0 JBC
↳1 JBCToGraph (⇒, 100 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 120 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 180 ms)
↳8 IDP
↳9 IDependencyGraphProof (⇔, 0 ms)
↳10 IDP
↳11 IDPNonInfProof (⇒, 50 ms)
↳12 IDP
↳13 IDependencyGraphProof (⇔, 0 ms)
↳14 TRUE
/**
* A recursive loop.
*
* All calls terminate.
*
* Julia + BinTerm prove that the call to <tt>test()</tt> terminates.
*
* @author <A HREF="mailto:fausto.spoto@univr.it">Fausto Spoto</A>
*/
public class Double {
private static void test(int n) {
for (int i = 0; i < n; i++)
test(i);
}
public static void main(String[] args) {
test(10);
}
}
Generated 19 rules for P and 2 rules for R.
P rules:
265_0_test_Store(EOS(STATIC_265), i23, matching1) → 267_0_test_Load(EOS(STATIC_267), i23, 0) | =(matching1, 0)
267_0_test_Load(EOS(STATIC_267), i23, matching1) → 307_0_test_Load(EOS(STATIC_307), i23, 0) | =(matching1, 0)
307_0_test_Load(EOS(STATIC_307), i29, i30) → 348_0_test_Load(EOS(STATIC_348), i29, i30)
348_0_test_Load(EOS(STATIC_348), i29, i38) → 391_0_test_Load(EOS(STATIC_391), i29, i38)
391_0_test_Load(EOS(STATIC_391), i29, i44) → 430_0_test_Load(EOS(STATIC_430), i29, i44)
430_0_test_Load(EOS(STATIC_430), i29, i50) → 432_0_test_Load(EOS(STATIC_432), i29, i50, i50)
432_0_test_Load(EOS(STATIC_432), i29, i50, i50) → 434_0_test_GE(EOS(STATIC_434), i29, i50, i50, i29)
434_0_test_GE(EOS(STATIC_434), i29, i50, i50, i29) → 436_0_test_GE(EOS(STATIC_436), i29, i50, i50, i29)
436_0_test_GE(EOS(STATIC_436), i29, i50, i50, i29) → 439_0_test_Load(EOS(STATIC_439), i29, i50) | <(i50, i29)
439_0_test_Load(EOS(STATIC_439), i29, i50) → 442_0_test_InvokeMethod(EOS(STATIC_442), i29, i50, i50)
442_0_test_InvokeMethod(EOS(STATIC_442), i29, i50, i50) → 446_1_test_InvokeMethod(446_0_test_ConstantStackPush(EOS(STATIC_446), i50), i29, i50, i50)
446_0_test_ConstantStackPush(EOS(STATIC_446), i50) → 450_0_test_ConstantStackPush(EOS(STATIC_450), i50)
446_1_test_InvokeMethod(438_0_test_Return(EOS(STATIC_438)), i29, i54, i54) → 455_0_test_Return(EOS(STATIC_455), i29, i54, i54)
450_0_test_ConstantStackPush(EOS(STATIC_450), i50) → 263_0_test_ConstantStackPush(EOS(STATIC_263), i50)
263_0_test_ConstantStackPush(EOS(STATIC_263), i23) → 265_0_test_Store(EOS(STATIC_265), i23, 0)
455_0_test_Return(EOS(STATIC_455), i29, i54, i54) → 456_0_test_Inc(EOS(STATIC_456), i29, i54)
456_0_test_Inc(EOS(STATIC_456), i29, i54) → 458_0_test_JMP(EOS(STATIC_458), i29, +(i54, 1)) | >=(i54, 0)
458_0_test_JMP(EOS(STATIC_458), i29, i55) → 460_0_test_Load(EOS(STATIC_460), i29, i55)
460_0_test_Load(EOS(STATIC_460), i29, i55) → 430_0_test_Load(EOS(STATIC_430), i29, i55)
R rules:
434_0_test_GE(EOS(STATIC_434), i29, i50, i50, i29) → 435_0_test_GE(EOS(STATIC_435), i29, i50, i50, i29)
435_0_test_GE(EOS(STATIC_435), i29, i50, i50, i29) → 438_0_test_Return(EOS(STATIC_438)) | >=(i50, i29)
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
265_0_test_Store(EOS(STATIC_265), x0, 0) → 446_1_test_InvokeMethod(265_0_test_Store(EOS(STATIC_265), 0, 0), x0, 0, 0) | >(x0, 0)
446_1_test_InvokeMethod(438_0_test_Return(EOS(STATIC_438)), x0, x1, x1) → 446_1_test_InvokeMethod(265_0_test_Store(EOS(STATIC_265), +(x1, 1), 0), x0, +(x1, 1), +(x1, 1)) | &&(>(+(x1, 1), 0), >(x0, +(x1, 1)))
R rules:
Filtered ground terms:
265_0_test_Store(x1, x2, x3) → 265_0_test_Store(x2)
Cond_446_1_test_InvokeMethod(x1, x2, x3, x4, x5) → Cond_446_1_test_InvokeMethod(x1, x3, x4, x5)
438_0_test_Return(x1) → 438_0_test_Return
Cond_265_0_test_Store(x1, x2, x3, x4) → Cond_265_0_test_Store(x1, x3)
Filtered duplicate args:
446_1_test_InvokeMethod(x1, x2, x3, x4) → 446_1_test_InvokeMethod(x1, x2, x4)
Cond_446_1_test_InvokeMethod(x1, x2, x3, x4) → Cond_446_1_test_InvokeMethod(x1, x2, x4)
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
265_0_test_Store(x0) → 446_1_test_InvokeMethod(265_0_test_Store(0), x0, 0) | >(x0, 0)
446_1_test_InvokeMethod(438_0_test_Return, x0, x1) → 446_1_test_InvokeMethod(265_0_test_Store(+(x1, 1)), x0, +(x1, 1)) | &&(>(x1, -1), >(x0, +(x1, 1)))
R rules:
Finished conversion. Obtained 6 rules for P and 0 rules for R. System has predefined symbols.
P rules:
265_0_TEST_STORE(x0) → COND_265_0_TEST_STORE(>(x0, 0), x0)
COND_265_0_TEST_STORE(TRUE, x0) → 446_1_TEST_INVOKEMETHOD(265_0_test_Store(0), x0, 0)
COND_265_0_TEST_STORE(TRUE, x0) → 265_0_TEST_STORE(0)
446_1_TEST_INVOKEMETHOD(438_0_test_Return, x0, x1) → COND_446_1_TEST_INVOKEMETHOD(&&(>(x1, -1), >(x0, +(x1, 1))), 438_0_test_Return, x0, x1)
COND_446_1_TEST_INVOKEMETHOD(TRUE, 438_0_test_Return, x0, x1) → 446_1_TEST_INVOKEMETHOD(265_0_test_Store(+(x1, 1)), x0, +(x1, 1))
COND_446_1_TEST_INVOKEMETHOD(TRUE, 438_0_test_Return, x0, x1) → 265_0_TEST_STORE(+(x1, 1))
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(0) -> (1), if (x0[0] > 0 ∧x0[0] →* x0[1])
(0) -> (2), if (x0[0] > 0 ∧x0[0] →* x0[2])
(1) -> (3), if (265_0_test_Store(0) →* 438_0_test_Return∧x0[1] →* x0[3]∧0 →* x1[3])
(2) -> (0), if (0 →* x0[0])
(3) -> (4), if (x1[3] > -1 && x0[3] > x1[3] + 1 ∧x0[3] →* x0[4]∧x1[3] →* x1[4])
(3) -> (5), if (x1[3] > -1 && x0[3] > x1[3] + 1 ∧x0[3] →* x0[5]∧x1[3] →* x1[5])
(4) -> (3), if (265_0_test_Store(x1[4] + 1) →* 438_0_test_Return∧x0[4] →* x0[3]∧x1[4] + 1 →* x1[3])
(5) -> (0), if (x1[5] + 1 →* x0[0])
(1) (>(x0[0], 0)=TRUE∧x0[0]=x0[1] ⇒ 265_0_TEST_STORE(x0[0])≥NonInfC∧265_0_TEST_STORE(x0[0])≥COND_265_0_TEST_STORE(>(x0[0], 0), x0[0])∧(UIncreasing(COND_265_0_TEST_STORE(>(x0[0], 0), x0[0])), ≥))
(2) (>(x0[0], 0)=TRUE ⇒ 265_0_TEST_STORE(x0[0])≥NonInfC∧265_0_TEST_STORE(x0[0])≥COND_265_0_TEST_STORE(>(x0[0], 0), x0[0])∧(UIncreasing(COND_265_0_TEST_STORE(>(x0[0], 0), x0[0])), ≥))
(3) (0 ≥ 0 ⇒ (UIncreasing(COND_265_0_TEST_STORE(>(x0[0], 0), x0[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[(-1)bso_19] + x0[0] ≥ 0)
(4) (0 ≥ 0 ⇒ (UIncreasing(COND_265_0_TEST_STORE(>(x0[0], 0), x0[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[(-1)bso_19] + x0[0] ≥ 0)
(5) (0 ≥ 0 ⇒ (UIncreasing(COND_265_0_TEST_STORE(>(x0[0], 0), x0[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[(-1)bso_19] + x0[0] ≥ 0)
(6) (0 ≥ 0 ⇒ (UIncreasing(COND_265_0_TEST_STORE(>(x0[0], 0), x0[0])), ≥)∧[bni_18] ≥ 0∧[(-1)bni_18 + (-1)Bound*bni_18] ≥ 0∧[1] ≥ 0∧[(-1)bso_19] ≥ 0)
(7) (>(x0[0], 0)=TRUE∧x0[0]=x0[2] ⇒ 265_0_TEST_STORE(x0[0])≥NonInfC∧265_0_TEST_STORE(x0[0])≥COND_265_0_TEST_STORE(>(x0[0], 0), x0[0])∧(UIncreasing(COND_265_0_TEST_STORE(>(x0[0], 0), x0[0])), ≥))
(8) (>(x0[0], 0)=TRUE ⇒ 265_0_TEST_STORE(x0[0])≥NonInfC∧265_0_TEST_STORE(x0[0])≥COND_265_0_TEST_STORE(>(x0[0], 0), x0[0])∧(UIncreasing(COND_265_0_TEST_STORE(>(x0[0], 0), x0[0])), ≥))
(9) (0 ≥ 0 ⇒ (UIncreasing(COND_265_0_TEST_STORE(>(x0[0], 0), x0[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[(-1)bso_19] + x0[0] ≥ 0)
(10) (0 ≥ 0 ⇒ (UIncreasing(COND_265_0_TEST_STORE(>(x0[0], 0), x0[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[(-1)bso_19] + x0[0] ≥ 0)
(11) (0 ≥ 0 ⇒ (UIncreasing(COND_265_0_TEST_STORE(>(x0[0], 0), x0[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[(-1)bso_19] + x0[0] ≥ 0)
(12) (0 ≥ 0 ⇒ (UIncreasing(COND_265_0_TEST_STORE(>(x0[0], 0), x0[0])), ≥)∧[bni_18] ≥ 0∧[(-1)bni_18 + (-1)Bound*bni_18] ≥ 0∧[1] ≥ 0∧[(-1)bso_19] ≥ 0)
(13) (>(x0[0], 0)=TRUE∧x0[0]=x0[1]∧265_0_test_Store(0)=438_0_test_Return∧x0[1]=x0[3]∧0=x1[3] ⇒ COND_265_0_TEST_STORE(TRUE, x0[1])≥NonInfC∧COND_265_0_TEST_STORE(TRUE, x0[1])≥446_1_TEST_INVOKEMETHOD(265_0_test_Store(0), x0[1], 0)∧(UIncreasing(446_1_TEST_INVOKEMETHOD(265_0_test_Store(0), x0[1], 0)), ≥))
(14) (>(x0[0], 0)=TRUE∧x0[0]=x0[2]∧0=x0[0]1 ⇒ COND_265_0_TEST_STORE(TRUE, x0[2])≥NonInfC∧COND_265_0_TEST_STORE(TRUE, x0[2])≥265_0_TEST_STORE(0)∧(UIncreasing(265_0_TEST_STORE(0)), ≥))
(15) (>(x0[0], 0)=TRUE ⇒ COND_265_0_TEST_STORE(TRUE, x0[0])≥NonInfC∧COND_265_0_TEST_STORE(TRUE, x0[0])≥265_0_TEST_STORE(0)∧(UIncreasing(265_0_TEST_STORE(0)), ≥))
(16) (0 ≥ 0 ⇒ (UIncreasing(265_0_TEST_STORE(0)), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] ≥ 0∧[(-1)bso_21] ≥ 0)
(17) (0 ≥ 0 ⇒ (UIncreasing(265_0_TEST_STORE(0)), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] ≥ 0∧[(-1)bso_21] ≥ 0)
(18) (0 ≥ 0 ⇒ (UIncreasing(265_0_TEST_STORE(0)), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] ≥ 0∧[(-1)bso_21] ≥ 0)
(19) (0 ≥ 0 ⇒ (UIncreasing(265_0_TEST_STORE(0)), ≥)∧0 ≥ 0∧[(-1)bni_20 + (-1)Bound*bni_20] ≥ 0∧0 ≥ 0∧[(-1)bso_21] ≥ 0)
(20) (&&(>(x1[3], -1), >(x0[3], +(x1[3], 1)))=TRUE∧x0[3]=x0[4]∧x1[3]=x1[4] ⇒ 446_1_TEST_INVOKEMETHOD(438_0_test_Return, x0[3], x1[3])≥NonInfC∧446_1_TEST_INVOKEMETHOD(438_0_test_Return, x0[3], x1[3])≥COND_446_1_TEST_INVOKEMETHOD(&&(>(x1[3], -1), >(x0[3], +(x1[3], 1))), 438_0_test_Return, x0[3], x1[3])∧(UIncreasing(COND_446_1_TEST_INVOKEMETHOD(&&(>(x1[3], -1), >(x0[3], +(x1[3], 1))), 438_0_test_Return, x0[3], x1[3])), ≥))
(21) (&&(>(x1[3], -1), >(x0[3], +(x1[3], 1)))=TRUE ⇒ 446_1_TEST_INVOKEMETHOD(438_0_test_Return, x0[3], x1[3])≥NonInfC∧446_1_TEST_INVOKEMETHOD(438_0_test_Return, x0[3], x1[3])≥COND_446_1_TEST_INVOKEMETHOD(&&(>(x1[3], -1), >(x0[3], +(x1[3], 1))), 438_0_test_Return, x0[3], x1[3])∧(UIncreasing(COND_446_1_TEST_INVOKEMETHOD(&&(>(x1[3], -1), >(x0[3], +(x1[3], 1))), 438_0_test_Return, x0[3], x1[3])), ≥))
(22) (0 ≥ 0 ⇒ (UIncreasing(COND_446_1_TEST_INVOKEMETHOD(&&(>(x1[3], -1), >(x0[3], +(x1[3], 1))), 438_0_test_Return, x0[3], x1[3])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x1[3] + [bni_22]x0[3] ≥ 0∧[2 + (-1)bso_23] + x1[3] + x0[3] ≥ 0)
(23) (0 ≥ 0 ⇒ (UIncreasing(COND_446_1_TEST_INVOKEMETHOD(&&(>(x1[3], -1), >(x0[3], +(x1[3], 1))), 438_0_test_Return, x0[3], x1[3])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x1[3] + [bni_22]x0[3] ≥ 0∧[2 + (-1)bso_23] + x1[3] + x0[3] ≥ 0)
(24) (0 ≥ 0 ⇒ (UIncreasing(COND_446_1_TEST_INVOKEMETHOD(&&(>(x1[3], -1), >(x0[3], +(x1[3], 1))), 438_0_test_Return, x0[3], x1[3])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x1[3] + [bni_22]x0[3] ≥ 0∧[2 + (-1)bso_23] + x1[3] + x0[3] ≥ 0)
(25) (0 ≥ 0 ⇒ (UIncreasing(COND_446_1_TEST_INVOKEMETHOD(&&(>(x1[3], -1), >(x0[3], +(x1[3], 1))), 438_0_test_Return, x0[3], x1[3])), ≥)∧[bni_22] ≥ 0∧[bni_22] ≥ 0∧[bni_22 + (-1)Bound*bni_22] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2 + (-1)bso_23] ≥ 0)
(26) (&&(>(x1[3], -1), >(x0[3], +(x1[3], 1)))=TRUE∧x0[3]=x0[5]∧x1[3]=x1[5] ⇒ 446_1_TEST_INVOKEMETHOD(438_0_test_Return, x0[3], x1[3])≥NonInfC∧446_1_TEST_INVOKEMETHOD(438_0_test_Return, x0[3], x1[3])≥COND_446_1_TEST_INVOKEMETHOD(&&(>(x1[3], -1), >(x0[3], +(x1[3], 1))), 438_0_test_Return, x0[3], x1[3])∧(UIncreasing(COND_446_1_TEST_INVOKEMETHOD(&&(>(x1[3], -1), >(x0[3], +(x1[3], 1))), 438_0_test_Return, x0[3], x1[3])), ≥))
(27) (&&(>(x1[3], -1), >(x0[3], +(x1[3], 1)))=TRUE ⇒ 446_1_TEST_INVOKEMETHOD(438_0_test_Return, x0[3], x1[3])≥NonInfC∧446_1_TEST_INVOKEMETHOD(438_0_test_Return, x0[3], x1[3])≥COND_446_1_TEST_INVOKEMETHOD(&&(>(x1[3], -1), >(x0[3], +(x1[3], 1))), 438_0_test_Return, x0[3], x1[3])∧(UIncreasing(COND_446_1_TEST_INVOKEMETHOD(&&(>(x1[3], -1), >(x0[3], +(x1[3], 1))), 438_0_test_Return, x0[3], x1[3])), ≥))
(28) (0 ≥ 0 ⇒ (UIncreasing(COND_446_1_TEST_INVOKEMETHOD(&&(>(x1[3], -1), >(x0[3], +(x1[3], 1))), 438_0_test_Return, x0[3], x1[3])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x1[3] + [bni_22]x0[3] ≥ 0∧[2 + (-1)bso_23] + x1[3] + x0[3] ≥ 0)
(29) (0 ≥ 0 ⇒ (UIncreasing(COND_446_1_TEST_INVOKEMETHOD(&&(>(x1[3], -1), >(x0[3], +(x1[3], 1))), 438_0_test_Return, x0[3], x1[3])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x1[3] + [bni_22]x0[3] ≥ 0∧[2 + (-1)bso_23] + x1[3] + x0[3] ≥ 0)
(30) (0 ≥ 0 ⇒ (UIncreasing(COND_446_1_TEST_INVOKEMETHOD(&&(>(x1[3], -1), >(x0[3], +(x1[3], 1))), 438_0_test_Return, x0[3], x1[3])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x1[3] + [bni_22]x0[3] ≥ 0∧[2 + (-1)bso_23] + x1[3] + x0[3] ≥ 0)
(31) (0 ≥ 0 ⇒ (UIncreasing(COND_446_1_TEST_INVOKEMETHOD(&&(>(x1[3], -1), >(x0[3], +(x1[3], 1))), 438_0_test_Return, x0[3], x1[3])), ≥)∧[bni_22] ≥ 0∧[bni_22] ≥ 0∧[bni_22 + (-1)Bound*bni_22] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2 + (-1)bso_23] ≥ 0)
(32) (&&(>(x1[3], -1), >(x0[3], +(x1[3], 1)))=TRUE∧x0[3]=x0[4]∧x1[3]=x1[4]∧265_0_test_Store(+(x1[4], 1))=438_0_test_Return∧x0[4]=x0[3]1∧+(x1[4], 1)=x1[3]1 ⇒ COND_446_1_TEST_INVOKEMETHOD(TRUE, 438_0_test_Return, x0[4], x1[4])≥NonInfC∧COND_446_1_TEST_INVOKEMETHOD(TRUE, 438_0_test_Return, x0[4], x1[4])≥446_1_TEST_INVOKEMETHOD(265_0_test_Store(+(x1[4], 1)), x0[4], +(x1[4], 1))∧(UIncreasing(446_1_TEST_INVOKEMETHOD(265_0_test_Store(+(x1[4], 1)), x0[4], +(x1[4], 1))), ≥))
(33) (&&(>(x1[3], -1), >(x0[3], +(x1[3], 1)))=TRUE∧x0[3]=x0[5]∧x1[3]=x1[5]∧+(x1[5], 1)=x0[0] ⇒ COND_446_1_TEST_INVOKEMETHOD(TRUE, 438_0_test_Return, x0[5], x1[5])≥NonInfC∧COND_446_1_TEST_INVOKEMETHOD(TRUE, 438_0_test_Return, x0[5], x1[5])≥265_0_TEST_STORE(+(x1[5], 1))∧(UIncreasing(265_0_TEST_STORE(+(x1[5], 1))), ≥))
(34) (&&(>(x1[3], -1), >(x0[3], +(x1[3], 1)))=TRUE ⇒ COND_446_1_TEST_INVOKEMETHOD(TRUE, 438_0_test_Return, x0[3], x1[3])≥NonInfC∧COND_446_1_TEST_INVOKEMETHOD(TRUE, 438_0_test_Return, x0[3], x1[3])≥265_0_TEST_STORE(+(x1[3], 1))∧(UIncreasing(265_0_TEST_STORE(+(x1[5], 1))), ≥))
(35) (0 ≥ 0 ⇒ (UIncreasing(265_0_TEST_STORE(+(x1[5], 1))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] ≥ 0∧[(-1)bso_25] ≥ 0)
(36) (0 ≥ 0 ⇒ (UIncreasing(265_0_TEST_STORE(+(x1[5], 1))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] ≥ 0∧[(-1)bso_25] ≥ 0)
(37) (0 ≥ 0 ⇒ (UIncreasing(265_0_TEST_STORE(+(x1[5], 1))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] ≥ 0∧[(-1)bso_25] ≥ 0)
(38) (0 ≥ 0 ⇒ (UIncreasing(265_0_TEST_STORE(+(x1[5], 1))), ≥)∧0 ≥ 0∧0 ≥ 0∧[(-1)bni_24 + (-1)Bound*bni_24] ≥ 0∧0 ≥ 0∧0 ≥ 0∧[(-1)bso_25] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(265_0_TEST_STORE(x1)) = [-1] + x1
POL(COND_265_0_TEST_STORE(x1, x2)) = [-1]
POL(>(x1, x2)) = 0
POL(0) = 0
POL(446_1_TEST_INVOKEMETHOD(x1, x2, x3)) = [1] + x3 + x2 + [-1]x1
POL(265_0_test_Store(x1)) = 0
POL(438_0_test_Return) = 0
POL(COND_446_1_TEST_INVOKEMETHOD(x1, x2, x3, x4)) = [-1] + [-1]x2
POL(&&(x1, x2)) = 0
POL(-1) = 0
POL(+(x1, x2)) = 0
POL(1) = 0
COND_265_0_TEST_STORE(TRUE, x0[1]) → 446_1_TEST_INVOKEMETHOD(265_0_test_Store(0), x0[1], 0)
446_1_TEST_INVOKEMETHOD(438_0_test_Return, x0[3], x1[3]) → COND_446_1_TEST_INVOKEMETHOD(&&(>(x1[3], -1), >(x0[3], +(x1[3], 1))), 438_0_test_Return, x0[3], x1[3])
COND_446_1_TEST_INVOKEMETHOD(TRUE, 438_0_test_Return, x0[4], x1[4]) → 446_1_TEST_INVOKEMETHOD(265_0_test_Store(+(x1[4], 1)), x0[4], +(x1[4], 1))
265_0_TEST_STORE(x0[0]) → COND_265_0_TEST_STORE(>(x0[0], 0), x0[0])
COND_265_0_TEST_STORE(TRUE, x0[1]) → 446_1_TEST_INVOKEMETHOD(265_0_test_Store(0), x0[1], 0)
COND_265_0_TEST_STORE(TRUE, x0[2]) → 265_0_TEST_STORE(0)
446_1_TEST_INVOKEMETHOD(438_0_test_Return, x0[3], x1[3]) → COND_446_1_TEST_INVOKEMETHOD(&&(>(x1[3], -1), >(x0[3], +(x1[3], 1))), 438_0_test_Return, x0[3], x1[3])
COND_446_1_TEST_INVOKEMETHOD(TRUE, 438_0_test_Return, x0[4], x1[4]) → 446_1_TEST_INVOKEMETHOD(265_0_test_Store(+(x1[4], 1)), x0[4], +(x1[4], 1))
COND_446_1_TEST_INVOKEMETHOD(TRUE, 438_0_test_Return, x0[5], x1[5]) → 265_0_TEST_STORE(+(x1[5], 1))
265_0_TEST_STORE(x0[0]) → COND_265_0_TEST_STORE(>(x0[0], 0), x0[0])
COND_265_0_TEST_STORE(TRUE, x0[2]) → 265_0_TEST_STORE(0)
COND_446_1_TEST_INVOKEMETHOD(TRUE, 438_0_test_Return, x0[5], x1[5]) → 265_0_TEST_STORE(+(x1[5], 1))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(2) -> (0), if (0 →* x0[0])
(5) -> (0), if (x1[5] + 1 →* x0[0])
(0) -> (2), if (x0[0] > 0 ∧x0[0] →* x0[2])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(2) -> (0), if (0 →* x0[0])
(0) -> (2), if (x0[0] > 0 ∧x0[0] →* x0[2])
(1) (>(x0[0], 0)=TRUE∧x0[0]=x0[2]∧0=x0[0]1 ⇒ COND_265_0_TEST_STORE(TRUE, x0[2])≥NonInfC∧COND_265_0_TEST_STORE(TRUE, x0[2])≥265_0_TEST_STORE(0)∧(UIncreasing(265_0_TEST_STORE(0)), ≥))
(2) (>(x0[0], 0)=TRUE ⇒ COND_265_0_TEST_STORE(TRUE, x0[0])≥NonInfC∧COND_265_0_TEST_STORE(TRUE, x0[0])≥265_0_TEST_STORE(0)∧(UIncreasing(265_0_TEST_STORE(0)), ≥))
(3) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(265_0_TEST_STORE(0)), ≥)∧[(2)bni_9 + (-1)Bound*bni_9] ≥ 0∧[(-1)bso_10] ≥ 0)
(4) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(265_0_TEST_STORE(0)), ≥)∧[(2)bni_9 + (-1)Bound*bni_9] ≥ 0∧[(-1)bso_10] ≥ 0)
(5) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(265_0_TEST_STORE(0)), ≥)∧[(2)bni_9 + (-1)Bound*bni_9] ≥ 0∧[(-1)bso_10] ≥ 0)
(6) (x0[0] ≥ 0 ⇒ (UIncreasing(265_0_TEST_STORE(0)), ≥)∧[(2)bni_9 + (-1)Bound*bni_9] ≥ 0∧[(-1)bso_10] ≥ 0)
(7) (>(x0[0], 0)=TRUE∧x0[0]=x0[2] ⇒ 265_0_TEST_STORE(x0[0])≥NonInfC∧265_0_TEST_STORE(x0[0])≥COND_265_0_TEST_STORE(>(x0[0], 0), x0[0])∧(UIncreasing(COND_265_0_TEST_STORE(>(x0[0], 0), x0[0])), ≥))
(8) (>(x0[0], 0)=TRUE ⇒ 265_0_TEST_STORE(x0[0])≥NonInfC∧265_0_TEST_STORE(x0[0])≥COND_265_0_TEST_STORE(>(x0[0], 0), x0[0])∧(UIncreasing(COND_265_0_TEST_STORE(>(x0[0], 0), x0[0])), ≥))
(9) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_265_0_TEST_STORE(>(x0[0], 0), x0[0])), ≥)∧[(2)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[(-1)bso_12] + x0[0] ≥ 0)
(10) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_265_0_TEST_STORE(>(x0[0], 0), x0[0])), ≥)∧[(2)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[(-1)bso_12] + x0[0] ≥ 0)
(11) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_265_0_TEST_STORE(>(x0[0], 0), x0[0])), ≥)∧[(2)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[(-1)bso_12] + x0[0] ≥ 0)
(12) (x0[0] ≥ 0 ⇒ (UIncreasing(COND_265_0_TEST_STORE(>(x0[0], 0), x0[0])), ≥)∧[(3)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[1 + (-1)bso_12] + x0[0] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_265_0_TEST_STORE(x1, x2)) = [2]
POL(265_0_TEST_STORE(x1)) = [2] + x1
POL(0) = 0
POL(>(x1, x2)) = 0
265_0_TEST_STORE(x0[0]) → COND_265_0_TEST_STORE(>(x0[0], 0), x0[0])
COND_265_0_TEST_STORE(TRUE, x0[2]) → 265_0_TEST_STORE(0)
265_0_TEST_STORE(x0[0]) → COND_265_0_TEST_STORE(>(x0[0], 0), x0[0])
COND_265_0_TEST_STORE(TRUE, x0[2]) → 265_0_TEST_STORE(0)
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |