0 JBC
↳1 JBCToGraph (⇒, 150 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 380 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 370 ms)
↳8 AND
↳9 IDP
↳10 IDependencyGraphProof (⇔, 0 ms)
↳11 IDP
↳12 UsableRulesProof (⇔, 0 ms)
↳13 IDP
↳14 IDPNonInfProof (⇒, 60 ms)
↳15 AND
↳16 IDP
↳17 IDependencyGraphProof (⇔, 0 ms)
↳18 TRUE
↳19 IDP
↳20 IDependencyGraphProof (⇔, 0 ms)
↳21 TRUE
↳22 IDP
↳23 IDependencyGraphProof (⇔, 0 ms)
↳24 TRUE
/**
* The classical Ackermann function.
*
* All calls terminate.
*
* Julia + BinTerm prove that all calls terminate
*
* Note that we have to express the basic cases as m <= 0 and n <= 0
* in order to prove termination.
*
* @author <A HREF="mailto:fausto.spoto@univr.it">Fausto Spoto</A>
*/
public class Ackermann {
public static int ack(int m, int n) {
if (m <= 0) return n + 1;
else if (n <= 0) return ack(m - 1,1);
else return ack(m - 1,ack(m,n - 1));
}
public static void main(String[] args) {
ack(10,12);
}
}
Generated 38 rules for P and 25 rules for R.
P rules:
375_0_ack_GT(EOS(STATIC_375), i40, i38, i40) → 379_0_ack_GT(EOS(STATIC_379), i40, i38, i40)
379_0_ack_GT(EOS(STATIC_379), i40, i38, i40) → 382_0_ack_Load(EOS(STATIC_382), i40, i38) | >(i40, 0)
382_0_ack_Load(EOS(STATIC_382), i40, i38) → 386_0_ack_GT(EOS(STATIC_386), i40, i38, i38)
386_0_ack_GT(EOS(STATIC_386), i40, i43, i43) → 390_0_ack_GT(EOS(STATIC_390), i40, i43, i43)
386_0_ack_GT(EOS(STATIC_386), i40, i44, i44) → 391_0_ack_GT(EOS(STATIC_391), i40, i44, i44)
390_0_ack_GT(EOS(STATIC_390), i40, i43, i43) → 394_0_ack_Load(EOS(STATIC_394), i40, i43) | <=(i43, 0)
394_0_ack_Load(EOS(STATIC_394), i40, i43) → 401_0_ack_ConstantStackPush(EOS(STATIC_401), i40, i43, i40)
401_0_ack_ConstantStackPush(EOS(STATIC_401), i40, i43, i40) → 408_0_ack_IntArithmetic(EOS(STATIC_408), i40, i43, i40, 1)
408_0_ack_IntArithmetic(EOS(STATIC_408), i40, i43, i40, matching1) → 413_0_ack_ConstantStackPush(EOS(STATIC_413), i40, i43, -(i40, 1)) | &&(>(i40, 0), =(matching1, 1))
413_0_ack_ConstantStackPush(EOS(STATIC_413), i40, i43, i46) → 416_0_ack_InvokeMethod(EOS(STATIC_416), i40, i43, i46, 1)
416_0_ack_InvokeMethod(EOS(STATIC_416), i40, i43, i46, matching1) → 419_1_ack_InvokeMethod(419_0_ack_Load(EOS(STATIC_419), i46, 1), i40, i43, i46, 1) | =(matching1, 1)
419_0_ack_Load(EOS(STATIC_419), i46, matching1) → 423_0_ack_Load(EOS(STATIC_423), i46, 1) | =(matching1, 1)
423_0_ack_Load(EOS(STATIC_423), i46, matching1) → 373_0_ack_Load(EOS(STATIC_373), i46, 1) | =(matching1, 1)
373_0_ack_Load(EOS(STATIC_373), i37, i38) → 375_0_ack_GT(EOS(STATIC_375), i37, i38, i37)
391_0_ack_GT(EOS(STATIC_391), i40, i44, i44) → 396_0_ack_Load(EOS(STATIC_396), i40, i44) | >(i44, 0)
396_0_ack_Load(EOS(STATIC_396), i40, i44) → 402_0_ack_ConstantStackPush(EOS(STATIC_402), i40, i44, i40)
402_0_ack_ConstantStackPush(EOS(STATIC_402), i40, i44, i40) → 410_0_ack_IntArithmetic(EOS(STATIC_410), i40, i44, i40, 1)
410_0_ack_IntArithmetic(EOS(STATIC_410), i40, i44, i40, matching1) → 414_0_ack_Load(EOS(STATIC_414), i40, i44, -(i40, 1)) | &&(>(i40, 0), =(matching1, 1))
414_0_ack_Load(EOS(STATIC_414), i40, i44, i47) → 418_0_ack_Load(EOS(STATIC_418), i44, i47, i40)
418_0_ack_Load(EOS(STATIC_418), i44, i47, i40) → 421_0_ack_ConstantStackPush(EOS(STATIC_421), i47, i40, i44)
421_0_ack_ConstantStackPush(EOS(STATIC_421), i47, i40, i44) → 424_0_ack_IntArithmetic(EOS(STATIC_424), i47, i40, i44, 1)
424_0_ack_IntArithmetic(EOS(STATIC_424), i47, i40, i44, matching1) → 426_0_ack_InvokeMethod(EOS(STATIC_426), i47, i40, -(i44, 1)) | &&(>(i44, 0), =(matching1, 1))
426_0_ack_InvokeMethod(EOS(STATIC_426), i47, i40, i48) → 433_1_ack_InvokeMethod(433_0_ack_Load(EOS(STATIC_433), i40, i48), i47, i40, i48)
433_0_ack_Load(EOS(STATIC_433), i40, i48) → 436_0_ack_Load(EOS(STATIC_436), i40, i48)
433_1_ack_InvokeMethod(438_0_ack_Return(EOS(STATIC_438), i54, matching1, i45), i47, i54, matching2) → 450_0_ack_Return(EOS(STATIC_450), i47, i54, 0, i54, 0, i45) | &&(=(matching1, 0), =(matching2, 0))
433_1_ack_InvokeMethod(494_0_ack_Return(EOS(STATIC_494), i81, matching1, i62), i47, i81, matching2) → 513_0_ack_Return(EOS(STATIC_513), i47, i81, 0, i81, 0, i62) | &&(=(matching1, 0), =(matching2, 0))
433_1_ack_InvokeMethod(531_0_ack_Return(EOS(STATIC_531), i45), i47, i97, i98) → 550_0_ack_Return(EOS(STATIC_550), i47, i97, i98, i45)
433_1_ack_InvokeMethod(555_0_ack_Return(EOS(STATIC_555), i45), i47, i112, i113) → 572_0_ack_Return(EOS(STATIC_572), i47, i112, i113, i45)
436_0_ack_Load(EOS(STATIC_436), i40, i48) → 373_0_ack_Load(EOS(STATIC_373), i40, i48)
450_0_ack_Return(EOS(STATIC_450), i47, i54, matching1, i54, matching2, i45) → 454_0_ack_InvokeMethod(EOS(STATIC_454), i47, i45) | &&(=(matching1, 0), =(matching2, 0))
454_0_ack_InvokeMethod(EOS(STATIC_454), i47, i45) → 496_0_ack_InvokeMethod(EOS(STATIC_496), i47, i45)
496_0_ack_InvokeMethod(EOS(STATIC_496), i47, i62) → 502_1_ack_InvokeMethod(502_0_ack_Load(EOS(STATIC_502), i47, i62), i47, i62)
502_0_ack_Load(EOS(STATIC_502), i47, i62) → 507_0_ack_Load(EOS(STATIC_507), i47, i62)
507_0_ack_Load(EOS(STATIC_507), i47, i62) → 373_0_ack_Load(EOS(STATIC_373), i47, i62)
513_0_ack_Return(EOS(STATIC_513), i47, i81, matching1, i81, matching2, i62) → 450_0_ack_Return(EOS(STATIC_450), i47, i81, 0, i81, 0, i62) | &&(=(matching1, 0), =(matching2, 0))
550_0_ack_Return(EOS(STATIC_550), i47, i97, i98, i45) → 488_0_ack_Return(EOS(STATIC_488), i47, i97, i98, i45)
488_0_ack_Return(EOS(STATIC_488), i47, i68, i69, i62) → 496_0_ack_InvokeMethod(EOS(STATIC_496), i47, i62)
572_0_ack_Return(EOS(STATIC_572), i47, i112, i113, i45) → 488_0_ack_Return(EOS(STATIC_488), i47, i112, i113, i45)
R rules:
375_0_ack_GT(EOS(STATIC_375), matching1, i38, matching2) → 378_0_ack_GT(EOS(STATIC_378), 0, i38, 0) | &&(=(matching1, 0), =(matching2, 0))
378_0_ack_GT(EOS(STATIC_378), matching1, i38, matching2) → 380_0_ack_Load(EOS(STATIC_380), 0, i38) | &&(&&(<=(0, 0), =(matching1, 0)), =(matching2, 0))
380_0_ack_Load(EOS(STATIC_380), matching1, i38) → 384_0_ack_ConstantStackPush(EOS(STATIC_384), 0, i38, i38) | =(matching1, 0)
384_0_ack_ConstantStackPush(EOS(STATIC_384), matching1, i38, i38) → 388_0_ack_IntArithmetic(EOS(STATIC_388), 0, i38, i38, 1) | =(matching1, 0)
388_0_ack_IntArithmetic(EOS(STATIC_388), matching1, i38, i38, matching2) → 393_0_ack_Return(EOS(STATIC_393), 0, i38, +(i38, 1)) | &&(=(matching1, 0), =(matching2, 1))
419_1_ack_InvokeMethod(393_0_ack_Return(EOS(STATIC_393), matching1, matching2, i45), i40, i43, matching3, matching4) → 434_0_ack_Return(EOS(STATIC_434), i40, i43, 0, 1, 0, 1, i45) | &&(&&(&&(=(matching1, 0), =(matching2, 1)), =(matching3, 0)), =(matching4, 1))
419_1_ack_InvokeMethod(531_0_ack_Return(EOS(STATIC_531), i45), i40, i43, i95, matching1) → 548_0_ack_Return(EOS(STATIC_548), i40, i43, i95, 1, i45) | =(matching1, 1)
419_1_ack_InvokeMethod(555_0_ack_Return(EOS(STATIC_555), i45), i40, i43, i110, matching1) → 570_0_ack_Return(EOS(STATIC_570), i40, i43, i110, 1, i45) | =(matching1, 1)
434_0_ack_Return(EOS(STATIC_434), i40, i43, matching1, matching2, matching3, matching4, i45) → 438_0_ack_Return(EOS(STATIC_438), i40, i43, i45) | &&(&&(&&(=(matching1, 0), =(matching2, 1)), =(matching3, 0)), =(matching4, 1))
438_0_ack_Return(EOS(STATIC_438), i40, i43, i45) → 494_0_ack_Return(EOS(STATIC_494), i40, i43, i45)
487_0_ack_Return(EOS(STATIC_487), i40, i43, i66, matching1, i62) → 494_0_ack_Return(EOS(STATIC_494), i40, i43, i62) | =(matching1, 1)
502_1_ack_InvokeMethod(393_0_ack_Return(EOS(STATIC_393), matching1, i86, i45), matching2, i86) → 523_0_ack_Return(EOS(STATIC_523), 0, i86, 0, i86, i45) | &&(=(matching1, 0), =(matching2, 0))
502_1_ack_InvokeMethod(438_0_ack_Return(EOS(STATIC_438), i87, i88, i45), i87, i88) → 524_0_ack_Return(EOS(STATIC_524), i87, i88, i87, i88, i45)
502_1_ack_InvokeMethod(494_0_ack_Return(EOS(STATIC_494), i90, i91, i89), i90, i91) → 527_0_ack_Return(EOS(STATIC_527), i90, i91, i90, i91, i89)
502_1_ack_InvokeMethod(531_0_ack_Return(EOS(STATIC_531), i45), i101, i102) → 552_0_ack_Return(EOS(STATIC_552), i101, i102, i45)
502_1_ack_InvokeMethod(555_0_ack_Return(EOS(STATIC_555), i45), i116, i117) → 574_0_ack_Return(EOS(STATIC_574), i116, i117, i45)
523_0_ack_Return(EOS(STATIC_523), matching1, i86, matching2, i86, i45) → 528_0_ack_Return(EOS(STATIC_528), i45) | &&(=(matching1, 0), =(matching2, 0))
524_0_ack_Return(EOS(STATIC_524), i87, i88, i87, i88, i45) → 531_0_ack_Return(EOS(STATIC_531), i45)
527_0_ack_Return(EOS(STATIC_527), i90, i91, i90, i91, i89) → 524_0_ack_Return(EOS(STATIC_524), i90, i91, i90, i91, i89)
528_0_ack_Return(EOS(STATIC_528), i45) → 531_0_ack_Return(EOS(STATIC_531), i45)
531_0_ack_Return(EOS(STATIC_531), i45) → 555_0_ack_Return(EOS(STATIC_555), i45)
548_0_ack_Return(EOS(STATIC_548), i40, i43, i95, matching1, i45) → 487_0_ack_Return(EOS(STATIC_487), i40, i43, i95, 1, i45) | =(matching1, 1)
552_0_ack_Return(EOS(STATIC_552), i101, i102, i45) → 555_0_ack_Return(EOS(STATIC_555), i45)
570_0_ack_Return(EOS(STATIC_570), i40, i43, i110, matching1, i45) → 487_0_ack_Return(EOS(STATIC_487), i40, i43, i110, 1, i45) | =(matching1, 1)
574_0_ack_Return(EOS(STATIC_574), i116, i117, i45) → 552_0_ack_Return(EOS(STATIC_552), i116, i117, i45)
Combined rules. Obtained 6 conditional rules for P and 9 conditional rules for R.
P rules:
375_0_ack_GT(EOS(STATIC_375), x0, x1, x0) → 419_1_ack_InvokeMethod(375_0_ack_GT(EOS(STATIC_375), -(x0, 1), 1, -(x0, 1)), x0, x1, -(x0, 1), 1) | &&(<=(x1, 0), >(x0, 0))
375_0_ack_GT(EOS(STATIC_375), x0, x1, x0) → 433_1_ack_InvokeMethod(375_0_ack_GT(EOS(STATIC_375), x0, -(x1, 1), x0), -(x0, 1), x0, -(x1, 1)) | &&(>(x1, 0), >(x0, 0))
433_1_ack_InvokeMethod(438_0_ack_Return(EOS(STATIC_438), x0, 0, x2), x3, x0, 0) → 502_1_ack_InvokeMethod(375_0_ack_GT(EOS(STATIC_375), x3, x2, x3), x3, x2)
433_1_ack_InvokeMethod(494_0_ack_Return(EOS(STATIC_494), x0, 0, x2), x3, x0, 0) → 502_1_ack_InvokeMethod(375_0_ack_GT(EOS(STATIC_375), x3, x2, x3), x3, x2)
433_1_ack_InvokeMethod(531_0_ack_Return(EOS(STATIC_531), x0), x1, x2, x3) → 502_1_ack_InvokeMethod(375_0_ack_GT(EOS(STATIC_375), x1, x0, x1), x1, x0)
433_1_ack_InvokeMethod(555_0_ack_Return(EOS(STATIC_555), x0), x1, x2, x3) → 502_1_ack_InvokeMethod(375_0_ack_GT(EOS(STATIC_375), x1, x0, x1), x1, x0)
R rules:
375_0_ack_GT(EOS(STATIC_375), 0, x1, 0) → 393_0_ack_Return(EOS(STATIC_393), 0, x1, +(x1, 1))
419_1_ack_InvokeMethod(393_0_ack_Return(EOS(STATIC_393), 0, 1, x2), x3, x4, 0, 1) → 494_0_ack_Return(EOS(STATIC_494), x3, x4, x2)
502_1_ack_InvokeMethod(531_0_ack_Return(EOS(STATIC_531), x0), x1, x2) → 555_0_ack_Return(EOS(STATIC_555), x0)
502_1_ack_InvokeMethod(555_0_ack_Return(EOS(STATIC_555), x0), x1, x2) → 555_0_ack_Return(EOS(STATIC_555), x0)
502_1_ack_InvokeMethod(438_0_ack_Return(EOS(STATIC_438), x0, x1, x2), x0, x1) → 555_0_ack_Return(EOS(STATIC_555), x2)
502_1_ack_InvokeMethod(494_0_ack_Return(EOS(STATIC_494), x0, x1, x2), x0, x1) → 555_0_ack_Return(EOS(STATIC_555), x2)
502_1_ack_InvokeMethod(393_0_ack_Return(EOS(STATIC_393), 0, x1, x2), 0, x1) → 555_0_ack_Return(EOS(STATIC_555), x2)
419_1_ack_InvokeMethod(531_0_ack_Return(EOS(STATIC_531), x0), x1, x2, x3, 1) → 494_0_ack_Return(EOS(STATIC_494), x1, x2, x0)
419_1_ack_InvokeMethod(555_0_ack_Return(EOS(STATIC_555), x0), x1, x2, x3, 1) → 494_0_ack_Return(EOS(STATIC_494), x1, x2, x0)
Filtered ground terms:
375_0_ack_GT(x1, x2, x3, x4) → 375_0_ack_GT(x2, x3, x4)
555_0_ack_Return(x1, x2) → 555_0_ack_Return(x2)
531_0_ack_Return(x1, x2) → 531_0_ack_Return(x2)
494_0_ack_Return(x1, x2, x3, x4) → 494_0_ack_Return(x2, x3, x4)
438_0_ack_Return(x1, x2, x3, x4) → 438_0_ack_Return(x2, x3, x4)
Cond_375_0_ack_GT1(x1, x2, x3, x4, x5) → Cond_375_0_ack_GT1(x1, x3, x4, x5)
419_1_ack_InvokeMethod(x1, x2, x3, x4, x5) → 419_1_ack_InvokeMethod(x1, x2, x3, x4)
Cond_375_0_ack_GT(x1, x2, x3, x4, x5) → Cond_375_0_ack_GT(x1, x3, x4, x5)
393_0_ack_Return(x1, x2, x3, x4) → 393_0_ack_Return(x3, x4)
Filtered duplicate args:
375_0_ack_GT(x1, x2, x3) → 375_0_ack_GT(x2, x3)
Cond_375_0_ack_GT(x1, x2, x3, x4) → Cond_375_0_ack_GT(x1, x3, x4)
Cond_375_0_ack_GT1(x1, x2, x3, x4) → Cond_375_0_ack_GT1(x1, x3, x4)
Filtered unneeded arguments:
419_1_ack_InvokeMethod(x1, x2, x3, x4) → 419_1_ack_InvokeMethod(x1, x3, x4)
433_1_ack_InvokeMethod(x1, x2, x3, x4) → 433_1_ack_InvokeMethod(x1, x2, x4)
438_0_ack_Return(x1, x2, x3) → 438_0_ack_Return(x2, x3)
494_0_ack_Return(x1, x2, x3) → 494_0_ack_Return(x2, x3)
Combined rules. Obtained 6 conditional rules for P and 9 conditional rules for R.
P rules:
375_0_ack_GT(x1, x0) → 419_1_ack_InvokeMethod(375_0_ack_GT(1, -(x0, 1)), x1, -(x0, 1)) | &&(<=(x1, 0), >(x0, 0))
375_0_ack_GT(x1, x0) → 433_1_ack_InvokeMethod(375_0_ack_GT(-(x1, 1), x0), -(x0, 1), -(x1, 1)) | &&(>(x1, 0), >(x0, 0))
433_1_ack_InvokeMethod(438_0_ack_Return(0, x2), x3, 0) → 502_1_ack_InvokeMethod(375_0_ack_GT(x2, x3), x3, x2)
433_1_ack_InvokeMethod(494_0_ack_Return(0, x2), x3, 0) → 502_1_ack_InvokeMethod(375_0_ack_GT(x2, x3), x3, x2)
433_1_ack_InvokeMethod(531_0_ack_Return(x0), x1, x3) → 502_1_ack_InvokeMethod(375_0_ack_GT(x0, x1), x1, x0)
433_1_ack_InvokeMethod(555_0_ack_Return(x0), x1, x3) → 502_1_ack_InvokeMethod(375_0_ack_GT(x0, x1), x1, x0)
R rules:
375_0_ack_GT(x1, 0) → 393_0_ack_Return(x1, +(x1, 1))
419_1_ack_InvokeMethod(393_0_ack_Return(1, x2), x4, 0) → 494_0_ack_Return(x4, x2)
502_1_ack_InvokeMethod(531_0_ack_Return(x0), x1, x2) → 555_0_ack_Return(x0)
502_1_ack_InvokeMethod(555_0_ack_Return(x0), x1, x2) → 555_0_ack_Return(x0)
502_1_ack_InvokeMethod(438_0_ack_Return(x1, x2), x0, x1) → 555_0_ack_Return(x2)
502_1_ack_InvokeMethod(494_0_ack_Return(x1, x2), x0, x1) → 555_0_ack_Return(x2)
502_1_ack_InvokeMethod(393_0_ack_Return(x1, x2), 0, x1) → 555_0_ack_Return(x2)
419_1_ack_InvokeMethod(531_0_ack_Return(x0), x2, x3) → 494_0_ack_Return(x2, x0)
419_1_ack_InvokeMethod(555_0_ack_Return(x0), x2, x3) → 494_0_ack_Return(x2, x0)
Performed bisimulation on rules. Used the following equivalence classes: {[494_0_ack_Return_2, 438_0_ack_Return_2]=494_0_ack_Return_2, [531_0_ack_Return_1, 555_0_ack_Return_1]=531_0_ack_Return_1}
Finished conversion. Obtained 7 rules for P and 6 rules for R. System has predefined symbols.
P rules:
375_0_ACK_GT(x1, x0) → COND_375_0_ACK_GT(&&(<=(x1, 0), >(x0, 0)), x1, x0)
COND_375_0_ACK_GT(TRUE, x1, x0) → 375_0_ACK_GT(1, -(x0, 1))
375_0_ACK_GT(x1, x0) → COND_375_0_ACK_GT1(&&(>(x1, 0), >(x0, 0)), x1, x0)
COND_375_0_ACK_GT1(TRUE, x1, x0) → 433_1_ACK_INVOKEMETHOD(375_0_ack_GT(-(x1, 1), x0), -(x0, 1), -(x1, 1))
COND_375_0_ACK_GT1(TRUE, x1, x0) → 375_0_ACK_GT(-(x1, 1), x0)
433_1_ACK_INVOKEMETHOD(494_0_ack_Return(0, x2), x3, 0) → 375_0_ACK_GT(x2, x3)
433_1_ACK_INVOKEMETHOD(531_0_ack_Return(x0), x1, x3) → 375_0_ACK_GT(x0, x1)
R rules:
375_0_ack_GT(x1, 0) → 393_0_ack_Return(x1, +(x1, 1))
419_1_ack_InvokeMethod(393_0_ack_Return(1, x2), x4, 0) → 494_0_ack_Return(x4, x2)
502_1_ack_InvokeMethod(531_0_ack_Return(x0), x1, x2) → 531_0_ack_Return(x0)
502_1_ack_InvokeMethod(494_0_ack_Return(x1, x2), x0, x1) → 531_0_ack_Return(x2)
502_1_ack_InvokeMethod(393_0_ack_Return(x1, x2), 0, x1) → 531_0_ack_Return(x2)
419_1_ack_InvokeMethod(531_0_ack_Return(x0), x2, x3) → 494_0_ack_Return(x2, x0)
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(0) -> (1), if (x1[0] <= 0 && x0[0] > 0 ∧x1[0] →* x1[1]∧x0[0] →* x0[1])
(1) -> (0), if (1 →* x1[0]∧x0[1] - 1 →* x0[0])
(1) -> (2), if (1 →* x1[2]∧x0[1] - 1 →* x0[2])
(2) -> (3), if (x1[2] > 0 && x0[2] > 0 ∧x1[2] →* x1[3]∧x0[2] →* x0[3])
(2) -> (4), if (x1[2] > 0 && x0[2] > 0 ∧x1[2] →* x1[4]∧x0[2] →* x0[4])
(3) -> (5), if (375_0_ack_GT(x1[3] - 1, x0[3]) →* 494_0_ack_Return(0, x2[5])∧x0[3] - 1 →* x3[5]∧x1[3] - 1 →* 0)
(3) -> (6), if (375_0_ack_GT(x1[3] - 1, x0[3]) →* 531_0_ack_Return(x0[6])∧x0[3] - 1 →* x1[6]∧x1[3] - 1 →* x3[6])
(4) -> (0), if (x1[4] - 1 →* x1[0]∧x0[4] →* x0[0])
(4) -> (2), if (x1[4] - 1 →* x1[2]∧x0[4] →* x0[2])
(5) -> (0), if (x2[5] →* x1[0]∧x3[5] →* x0[0])
(5) -> (2), if (x2[5] →* x1[2]∧x3[5] →* x0[2])
(6) -> (0), if (x0[6] →* x1[0]∧x1[6] →* x0[0])
(6) -> (2), if (x0[6] →* x1[2]∧x1[6] →* x0[2])
(1) (&&(<=(x1[0], 0), >(x0[0], 0))=TRUE∧x1[0]=x1[1]∧x0[0]=x0[1] ⇒ 375_0_ACK_GT(x1[0], x0[0])≥NonInfC∧375_0_ACK_GT(x1[0], x0[0])≥COND_375_0_ACK_GT(&&(<=(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])∧(UIncreasing(COND_375_0_ACK_GT(&&(<=(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥))
(2) (<=(x1[0], 0)=TRUE∧>(x0[0], 0)=TRUE ⇒ 375_0_ACK_GT(x1[0], x0[0])≥NonInfC∧375_0_ACK_GT(x1[0], x0[0])≥COND_375_0_ACK_GT(&&(<=(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])∧(UIncreasing(COND_375_0_ACK_GT(&&(<=(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥))
(3) ([-1]x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_375_0_ACK_GT(&&(<=(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x0[0] ≥ 0∧[(-1)bso_23] ≥ 0)
(4) ([-1]x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_375_0_ACK_GT(&&(<=(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x0[0] ≥ 0∧[(-1)bso_23] ≥ 0)
(5) ([-1]x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_375_0_ACK_GT(&&(<=(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x0[0] ≥ 0∧[(-1)bso_23] ≥ 0)
(6) (x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_375_0_ACK_GT(&&(<=(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x0[0] ≥ 0∧[(-1)bso_23] ≥ 0)
(7) (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_375_0_ACK_GT(&&(<=(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)Bound*bni_22] + [bni_22]x0[0] ≥ 0∧[(-1)bso_23] ≥ 0)
(8) (COND_375_0_ACK_GT(TRUE, x1[1], x0[1])≥NonInfC∧COND_375_0_ACK_GT(TRUE, x1[1], x0[1])≥375_0_ACK_GT(1, -(x0[1], 1))∧(UIncreasing(375_0_ACK_GT(1, -(x0[1], 1))), ≥))
(9) ((UIncreasing(375_0_ACK_GT(1, -(x0[1], 1))), ≥)∧[bni_24] = 0∧[1 + (-1)bso_25] ≥ 0)
(10) ((UIncreasing(375_0_ACK_GT(1, -(x0[1], 1))), ≥)∧[bni_24] = 0∧[1 + (-1)bso_25] ≥ 0)
(11) ((UIncreasing(375_0_ACK_GT(1, -(x0[1], 1))), ≥)∧[bni_24] = 0∧[1 + (-1)bso_25] ≥ 0)
(12) ((UIncreasing(375_0_ACK_GT(1, -(x0[1], 1))), ≥)∧[bni_24] = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_25] ≥ 0)
(13) (&&(>(x1[2], 0), >(x0[2], 0))=TRUE∧x1[2]=x1[3]∧x0[2]=x0[3] ⇒ 375_0_ACK_GT(x1[2], x0[2])≥NonInfC∧375_0_ACK_GT(x1[2], x0[2])≥COND_375_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])∧(UIncreasing(COND_375_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥))
(14) (>(x1[2], 0)=TRUE∧>(x0[2], 0)=TRUE ⇒ 375_0_ACK_GT(x1[2], x0[2])≥NonInfC∧375_0_ACK_GT(x1[2], x0[2])≥COND_375_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])∧(UIncreasing(COND_375_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥))
(15) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_375_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [bni_26]x0[2] ≥ 0∧[(-1)bso_27] ≥ 0)
(16) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_375_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [bni_26]x0[2] ≥ 0∧[(-1)bso_27] ≥ 0)
(17) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_375_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [bni_26]x0[2] ≥ 0∧[(-1)bso_27] ≥ 0)
(18) (x1[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_375_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [bni_26]x0[2] ≥ 0∧[(-1)bso_27] ≥ 0)
(19) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_375_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)Bound*bni_26] + [bni_26]x0[2] ≥ 0∧[(-1)bso_27] ≥ 0)
(20) (&&(>(x1[2], 0), >(x0[2], 0))=TRUE∧x1[2]=x1[4]∧x0[2]=x0[4] ⇒ 375_0_ACK_GT(x1[2], x0[2])≥NonInfC∧375_0_ACK_GT(x1[2], x0[2])≥COND_375_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])∧(UIncreasing(COND_375_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥))
(21) (>(x1[2], 0)=TRUE∧>(x0[2], 0)=TRUE ⇒ 375_0_ACK_GT(x1[2], x0[2])≥NonInfC∧375_0_ACK_GT(x1[2], x0[2])≥COND_375_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])∧(UIncreasing(COND_375_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥))
(22) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_375_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [bni_26]x0[2] ≥ 0∧[(-1)bso_27] ≥ 0)
(23) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_375_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [bni_26]x0[2] ≥ 0∧[(-1)bso_27] ≥ 0)
(24) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_375_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [bni_26]x0[2] ≥ 0∧[(-1)bso_27] ≥ 0)
(25) (x1[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_375_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [bni_26]x0[2] ≥ 0∧[(-1)bso_27] ≥ 0)
(26) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_375_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)Bound*bni_26] + [bni_26]x0[2] ≥ 0∧[(-1)bso_27] ≥ 0)
(27) (COND_375_0_ACK_GT1(TRUE, x1[3], x0[3])≥NonInfC∧COND_375_0_ACK_GT1(TRUE, x1[3], x0[3])≥433_1_ACK_INVOKEMETHOD(375_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), -(x1[3], 1))∧(UIncreasing(433_1_ACK_INVOKEMETHOD(375_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), -(x1[3], 1))), ≥))
(28) ((UIncreasing(433_1_ACK_INVOKEMETHOD(375_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), -(x1[3], 1))), ≥)∧[bni_28] = 0∧[1 + (-1)bso_29] ≥ 0)
(29) ((UIncreasing(433_1_ACK_INVOKEMETHOD(375_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), -(x1[3], 1))), ≥)∧[bni_28] = 0∧[1 + (-1)bso_29] ≥ 0)
(30) ((UIncreasing(433_1_ACK_INVOKEMETHOD(375_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), -(x1[3], 1))), ≥)∧[bni_28] = 0∧[1 + (-1)bso_29] ≥ 0)
(31) ((UIncreasing(433_1_ACK_INVOKEMETHOD(375_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), -(x1[3], 1))), ≥)∧[bni_28] = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_29] ≥ 0)
(32) (COND_375_0_ACK_GT1(TRUE, x1[4], x0[4])≥NonInfC∧COND_375_0_ACK_GT1(TRUE, x1[4], x0[4])≥375_0_ACK_GT(-(x1[4], 1), x0[4])∧(UIncreasing(375_0_ACK_GT(-(x1[4], 1), x0[4])), ≥))
(33) ((UIncreasing(375_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[bni_30] = 0∧[(-1)bso_31] ≥ 0)
(34) ((UIncreasing(375_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[bni_30] = 0∧[(-1)bso_31] ≥ 0)
(35) ((UIncreasing(375_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[bni_30] = 0∧[(-1)bso_31] ≥ 0)
(36) ((UIncreasing(375_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[bni_30] = 0∧0 = 0∧0 = 0∧[(-1)bso_31] ≥ 0)
(37) (433_1_ACK_INVOKEMETHOD(494_0_ack_Return(0, x2[5]), x3[5], 0)≥NonInfC∧433_1_ACK_INVOKEMETHOD(494_0_ack_Return(0, x2[5]), x3[5], 0)≥375_0_ACK_GT(x2[5], x3[5])∧(UIncreasing(375_0_ACK_GT(x2[5], x3[5])), ≥))
(38) ((UIncreasing(375_0_ACK_GT(x2[5], x3[5])), ≥)∧[bni_32] = 0∧[(-1)bso_33] ≥ 0)
(39) ((UIncreasing(375_0_ACK_GT(x2[5], x3[5])), ≥)∧[bni_32] = 0∧[(-1)bso_33] ≥ 0)
(40) ((UIncreasing(375_0_ACK_GT(x2[5], x3[5])), ≥)∧[bni_32] = 0∧[(-1)bso_33] ≥ 0)
(41) ((UIncreasing(375_0_ACK_GT(x2[5], x3[5])), ≥)∧[bni_32] = 0∧0 = 0∧0 = 0∧[(-1)bso_33] ≥ 0)
(42) (433_1_ACK_INVOKEMETHOD(531_0_ack_Return(x0[6]), x1[6], x3[6])≥NonInfC∧433_1_ACK_INVOKEMETHOD(531_0_ack_Return(x0[6]), x1[6], x3[6])≥375_0_ACK_GT(x0[6], x1[6])∧(UIncreasing(375_0_ACK_GT(x0[6], x1[6])), ≥))
(43) ((UIncreasing(375_0_ACK_GT(x0[6], x1[6])), ≥)∧[bni_34] = 0∧[(-1)bso_35] ≥ 0)
(44) ((UIncreasing(375_0_ACK_GT(x0[6], x1[6])), ≥)∧[bni_34] = 0∧[(-1)bso_35] ≥ 0)
(45) ((UIncreasing(375_0_ACK_GT(x0[6], x1[6])), ≥)∧[bni_34] = 0∧[(-1)bso_35] ≥ 0)
(46) ((UIncreasing(375_0_ACK_GT(x0[6], x1[6])), ≥)∧[bni_34] = 0∧0 = 0∧0 = 0∧0 = 0∧[(-1)bso_35] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(375_0_ack_GT(x1, x2)) = [2] + [2]x2 + x1
POL(0) = 0
POL(393_0_ack_Return(x1, x2)) = [-1] + [-1]x2 + [2]x1
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
POL(419_1_ack_InvokeMethod(x1, x2, x3)) = [-1]
POL(494_0_ack_Return(x1, x2)) = x2
POL(502_1_ack_InvokeMethod(x1, x2, x3)) = [-1]
POL(531_0_ack_Return(x1)) = x1
POL(375_0_ACK_GT(x1, x2)) = [-1] + x2
POL(COND_375_0_ACK_GT(x1, x2, x3)) = [-1] + x3
POL(&&(x1, x2)) = [-1]
POL(<=(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(-(x1, x2)) = x1 + [-1]x2
POL(COND_375_0_ACK_GT1(x1, x2, x3)) = [-1] + x3
POL(433_1_ACK_INVOKEMETHOD(x1, x2, x3)) = [-1] + x2
COND_375_0_ACK_GT(TRUE, x1[1], x0[1]) → 375_0_ACK_GT(1, -(x0[1], 1))
COND_375_0_ACK_GT1(TRUE, x1[3], x0[3]) → 433_1_ACK_INVOKEMETHOD(375_0_ack_GT(-(x1[3], 1), x0[3]), -(x0[3], 1), -(x1[3], 1))
375_0_ACK_GT(x1[0], x0[0]) → COND_375_0_ACK_GT(&&(<=(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])
375_0_ACK_GT(x1[2], x0[2]) → COND_375_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])
375_0_ACK_GT(x1[0], x0[0]) → COND_375_0_ACK_GT(&&(<=(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])
375_0_ACK_GT(x1[2], x0[2]) → COND_375_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])
COND_375_0_ACK_GT1(TRUE, x1[4], x0[4]) → 375_0_ACK_GT(-(x1[4], 1), x0[4])
433_1_ACK_INVOKEMETHOD(494_0_ack_Return(0, x2[5]), x3[5], 0) → 375_0_ACK_GT(x2[5], x3[5])
433_1_ACK_INVOKEMETHOD(531_0_ack_Return(x0[6]), x1[6], x3[6]) → 375_0_ACK_GT(x0[6], x1[6])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(4) -> (0), if (x1[4] - 1 →* x1[0]∧x0[4] →* x0[0])
(5) -> (0), if (x2[5] →* x1[0]∧x3[5] →* x0[0])
(6) -> (0), if (x0[6] →* x1[0]∧x1[6] →* x0[0])
(4) -> (2), if (x1[4] - 1 →* x1[2]∧x0[4] →* x0[2])
(5) -> (2), if (x2[5] →* x1[2]∧x3[5] →* x0[2])
(6) -> (2), if (x0[6] →* x1[2]∧x1[6] →* x0[2])
(2) -> (4), if (x1[2] > 0 && x0[2] > 0 ∧x1[2] →* x1[4]∧x0[2] →* x0[4])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(4) -> (2), if (x1[4] - 1 →* x1[2]∧x0[4] →* x0[2])
(2) -> (4), if (x1[2] > 0 && x0[2] > 0 ∧x1[2] →* x1[4]∧x0[2] →* x0[4])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(4) -> (2), if (x1[4] - 1 →* x1[2]∧x0[4] →* x0[2])
(2) -> (4), if (x1[2] > 0 && x0[2] > 0 ∧x1[2] →* x1[4]∧x0[2] →* x0[4])
(1) (COND_375_0_ACK_GT1(TRUE, x1[4], x0[4])≥NonInfC∧COND_375_0_ACK_GT1(TRUE, x1[4], x0[4])≥375_0_ACK_GT(-(x1[4], 1), x0[4])∧(UIncreasing(375_0_ACK_GT(-(x1[4], 1), x0[4])), ≥))
(2) ((UIncreasing(375_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[bni_9] = 0∧[1 + (-1)bso_10] ≥ 0)
(3) ((UIncreasing(375_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[bni_9] = 0∧[1 + (-1)bso_10] ≥ 0)
(4) ((UIncreasing(375_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[bni_9] = 0∧[1 + (-1)bso_10] ≥ 0)
(5) ((UIncreasing(375_0_ACK_GT(-(x1[4], 1), x0[4])), ≥)∧[bni_9] = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_10] ≥ 0)
(6) (&&(>(x1[2], 0), >(x0[2], 0))=TRUE∧x1[2]=x1[4]∧x0[2]=x0[4] ⇒ 375_0_ACK_GT(x1[2], x0[2])≥NonInfC∧375_0_ACK_GT(x1[2], x0[2])≥COND_375_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])∧(UIncreasing(COND_375_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥))
(7) (>(x1[2], 0)=TRUE∧>(x0[2], 0)=TRUE ⇒ 375_0_ACK_GT(x1[2], x0[2])≥NonInfC∧375_0_ACK_GT(x1[2], x0[2])≥COND_375_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])∧(UIncreasing(COND_375_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥))
(8) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_375_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x1[2] + [bni_11]x0[2] ≥ 0∧[(-1)bso_12] ≥ 0)
(9) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_375_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x1[2] + [bni_11]x0[2] ≥ 0∧[(-1)bso_12] ≥ 0)
(10) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_375_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x1[2] + [bni_11]x0[2] ≥ 0∧[(-1)bso_12] ≥ 0)
(11) (x1[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_375_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)Bound*bni_11] + [bni_11]x1[2] + [bni_11]x0[2] ≥ 0∧[(-1)bso_12] ≥ 0)
(12) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_375_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)Bound*bni_11 + bni_11] + [bni_11]x1[2] + [bni_11]x0[2] ≥ 0∧[(-1)bso_12] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_375_0_ACK_GT1(x1, x2, x3)) = [-1] + x3 + x2
POL(375_0_ACK_GT(x1, x2)) = [-1] + x1 + x2
POL(-(x1, x2)) = x1 + [-1]x2
POL(1) = [1]
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
COND_375_0_ACK_GT1(TRUE, x1[4], x0[4]) → 375_0_ACK_GT(-(x1[4], 1), x0[4])
375_0_ACK_GT(x1[2], x0[2]) → COND_375_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])
375_0_ACK_GT(x1[2], x0[2]) → COND_375_0_ACK_GT1(&&(>(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(3) -> (5), if (375_0_ack_GT(x1[3] - 1, x0[3]) →* 494_0_ack_Return(0, x2[5])∧x0[3] - 1 →* x3[5]∧x1[3] - 1 →* 0)
(3) -> (6), if (375_0_ack_GT(x1[3] - 1, x0[3]) →* 531_0_ack_Return(x0[6])∧x0[3] - 1 →* x1[6]∧x1[3] - 1 →* x3[6])