4[0]), >(x3[0], 0)), <(x3[0], 99)), x3[0], x4[0], x5[0])

The following pairs are in P:

3293_0_SORT_GE(x3[0], x4[0], x5[0]) → COND_3293_0_SORT_GE(&&(&&(<=(x5[0], x4[0]), >(x3[0], 0)), <(x3[0], 99)), x3[0], x4[0], x5[0])
3293_0_SORT_GE(x3[2], x4[2], x5[2]) → COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0)), x3[2], x4[2], x5[2])
COND_3293_0_SORT_GE1(TRUE, x3[3], x4[3], x5[3]) → 3293_0_SORT_GE(x3[3], +(x4[3], 1), -(100, x3[3]))

There are no usable rules.

(8) Complex Obligation (AND)

(9) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 3293_0_SORT_GE(x3[0], x4[0], x5[0]) → COND_3293_0_SORT_GE(x5[0] <= x4[0] && x3[0] > 0 && x3[0] < 99, x3[0], x4[0], x5[0])
(2): 3293_0_SORT_GE(x3[2], x4[2], x5[2]) → COND_3293_0_SORT_GE1(x5[2] > x4[2] && x4[2] > -1 && x4[2] < 99 && x4[2] < 100 && x3[2] > 0, x3[2], x4[2], x5[2])
(3): COND_3293_0_SORT_GE1(TRUE, x3[3], x4[3], x5[3]) → 3293_0_SORT_GE(x3[3], x4[3] + 1, 100 - x3[3])

(3) -> (0), if (x3[3]* x3[0]x4[3] + 1* x4[0]100 - x3[3]* x5[0])


(3) -> (2), if (x3[3]* x3[2]x4[3] + 1* x4[2]100 - x3[3]* x5[2])


(2) -> (3), if (x5[2] > x4[2] && x4[2] > -1 && x4[2] < 99 && x4[2] < 100 && x3[2] > 0x3[2]* x3[3]x4[2]* x4[3]x5[2]* x5[3])



The set Q is empty.

(10) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(11) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


R is empty.

The integer pair graph contains the following rules and edges:
(3): COND_3293_0_SORT_GE1(TRUE, x3[3], x4[3], x5[3]) → 3293_0_SORT_GE(x3[3], x4[3] + 1, 100 - x3[3])
(2): 3293_0_SORT_GE(x3[2], x4[2], x5[2]) → COND_3293_0_SORT_GE1(x5[2] > x4[2] && x4[2] > -1 && x4[2] < 99 && x4[2] < 100 && x3[2] > 0, x3[2], x4[2], x5[2])

(3) -> (2), if (x3[3]* x3[2]x4[3] + 1* x4[2]100 - x3[3]* x5[2])


(2) -> (3), if (x5[2] > x4[2] && x4[2] > -1 && x4[2] < 99 && x4[2] < 100 && x3[2] > 0x3[2]* x3[3]x4[2]* x4[3]x5[2]* x5[3])



The set Q is empty.

(12) IDPNonInfProof (SOUND transformation)

Used the following options for this NonInfProof:
IDPGPoloSolver: Range: [(-1,2)] IsNat: false Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpCand1ShapeHeuristic@4cb89e1d Constraint Generator: NonInfConstraintGenerator: PathGenerator: MetricPathGenerator: Max Left Steps: 0 Max Right Steps: 0

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair COND_3293_0_SORT_GE1(TRUE, x3[3], x4[3], x5[3]) → 3293_0_SORT_GE(x3[3], +(x4[3], 1), -(100, x3[3])) the following chains were created:
  • We consider the chain COND_3293_0_SORT_GE1(TRUE, x3[3], x4[3], x5[3]) → 3293_0_SORT_GE(x3[3], +(x4[3], 1), -(100, x3[3])) which results in the following constraint:

    (1)    (COND_3293_0_SORT_GE1(TRUE, x3[3], x4[3], x5[3])≥NonInfC∧COND_3293_0_SORT_GE1(TRUE, x3[3], x4[3], x5[3])≥3293_0_SORT_GE(x3[3], +(x4[3], 1), -(100, x3[3]))∧(UIncreasing(3293_0_SORT_GE(x3[3], +(x4[3], 1), -(100, x3[3]))), ≥))



    We simplified constraint (1) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (2)    ((UIncreasing(3293_0_SORT_GE(x3[3], +(x4[3], 1), -(100, x3[3]))), ≥)∧[bni_8] = 0∧[1 + (-1)bso_9] ≥ 0)



    We simplified constraint (2) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (3)    ((UIncreasing(3293_0_SORT_GE(x3[3], +(x4[3], 1), -(100, x3[3]))), ≥)∧[bni_8] = 0∧[1 + (-1)bso_9] ≥ 0)



    We simplified constraint (3) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (4)    ((UIncreasing(3293_0_SORT_GE(x3[3], +(x4[3], 1), -(100, x3[3]))), ≥)∧[bni_8] = 0∧[1 + (-1)bso_9] ≥ 0)



    We simplified constraint (4) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (5)    ((UIncreasing(3293_0_SORT_GE(x3[3], +(x4[3], 1), -(100, x3[3]))), ≥)∧[bni_8] = 0∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_9] ≥ 0)







For Pair 3293_0_SORT_GE(x3[2], x4[2], x5[2]) → COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0)), x3[2], x4[2], x5[2]) the following chains were created:
  • We consider the chain 3293_0_SORT_GE(x3[2], x4[2], x5[2]) → COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0)), x3[2], x4[2], x5[2]), COND_3293_0_SORT_GE1(TRUE, x3[3], x4[3], x5[3]) → 3293_0_SORT_GE(x3[3], +(x4[3], 1), -(100, x3[3])) which results in the following constraint:

    (6)    (&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0))=TRUEx3[2]=x3[3]x4[2]=x4[3]x5[2]=x5[3]3293_0_SORT_GE(x3[2], x4[2], x5[2])≥NonInfC∧3293_0_SORT_GE(x3[2], x4[2], x5[2])≥COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0)), x3[2], x4[2], x5[2])∧(UIncreasing(COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0)), x3[2], x4[2], x5[2])), ≥))



    We simplified constraint (6) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (7)    (>(x3[2], 0)=TRUE<(x4[2], 100)=TRUE<(x4[2], 99)=TRUE>(x5[2], x4[2])=TRUE>(x4[2], -1)=TRUE3293_0_SORT_GE(x3[2], x4[2], x5[2])≥NonInfC∧3293_0_SORT_GE(x3[2], x4[2], x5[2])≥COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0)), x3[2], x4[2], x5[2])∧(UIncreasing(COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0)), x3[2], x4[2], x5[2])), ≥))



    We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (8)    (x3[2] + [-1] ≥ 0∧[99] + [-1]x4[2] ≥ 0∧[98] + [-1]x4[2] ≥ 0∧x5[2] + [-1] + [-1]x4[2] ≥ 0∧x4[2] ≥ 0 ⇒ (UIncreasing(COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0)), x3[2], x4[2], x5[2])), ≥)∧[(-1)Bound*bni_10] + [(-1)bni_10]x4[2] ≥ 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (9)    (x3[2] + [-1] ≥ 0∧[99] + [-1]x4[2] ≥ 0∧[98] + [-1]x4[2] ≥ 0∧x5[2] + [-1] + [-1]x4[2] ≥ 0∧x4[2] ≥ 0 ⇒ (UIncreasing(COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0)), x3[2], x4[2], x5[2])), ≥)∧[(-1)Bound*bni_10] + [(-1)bni_10]x4[2] ≥ 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (10)    (x3[2] + [-1] ≥ 0∧[99] + [-1]x4[2] ≥ 0∧[98] + [-1]x4[2] ≥ 0∧x5[2] + [-1] + [-1]x4[2] ≥ 0∧x4[2] ≥ 0 ⇒ (UIncreasing(COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0)), x3[2], x4[2], x5[2])), ≥)∧[(-1)Bound*bni_10] + [(-1)bni_10]x4[2] ≥ 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (10) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (11)    (x3[2] ≥ 0∧[99] + [-1]x4[2] ≥ 0∧[98] + [-1]x4[2] ≥ 0∧x5[2] + [-1] + [-1]x4[2] ≥ 0∧x4[2] ≥ 0 ⇒ (UIncreasing(COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0)), x3[2], x4[2], x5[2])), ≥)∧[(-1)Bound*bni_10] + [(-1)bni_10]x4[2] ≥ 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (11) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (12)    (x3[2] ≥ 0∧[99] + [-1]x4[2] ≥ 0∧[98] + [-1]x4[2] ≥ 0∧x5[2] ≥ 0∧x4[2] ≥ 0 ⇒ (UIncreasing(COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0)), x3[2], x4[2], x5[2])), ≥)∧[(-1)Bound*bni_10] + [(-1)bni_10]x4[2] ≥ 0∧[(-1)bso_11] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • COND_3293_0_SORT_GE1(TRUE, x3[3], x4[3], x5[3]) → 3293_0_SORT_GE(x3[3], +(x4[3], 1), -(100, x3[3]))
    • ((UIncreasing(3293_0_SORT_GE(x3[3], +(x4[3], 1), -(100, x3[3]))), ≥)∧[bni_8] = 0∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_9] ≥ 0)

  • 3293_0_SORT_GE(x3[2], x4[2], x5[2]) → COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0)), x3[2], x4[2], x5[2])
    • (x3[2] ≥ 0∧[99] + [-1]x4[2] ≥ 0∧[98] + [-1]x4[2] ≥ 0∧x5[2] ≥ 0∧x4[2] ≥ 0 ⇒ (UIncreasing(COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0)), x3[2], x4[2], x5[2])), ≥)∧[(-1)Bound*bni_10] + [(-1)bni_10]x4[2] ≥ 0∧[(-1)bso_11] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(COND_3293_0_SORT_GE1(x1, x2, x3, x4)) = [-1]x3   
POL(3293_0_SORT_GE(x1, x2, x3)) = [-1]x2   
POL(+(x1, x2)) = x1 + x2   
POL(1) = [1]   
POL(-(x1, x2)) = x1 + [-1]x2   
POL(100) = [100]   
POL(&&(x1, x2)) = [-1]   
POL(>(x1, x2)) = 0   
POL(-1) = [-1]   
POL(<(x1, x2)) = [-1]   
POL(99) = [99]   
POL(0) = 0   

The following pairs are in P>:

COND_3293_0_SORT_GE1(TRUE, x3[3], x4[3], x5[3]) → 3293_0_SORT_GE(x3[3], +(x4[3], 1), -(100, x3[3]))

The following pairs are in Pbound:

3293_0_SORT_GE(x3[2], x4[2], x5[2]) → COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0)), x3[2], x4[2], x5[2])

The following pairs are in P:

3293_0_SORT_GE(x3[2], x4[2], x5[2]) → COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0)), x3[2], x4[2], x5[2])

There are no usable rules.

(13) Complex Obligation (AND)

(14) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(2): 3293_0_SORT_GE(x3[2], x4[2], x5[2]) → COND_3293_0_SORT_GE1(x5[2] > x4[2] && x4[2] > -1 && x4[2] < 99 && x4[2] < 100 && x3[2] > 0, x3[2], x4[2], x5[2])


The set Q is empty.

(15) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(16) TRUE

(17) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(3): COND_3293_0_SORT_GE1(TRUE, x3[3], x4[3], x5[3]) → 3293_0_SORT_GE(x3[3], x4[3] + 1, 100 - x3[3])


The set Q is empty.

(18) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(19) TRUE

(20) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_3293_0_SORT_GE(TRUE, x3[1], x4[1], x5[1]) → 3293_0_SORT_GE(x3[1] + 1, 0, 100 - x3[1] + 1)
(2): 3293_0_SORT_GE(x3[2], x4[2], x5[2]) → COND_3293_0_SORT_GE1(x5[2] > x4[2] && x4[2] > -1 && x4[2] < 99 && x4[2] < 100 && x3[2] > 0, x3[2], x4[2], x5[2])
(3): COND_3293_0_SORT_GE1(TRUE, x3[3], x4[3], x5[3]) → 3293_0_SORT_GE(x3[3], x4[3] + 1, 100 - x3[3])

(1) -> (2), if (x3[1] + 1* x3[2]0* x4[2]100 - x3[1] + 1* x5[2])


(3) -> (2), if (x3[3]* x3[2]x4[3] + 1* x4[2]100 - x3[3]* x5[2])


(2) -> (3), if (x5[2] > x4[2] && x4[2] > -1 && x4[2] < 99 && x4[2] < 100 && x3[2] > 0x3[2]* x3[3]x4[2]* x4[3]x5[2]* x5[3])



The set Q is empty.

(21) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(22) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


R is empty.

The integer pair graph contains the following rules and edges:
(3): COND_3293_0_SORT_GE1(TRUE, x3[3], x4[3], x5[3]) → 3293_0_SORT_GE(x3[3], x4[3] + 1, 100 - x3[3])
(2): 3293_0_SORT_GE(x3[2], x4[2], x5[2]) → COND_3293_0_SORT_GE1(x5[2] > x4[2] && x4[2] > -1 && x4[2] < 99 && x4[2] < 100 && x3[2] > 0, x3[2], x4[2], x5[2])

(3) -> (2), if (x3[3]* x3[2]x4[3] + 1* x4[2]100 - x3[3]* x5[2])


(2) -> (3), if (x5[2] > x4[2] && x4[2] > -1 && x4[2] < 99 && x4[2] < 100 && x3[2] > 0x3[2]* x3[3]x4[2]* x4[3]x5[2]* x5[3])



The set Q is empty.

(23) IDPNonInfProof (SOUND transformation)

Used the following options for this NonInfProof:
IDPGPoloSolver: Range: [(-1,2)] IsNat: false Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpCand1ShapeHeuristic@4cb89e1d Constraint Generator: NonInfConstraintGenerator: PathGenerator: MetricPathGenerator: Max Left Steps: 0 Max Right Steps: 0

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair COND_3293_0_SORT_GE1(TRUE, x3[3], x4[3], x5[3]) → 3293_0_SORT_GE(x3[3], +(x4[3], 1), -(100, x3[3])) the following chains were created:
  • We consider the chain COND_3293_0_SORT_GE1(TRUE, x3[3], x4[3], x5[3]) → 3293_0_SORT_GE(x3[3], +(x4[3], 1), -(100, x3[3])) which results in the following constraint:

    (1)    (COND_3293_0_SORT_GE1(TRUE, x3[3], x4[3], x5[3])≥NonInfC∧COND_3293_0_SORT_GE1(TRUE, x3[3], x4[3], x5[3])≥3293_0_SORT_GE(x3[3], +(x4[3], 1), -(100, x3[3]))∧(UIncreasing(3293_0_SORT_GE(x3[3], +(x4[3], 1), -(100, x3[3]))), ≥))



    We simplified constraint (1) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (2)    ((UIncreasing(3293_0_SORT_GE(x3[3], +(x4[3], 1), -(100, x3[3]))), ≥)∧[bni_9] = 0∧[1 + (-1)bso_10] ≥ 0)



    We simplified constraint (2) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (3)    ((UIncreasing(3293_0_SORT_GE(x3[3], +(x4[3], 1), -(100, x3[3]))), ≥)∧[bni_9] = 0∧[1 + (-1)bso_10] ≥ 0)



    We simplified constraint (3) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (4)    ((UIncreasing(3293_0_SORT_GE(x3[3], +(x4[3], 1), -(100, x3[3]))), ≥)∧[bni_9] = 0∧[1 + (-1)bso_10] ≥ 0)



    We simplified constraint (4) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (5)    ((UIncreasing(3293_0_SORT_GE(x3[3], +(x4[3], 1), -(100, x3[3]))), ≥)∧[bni_9] = 0∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_10] ≥ 0)







For Pair 3293_0_SORT_GE(x3[2], x4[2], x5[2]) → COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0)), x3[2], x4[2], x5[2]) the following chains were created:
  • We consider the chain 3293_0_SORT_GE(x3[2], x4[2], x5[2]) → COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0)), x3[2], x4[2], x5[2]), COND_3293_0_SORT_GE1(TRUE, x3[3], x4[3], x5[3]) → 3293_0_SORT_GE(x3[3], +(x4[3], 1), -(100, x3[3])) which results in the following constraint:

    (6)    (&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0))=TRUEx3[2]=x3[3]x4[2]=x4[3]x5[2]=x5[3]3293_0_SORT_GE(x3[2], x4[2], x5[2])≥NonInfC∧3293_0_SORT_GE(x3[2], x4[2], x5[2])≥COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0)), x3[2], x4[2], x5[2])∧(UIncreasing(COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0)), x3[2], x4[2], x5[2])), ≥))



    We simplified constraint (6) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (7)    (>(x3[2], 0)=TRUE<(x4[2], 100)=TRUE<(x4[2], 99)=TRUE>(x5[2], x4[2])=TRUE>(x4[2], -1)=TRUE3293_0_SORT_GE(x3[2], x4[2], x5[2])≥NonInfC∧3293_0_SORT_GE(x3[2], x4[2], x5[2])≥COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0)), x3[2], x4[2], x5[2])∧(UIncreasing(COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0)), x3[2], x4[2], x5[2])), ≥))



    We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (8)    (x3[2] + [-1] ≥ 0∧[99] + [-1]x4[2] ≥ 0∧[98] + [-1]x4[2] ≥ 0∧x5[2] + [-1] + [-1]x4[2] ≥ 0∧x4[2] ≥ 0 ⇒ (UIncreasing(COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0)), x3[2], x4[2], x5[2])), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [(-1)bni_11]x4[2] ≥ 0∧[(-1)bso_12] ≥ 0)



    We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (9)    (x3[2] + [-1] ≥ 0∧[99] + [-1]x4[2] ≥ 0∧[98] + [-1]x4[2] ≥ 0∧x5[2] + [-1] + [-1]x4[2] ≥ 0∧x4[2] ≥ 0 ⇒ (UIncreasing(COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0)), x3[2], x4[2], x5[2])), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [(-1)bni_11]x4[2] ≥ 0∧[(-1)bso_12] ≥ 0)



    We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (10)    (x3[2] + [-1] ≥ 0∧[99] + [-1]x4[2] ≥ 0∧[98] + [-1]x4[2] ≥ 0∧x5[2] + [-1] + [-1]x4[2] ≥ 0∧x4[2] ≥ 0 ⇒ (UIncreasing(COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0)), x3[2], x4[2], x5[2])), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [(-1)bni_11]x4[2] ≥ 0∧[(-1)bso_12] ≥ 0)



    We simplified constraint (10) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (11)    (x3[2] ≥ 0∧[99] + [-1]x4[2] ≥ 0∧[98] + [-1]x4[2] ≥ 0∧x5[2] + [-1] + [-1]x4[2] ≥ 0∧x4[2] ≥ 0 ⇒ (UIncreasing(COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0)), x3[2], x4[2], x5[2])), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [(-1)bni_11]x4[2] ≥ 0∧[(-1)bso_12] ≥ 0)



    We simplified constraint (11) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (12)    (x3[2] ≥ 0∧[99] + [-1]x4[2] ≥ 0∧[98] + [-1]x4[2] ≥ 0∧x5[2] ≥ 0∧x4[2] ≥ 0 ⇒ (UIncreasing(COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0)), x3[2], x4[2], x5[2])), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [(-1)bni_11]x4[2] ≥ 0∧[(-1)bso_12] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • COND_3293_0_SORT_GE1(TRUE, x3[3], x4[3], x5[3]) → 3293_0_SORT_GE(x3[3], +(x4[3], 1), -(100, x3[3]))
    • ((UIncreasing(3293_0_SORT_GE(x3[3], +(x4[3], 1), -(100, x3[3]))), ≥)∧[bni_9] = 0∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_10] ≥ 0)

  • 3293_0_SORT_GE(x3[2], x4[2], x5[2]) → COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0)), x3[2], x4[2], x5[2])
    • (x3[2] ≥ 0∧[99] + [-1]x4[2] ≥ 0∧[98] + [-1]x4[2] ≥ 0∧x5[2] ≥ 0∧x4[2] ≥ 0 ⇒ (UIncreasing(COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0)), x3[2], x4[2], x5[2])), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [(-1)bni_11]x4[2] ≥ 0∧[(-1)bso_12] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(COND_3293_0_SORT_GE1(x1, x2, x3, x4)) = [-1] + [-1]x3   
POL(3293_0_SORT_GE(x1, x2, x3)) = [-1] + [-1]x2   
POL(+(x1, x2)) = x1 + x2   
POL(1) = [1]   
POL(-(x1, x2)) = x1 + [-1]x2   
POL(100) = [100]   
POL(&&(x1, x2)) = 0   
POL(>(x1, x2)) = [-1]   
POL(-1) = [-1]   
POL(<(x1, x2)) = [-1]   
POL(99) = [99]   
POL(0) = 0   

The following pairs are in P>:

COND_3293_0_SORT_GE1(TRUE, x3[3], x4[3], x5[3]) → 3293_0_SORT_GE(x3[3], +(x4[3], 1), -(100, x3[3]))

The following pairs are in Pbound:

3293_0_SORT_GE(x3[2], x4[2], x5[2]) → COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0)), x3[2], x4[2], x5[2])

The following pairs are in P:

3293_0_SORT_GE(x3[2], x4[2], x5[2]) → COND_3293_0_SORT_GE1(&&(&&(&&(&&(>(x5[2], x4[2]), >(x4[2], -1)), <(x4[2], 99)), <(x4[2], 100)), >(x3[2], 0)), x3[2], x4[2], x5[2])

There are no usable rules.

(24) Complex Obligation (AND)

(25) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(2): 3293_0_SORT_GE(x3[2], x4[2], x5[2]) → COND_3293_0_SORT_GE1(x5[2] > x4[2] && x4[2] > -1 && x4[2] < 99 && x4[2] < 100 && x3[2] > 0, x3[2], x4[2], x5[2])


The set Q is empty.

(26) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(27) TRUE

(28) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(3): COND_3293_0_SORT_GE1(TRUE, x3[3], x4[3], x5[3]) → 3293_0_SORT_GE(x3[3], x4[3] + 1, 100 - x3[3])


The set Q is empty.

(29) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(30) TRUE