0 JBC
↳1 JBCToGraph (⇒, 120 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 120 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 90 ms)
↳8 IDP
↳9 IDependencyGraphProof (⇔, 0 ms)
↳10 IDP
↳11 IDPNonInfProof (⇒, 30 ms)
↳12 IDP
↳13 IDependencyGraphProof (⇔, 0 ms)
↳14 TRUE
public class TerminatorRec01 {
static int z = 0;
public static void main(String[] args) {
z = args.length;
f(z);
}
public static void f(int x) {
int y = 0;
if (x > 0) {
y = 2;
while (y > 0) {
z = z - 1;
f(x - y);
y = y - 1;
}
}
}
}
Generated 33 rules for P and 4 rules for R.
P rules:
360_0_f_Store(EOS(STATIC_360), i62, matching1) → 362_0_f_Load(EOS(STATIC_362), i62) | =(matching1, 0)
362_0_f_Load(EOS(STATIC_362), i62) → 364_0_f_LE(EOS(STATIC_364), i62, i62)
364_0_f_LE(EOS(STATIC_364), i67, i67) → 367_0_f_LE(EOS(STATIC_367), i67, i67)
367_0_f_LE(EOS(STATIC_367), i67, i67) → 371_0_f_ConstantStackPush(EOS(STATIC_371), i67) | >(i67, 0)
371_0_f_ConstantStackPush(EOS(STATIC_371), i67) → 375_0_f_Store(EOS(STATIC_375), i67, 2)
375_0_f_Store(EOS(STATIC_375), i67, matching1) → 381_0_f_Load(EOS(STATIC_381), i67, 2) | =(matching1, 2)
381_0_f_Load(EOS(STATIC_381), i67, matching1) → 432_0_f_Load(EOS(STATIC_432), i67, 2) | =(matching1, 2)
432_0_f_Load(EOS(STATIC_432), i67, i82) → 479_0_f_Load(EOS(STATIC_479), i67, i82)
479_0_f_Load(EOS(STATIC_479), i67, i97) → 483_0_f_LE(EOS(STATIC_483), i67, i97, i97)
483_0_f_LE(EOS(STATIC_483), i67, i106, i106) → 485_0_f_LE(EOS(STATIC_485), i67, i106, i106)
485_0_f_LE(EOS(STATIC_485), i67, i106, i106) → 490_0_f_FieldAccess(EOS(STATIC_490), i67, i106) | >(i106, 0)
490_0_f_FieldAccess(EOS(STATIC_490), i67, i106) → 494_0_f_ConstantStackPush(EOS(STATIC_494), i67, i106)
494_0_f_ConstantStackPush(EOS(STATIC_494), i67, i106) → 499_0_f_IntArithmetic(EOS(STATIC_499), i67, i106)
499_0_f_IntArithmetic(EOS(STATIC_499), i67, i106) → 509_0_f_FieldAccess(EOS(STATIC_509), i67, i106)
509_0_f_FieldAccess(EOS(STATIC_509), i67, i106) → 513_0_f_Load(EOS(STATIC_513), i67, i106)
513_0_f_Load(EOS(STATIC_513), i67, i106) → 517_0_f_Load(EOS(STATIC_517), i67, i106, i67)
517_0_f_Load(EOS(STATIC_517), i67, i106, i67) → 518_0_f_IntArithmetic(EOS(STATIC_518), i67, i106, i67, i106)
518_0_f_IntArithmetic(EOS(STATIC_518), i67, i106, i67, i106) → 520_0_f_InvokeMethod(EOS(STATIC_520), i67, i106, -(i67, i106)) | &&(>(i67, 0), >(i106, 0))
520_0_f_InvokeMethod(EOS(STATIC_520), i67, i106, i115) → 522_1_f_InvokeMethod(522_0_f_ConstantStackPush(EOS(STATIC_522), i115), i67, i106, i115)
522_0_f_ConstantStackPush(EOS(STATIC_522), i115) → 524_0_f_ConstantStackPush(EOS(STATIC_524), i115)
522_1_f_InvokeMethod(369_0_f_Return(EOS(STATIC_369)), i67, i106, i118) → 535_0_f_Return(EOS(STATIC_535), i67, i106, i118)
522_1_f_InvokeMethod(488_0_f_Return(EOS(STATIC_488)), i67, i106, i121) → 542_0_f_Return(EOS(STATIC_542), i67, i106, i121)
524_0_f_ConstantStackPush(EOS(STATIC_524), i115) → 358_0_f_ConstantStackPush(EOS(STATIC_358), i115)
358_0_f_ConstantStackPush(EOS(STATIC_358), i62) → 360_0_f_Store(EOS(STATIC_360), i62, 0)
535_0_f_Return(EOS(STATIC_535), i67, i106, i118) → 543_0_f_Return(EOS(STATIC_543), i67, i106, i118)
543_0_f_Return(EOS(STATIC_543), i67, i106, i123) → 546_0_f_Load(EOS(STATIC_546), i67, i106)
546_0_f_Load(EOS(STATIC_546), i67, i106) → 548_0_f_ConstantStackPush(EOS(STATIC_548), i67, i106)
548_0_f_ConstantStackPush(EOS(STATIC_548), i67, i106) → 550_0_f_IntArithmetic(EOS(STATIC_550), i67, i106, 1)
550_0_f_IntArithmetic(EOS(STATIC_550), i67, i106, matching1) → 552_0_f_Store(EOS(STATIC_552), i67, -(i106, 1)) | &&(>(i106, 0), =(matching1, 1))
552_0_f_Store(EOS(STATIC_552), i67, i127) → 554_0_f_JMP(EOS(STATIC_554), i67, i127)
554_0_f_JMP(EOS(STATIC_554), i67, i127) → 557_0_f_Load(EOS(STATIC_557), i67, i127)
557_0_f_Load(EOS(STATIC_557), i67, i127) → 479_0_f_Load(EOS(STATIC_479), i67, i127)
542_0_f_Return(EOS(STATIC_542), i67, i106, i121) → 543_0_f_Return(EOS(STATIC_543), i67, i106, i121)
R rules:
364_0_f_LE(EOS(STATIC_364), i66, i66) → 366_0_f_LE(EOS(STATIC_366), i66, i66)
366_0_f_LE(EOS(STATIC_366), i66, i66) → 369_0_f_Return(EOS(STATIC_369)) | <=(i66, 0)
483_0_f_LE(EOS(STATIC_483), i67, matching1, matching2) → 484_0_f_LE(EOS(STATIC_484), i67, 0, 0) | &&(=(matching1, 0), =(matching2, 0))
484_0_f_LE(EOS(STATIC_484), i67, matching1, matching2) → 488_0_f_Return(EOS(STATIC_488)) | &&(&&(<=(0, 0), =(matching1, 0)), =(matching2, 0))
Combined rules. Obtained 3 conditional rules for P and 0 conditional rules for R.
P rules:
360_0_f_Store(EOS(STATIC_360), x0, 0) → 522_1_f_InvokeMethod(360_0_f_Store(EOS(STATIC_360), -(x0, 2), 0), x0, 2, -(x0, 2)) | >(x0, 0)
522_1_f_InvokeMethod(369_0_f_Return(EOS(STATIC_369)), x0, x1, x2) → 522_1_f_InvokeMethod(360_0_f_Store(EOS(STATIC_360), -(x0, -(x1, 1)), 0), x0, -(x1, 1), -(x0, -(x1, 1))) | &&(>(x1, 1), >(x0, 0))
522_1_f_InvokeMethod(488_0_f_Return(EOS(STATIC_488)), x0, x1, x2) → 522_1_f_InvokeMethod(360_0_f_Store(EOS(STATIC_360), -(x0, -(x1, 1)), 0), x0, -(x1, 1), -(x0, -(x1, 1))) | &&(>(x1, 1), >(x0, 0))
R rules:
Filtered ground terms:
360_0_f_Store(x1, x2, x3) → 360_0_f_Store(x2)
Cond_522_1_f_InvokeMethod1(x1, x2, x3, x4, x5) → Cond_522_1_f_InvokeMethod1(x1, x3, x4, x5)
488_0_f_Return(x1) → 488_0_f_Return
Cond_522_1_f_InvokeMethod(x1, x2, x3, x4, x5) → Cond_522_1_f_InvokeMethod(x1, x3, x4, x5)
369_0_f_Return(x1) → 369_0_f_Return
Cond_360_0_f_Store(x1, x2, x3, x4) → Cond_360_0_f_Store(x1, x3)
Filtered unneeded arguments:
522_1_f_InvokeMethod(x1, x2, x3, x4) → 522_1_f_InvokeMethod(x1, x2, x3)
Cond_522_1_f_InvokeMethod(x1, x2, x3, x4) → Cond_522_1_f_InvokeMethod(x1, x2, x3)
Cond_522_1_f_InvokeMethod1(x1, x2, x3, x4) → Cond_522_1_f_InvokeMethod1(x1, x2, x3)
Combined rules. Obtained 3 conditional rules for P and 0 conditional rules for R.
P rules:
360_0_f_Store(x0) → 522_1_f_InvokeMethod(360_0_f_Store(-(x0, 2)), x0, 2) | >(x0, 0)
522_1_f_InvokeMethod(369_0_f_Return, x0, x1) → 522_1_f_InvokeMethod(360_0_f_Store(-(x0, -(x1, 1))), x0, -(x1, 1)) | &&(>(x1, 1), >(x0, 0))
522_1_f_InvokeMethod(488_0_f_Return, x0, x1) → 522_1_f_InvokeMethod(360_0_f_Store(-(x0, -(x1, 1))), x0, -(x1, 1)) | &&(>(x1, 1), >(x0, 0))
R rules:
Performed bisimulation on rules. Used the following equivalence classes: {[369_0_f_Return, 488_0_f_Return]=369_0_f_Return, [Cond_522_1_f_InvokeMethod_4, Cond_522_1_f_InvokeMethod1_4]=Cond_522_1_f_InvokeMethod_4}
Finished conversion. Obtained 6 rules for P and 0 rules for R. System has predefined symbols.
P rules:
360_0_F_STORE(x0) → COND_360_0_F_STORE(>(x0, 0), x0)
COND_360_0_F_STORE(TRUE, x0) → 522_1_F_INVOKEMETHOD(360_0_f_Store(-(x0, 2)), x0, 2)
COND_360_0_F_STORE(TRUE, x0) → 360_0_F_STORE(-(x0, 2))
522_1_F_INVOKEMETHOD(369_0_f_Return, x0, x1) → COND_522_1_F_INVOKEMETHOD(&&(>(x1, 1), >(x0, 0)), 369_0_f_Return, x0, x1)
COND_522_1_F_INVOKEMETHOD(TRUE, 369_0_f_Return, x0, x1) → 522_1_F_INVOKEMETHOD(360_0_f_Store(-(x0, -(x1, 1))), x0, -(x1, 1))
COND_522_1_F_INVOKEMETHOD(TRUE, 369_0_f_Return, x0, x1) → 360_0_F_STORE(-(x0, -(x1, 1)))
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(0) -> (1), if (x0[0] > 0 ∧x0[0] →* x0[1])
(0) -> (2), if (x0[0] > 0 ∧x0[0] →* x0[2])
(1) -> (3), if (360_0_f_Store(x0[1] - 2) →* 369_0_f_Return∧x0[1] →* x0[3]∧2 →* x1[3])
(2) -> (0), if (x0[2] - 2 →* x0[0])
(3) -> (4), if (x1[3] > 1 && x0[3] > 0 ∧x0[3] →* x0[4]∧x1[3] →* x1[4])
(3) -> (5), if (x1[3] > 1 && x0[3] > 0 ∧x0[3] →* x0[5]∧x1[3] →* x1[5])
(4) -> (3), if (360_0_f_Store(x0[4] - x1[4] - 1) →* 369_0_f_Return∧x0[4] →* x0[3]∧x1[4] - 1 →* x1[3])
(5) -> (0), if (x0[5] - x1[5] - 1 →* x0[0])
(1) (>(x0[0], 0)=TRUE∧x0[0]=x0[1] ⇒ 360_0_F_STORE(x0[0])≥NonInfC∧360_0_F_STORE(x0[0])≥COND_360_0_F_STORE(>(x0[0], 0), x0[0])∧(UIncreasing(COND_360_0_F_STORE(>(x0[0], 0), x0[0])), ≥))
(2) (>(x0[0], 0)=TRUE ⇒ 360_0_F_STORE(x0[0])≥NonInfC∧360_0_F_STORE(x0[0])≥COND_360_0_F_STORE(>(x0[0], 0), x0[0])∧(UIncreasing(COND_360_0_F_STORE(>(x0[0], 0), x0[0])), ≥))
(3) (0 ≥ 0 ⇒ (UIncreasing(COND_360_0_F_STORE(>(x0[0], 0), x0[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[(-1)bso_19] + x0[0] ≥ 0)
(4) (0 ≥ 0 ⇒ (UIncreasing(COND_360_0_F_STORE(>(x0[0], 0), x0[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[(-1)bso_19] + x0[0] ≥ 0)
(5) (0 ≥ 0 ⇒ (UIncreasing(COND_360_0_F_STORE(>(x0[0], 0), x0[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[(-1)bso_19] + x0[0] ≥ 0)
(6) (0 ≥ 0 ⇒ (UIncreasing(COND_360_0_F_STORE(>(x0[0], 0), x0[0])), ≥)∧[bni_18] ≥ 0∧[(-1)bni_18 + (-1)Bound*bni_18] ≥ 0∧[1] ≥ 0∧[(-1)bso_19] ≥ 0)
(7) (>(x0[0], 0)=TRUE∧x0[0]=x0[2] ⇒ 360_0_F_STORE(x0[0])≥NonInfC∧360_0_F_STORE(x0[0])≥COND_360_0_F_STORE(>(x0[0], 0), x0[0])∧(UIncreasing(COND_360_0_F_STORE(>(x0[0], 0), x0[0])), ≥))
(8) (>(x0[0], 0)=TRUE ⇒ 360_0_F_STORE(x0[0])≥NonInfC∧360_0_F_STORE(x0[0])≥COND_360_0_F_STORE(>(x0[0], 0), x0[0])∧(UIncreasing(COND_360_0_F_STORE(>(x0[0], 0), x0[0])), ≥))
(9) (0 ≥ 0 ⇒ (UIncreasing(COND_360_0_F_STORE(>(x0[0], 0), x0[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[(-1)bso_19] + x0[0] ≥ 0)
(10) (0 ≥ 0 ⇒ (UIncreasing(COND_360_0_F_STORE(>(x0[0], 0), x0[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[(-1)bso_19] + x0[0] ≥ 0)
(11) (0 ≥ 0 ⇒ (UIncreasing(COND_360_0_F_STORE(>(x0[0], 0), x0[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[(-1)bso_19] + x0[0] ≥ 0)
(12) (0 ≥ 0 ⇒ (UIncreasing(COND_360_0_F_STORE(>(x0[0], 0), x0[0])), ≥)∧[bni_18] ≥ 0∧[(-1)bni_18 + (-1)Bound*bni_18] ≥ 0∧[1] ≥ 0∧[(-1)bso_19] ≥ 0)
(13) (>(x0[0], 0)=TRUE∧x0[0]=x0[1]∧360_0_f_Store(-(x0[1], 2))=369_0_f_Return∧x0[1]=x0[3]∧2=x1[3] ⇒ COND_360_0_F_STORE(TRUE, x0[1])≥NonInfC∧COND_360_0_F_STORE(TRUE, x0[1])≥522_1_F_INVOKEMETHOD(360_0_f_Store(-(x0[1], 2)), x0[1], 2)∧(UIncreasing(522_1_F_INVOKEMETHOD(360_0_f_Store(-(x0[1], 2)), x0[1], 2)), ≥))
(14) (>(x0[0], 0)=TRUE∧x0[0]=x0[2]∧-(x0[2], 2)=x0[0]1 ⇒ COND_360_0_F_STORE(TRUE, x0[2])≥NonInfC∧COND_360_0_F_STORE(TRUE, x0[2])≥360_0_F_STORE(-(x0[2], 2))∧(UIncreasing(360_0_F_STORE(-(x0[2], 2))), ≥))
(15) (>(x0[0], 0)=TRUE ⇒ COND_360_0_F_STORE(TRUE, x0[0])≥NonInfC∧COND_360_0_F_STORE(TRUE, x0[0])≥360_0_F_STORE(-(x0[0], 2))∧(UIncreasing(360_0_F_STORE(-(x0[2], 2))), ≥))
(16) (0 ≥ 0 ⇒ (UIncreasing(360_0_F_STORE(-(x0[2], 2))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] ≥ 0∧[(-1)bso_21] ≥ 0)
(17) (0 ≥ 0 ⇒ (UIncreasing(360_0_F_STORE(-(x0[2], 2))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] ≥ 0∧[(-1)bso_21] ≥ 0)
(18) (0 ≥ 0 ⇒ (UIncreasing(360_0_F_STORE(-(x0[2], 2))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] ≥ 0∧[(-1)bso_21] ≥ 0)
(19) (0 ≥ 0 ⇒ (UIncreasing(360_0_F_STORE(-(x0[2], 2))), ≥)∧0 ≥ 0∧[(-1)bni_20 + (-1)Bound*bni_20] ≥ 0∧0 ≥ 0∧[(-1)bso_21] ≥ 0)
(20) (&&(>(x1[3], 1), >(x0[3], 0))=TRUE∧x0[3]=x0[4]∧x1[3]=x1[4] ⇒ 522_1_F_INVOKEMETHOD(369_0_f_Return, x0[3], x1[3])≥NonInfC∧522_1_F_INVOKEMETHOD(369_0_f_Return, x0[3], x1[3])≥COND_522_1_F_INVOKEMETHOD(&&(>(x1[3], 1), >(x0[3], 0)), 369_0_f_Return, x0[3], x1[3])∧(UIncreasing(COND_522_1_F_INVOKEMETHOD(&&(>(x1[3], 1), >(x0[3], 0)), 369_0_f_Return, x0[3], x1[3])), ≥))
(21) (&&(>(x1[3], 1), >(x0[3], 0))=TRUE ⇒ 522_1_F_INVOKEMETHOD(369_0_f_Return, x0[3], x1[3])≥NonInfC∧522_1_F_INVOKEMETHOD(369_0_f_Return, x0[3], x1[3])≥COND_522_1_F_INVOKEMETHOD(&&(>(x1[3], 1), >(x0[3], 0)), 369_0_f_Return, x0[3], x1[3])∧(UIncreasing(COND_522_1_F_INVOKEMETHOD(&&(>(x1[3], 1), >(x0[3], 0)), 369_0_f_Return, x0[3], x1[3])), ≥))
(22) (0 ≥ 0 ⇒ (UIncreasing(COND_522_1_F_INVOKEMETHOD(&&(>(x1[3], 1), >(x0[3], 0)), 369_0_f_Return, x0[3], x1[3])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x1[3] + [bni_22]x0[3] ≥ 0∧[2 + (-1)bso_23] + x1[3] + x0[3] ≥ 0)
(23) (0 ≥ 0 ⇒ (UIncreasing(COND_522_1_F_INVOKEMETHOD(&&(>(x1[3], 1), >(x0[3], 0)), 369_0_f_Return, x0[3], x1[3])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x1[3] + [bni_22]x0[3] ≥ 0∧[2 + (-1)bso_23] + x1[3] + x0[3] ≥ 0)
(24) (0 ≥ 0 ⇒ (UIncreasing(COND_522_1_F_INVOKEMETHOD(&&(>(x1[3], 1), >(x0[3], 0)), 369_0_f_Return, x0[3], x1[3])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x1[3] + [bni_22]x0[3] ≥ 0∧[2 + (-1)bso_23] + x1[3] + x0[3] ≥ 0)
(25) (0 ≥ 0 ⇒ (UIncreasing(COND_522_1_F_INVOKEMETHOD(&&(>(x1[3], 1), >(x0[3], 0)), 369_0_f_Return, x0[3], x1[3])), ≥)∧[bni_22] ≥ 0∧[bni_22] ≥ 0∧[bni_22 + (-1)Bound*bni_22] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2 + (-1)bso_23] ≥ 0)
(26) (&&(>(x1[3], 1), >(x0[3], 0))=TRUE∧x0[3]=x0[5]∧x1[3]=x1[5] ⇒ 522_1_F_INVOKEMETHOD(369_0_f_Return, x0[3], x1[3])≥NonInfC∧522_1_F_INVOKEMETHOD(369_0_f_Return, x0[3], x1[3])≥COND_522_1_F_INVOKEMETHOD(&&(>(x1[3], 1), >(x0[3], 0)), 369_0_f_Return, x0[3], x1[3])∧(UIncreasing(COND_522_1_F_INVOKEMETHOD(&&(>(x1[3], 1), >(x0[3], 0)), 369_0_f_Return, x0[3], x1[3])), ≥))
(27) (&&(>(x1[3], 1), >(x0[3], 0))=TRUE ⇒ 522_1_F_INVOKEMETHOD(369_0_f_Return, x0[3], x1[3])≥NonInfC∧522_1_F_INVOKEMETHOD(369_0_f_Return, x0[3], x1[3])≥COND_522_1_F_INVOKEMETHOD(&&(>(x1[3], 1), >(x0[3], 0)), 369_0_f_Return, x0[3], x1[3])∧(UIncreasing(COND_522_1_F_INVOKEMETHOD(&&(>(x1[3], 1), >(x0[3], 0)), 369_0_f_Return, x0[3], x1[3])), ≥))
(28) (0 ≥ 0 ⇒ (UIncreasing(COND_522_1_F_INVOKEMETHOD(&&(>(x1[3], 1), >(x0[3], 0)), 369_0_f_Return, x0[3], x1[3])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x1[3] + [bni_22]x0[3] ≥ 0∧[2 + (-1)bso_23] + x1[3] + x0[3] ≥ 0)
(29) (0 ≥ 0 ⇒ (UIncreasing(COND_522_1_F_INVOKEMETHOD(&&(>(x1[3], 1), >(x0[3], 0)), 369_0_f_Return, x0[3], x1[3])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x1[3] + [bni_22]x0[3] ≥ 0∧[2 + (-1)bso_23] + x1[3] + x0[3] ≥ 0)
(30) (0 ≥ 0 ⇒ (UIncreasing(COND_522_1_F_INVOKEMETHOD(&&(>(x1[3], 1), >(x0[3], 0)), 369_0_f_Return, x0[3], x1[3])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x1[3] + [bni_22]x0[3] ≥ 0∧[2 + (-1)bso_23] + x1[3] + x0[3] ≥ 0)
(31) (0 ≥ 0 ⇒ (UIncreasing(COND_522_1_F_INVOKEMETHOD(&&(>(x1[3], 1), >(x0[3], 0)), 369_0_f_Return, x0[3], x1[3])), ≥)∧[bni_22] ≥ 0∧[bni_22] ≥ 0∧[bni_22 + (-1)Bound*bni_22] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[2 + (-1)bso_23] ≥ 0)
(32) (&&(>(x1[3], 1), >(x0[3], 0))=TRUE∧x0[3]=x0[4]∧x1[3]=x1[4]∧360_0_f_Store(-(x0[4], -(x1[4], 1)))=369_0_f_Return∧x0[4]=x0[3]1∧-(x1[4], 1)=x1[3]1 ⇒ COND_522_1_F_INVOKEMETHOD(TRUE, 369_0_f_Return, x0[4], x1[4])≥NonInfC∧COND_522_1_F_INVOKEMETHOD(TRUE, 369_0_f_Return, x0[4], x1[4])≥522_1_F_INVOKEMETHOD(360_0_f_Store(-(x0[4], -(x1[4], 1))), x0[4], -(x1[4], 1))∧(UIncreasing(522_1_F_INVOKEMETHOD(360_0_f_Store(-(x0[4], -(x1[4], 1))), x0[4], -(x1[4], 1))), ≥))
(33) (&&(>(x1[3], 1), >(x0[3], 0))=TRUE∧x0[3]=x0[5]∧x1[3]=x1[5]∧-(x0[5], -(x1[5], 1))=x0[0] ⇒ COND_522_1_F_INVOKEMETHOD(TRUE, 369_0_f_Return, x0[5], x1[5])≥NonInfC∧COND_522_1_F_INVOKEMETHOD(TRUE, 369_0_f_Return, x0[5], x1[5])≥360_0_F_STORE(-(x0[5], -(x1[5], 1)))∧(UIncreasing(360_0_F_STORE(-(x0[5], -(x1[5], 1)))), ≥))
(34) (&&(>(x1[3], 1), >(x0[3], 0))=TRUE ⇒ COND_522_1_F_INVOKEMETHOD(TRUE, 369_0_f_Return, x0[3], x1[3])≥NonInfC∧COND_522_1_F_INVOKEMETHOD(TRUE, 369_0_f_Return, x0[3], x1[3])≥360_0_F_STORE(-(x0[3], -(x1[3], 1)))∧(UIncreasing(360_0_F_STORE(-(x0[5], -(x1[5], 1)))), ≥))
(35) (0 ≥ 0 ⇒ (UIncreasing(360_0_F_STORE(-(x0[5], -(x1[5], 1)))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] ≥ 0∧[(-1)bso_25] ≥ 0)
(36) (0 ≥ 0 ⇒ (UIncreasing(360_0_F_STORE(-(x0[5], -(x1[5], 1)))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] ≥ 0∧[(-1)bso_25] ≥ 0)
(37) (0 ≥ 0 ⇒ (UIncreasing(360_0_F_STORE(-(x0[5], -(x1[5], 1)))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] ≥ 0∧[(-1)bso_25] ≥ 0)
(38) (0 ≥ 0 ⇒ (UIncreasing(360_0_F_STORE(-(x0[5], -(x1[5], 1)))), ≥)∧0 ≥ 0∧0 ≥ 0∧[(-1)bni_24 + (-1)Bound*bni_24] ≥ 0∧0 ≥ 0∧0 ≥ 0∧[(-1)bso_25] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(360_0_F_STORE(x1)) = [-1] + x1
POL(COND_360_0_F_STORE(x1, x2)) = [-1]
POL(>(x1, x2)) = 0
POL(0) = 0
POL(522_1_F_INVOKEMETHOD(x1, x2, x3)) = [1] + x3 + x2 + [-1]x1
POL(360_0_f_Store(x1)) = 0
POL(-(x1, x2)) = 0
POL(2) = 0
POL(369_0_f_Return) = 0
POL(COND_522_1_F_INVOKEMETHOD(x1, x2, x3, x4)) = [-1] + [-1]x2
POL(&&(x1, x2)) = 0
POL(1) = 0
COND_360_0_F_STORE(TRUE, x0[1]) → 522_1_F_INVOKEMETHOD(360_0_f_Store(-(x0[1], 2)), x0[1], 2)
522_1_F_INVOKEMETHOD(369_0_f_Return, x0[3], x1[3]) → COND_522_1_F_INVOKEMETHOD(&&(>(x1[3], 1), >(x0[3], 0)), 369_0_f_Return, x0[3], x1[3])
COND_522_1_F_INVOKEMETHOD(TRUE, 369_0_f_Return, x0[4], x1[4]) → 522_1_F_INVOKEMETHOD(360_0_f_Store(-(x0[4], -(x1[4], 1))), x0[4], -(x1[4], 1))
360_0_F_STORE(x0[0]) → COND_360_0_F_STORE(>(x0[0], 0), x0[0])
COND_360_0_F_STORE(TRUE, x0[1]) → 522_1_F_INVOKEMETHOD(360_0_f_Store(-(x0[1], 2)), x0[1], 2)
COND_360_0_F_STORE(TRUE, x0[2]) → 360_0_F_STORE(-(x0[2], 2))
522_1_F_INVOKEMETHOD(369_0_f_Return, x0[3], x1[3]) → COND_522_1_F_INVOKEMETHOD(&&(>(x1[3], 1), >(x0[3], 0)), 369_0_f_Return, x0[3], x1[3])
COND_522_1_F_INVOKEMETHOD(TRUE, 369_0_f_Return, x0[4], x1[4]) → 522_1_F_INVOKEMETHOD(360_0_f_Store(-(x0[4], -(x1[4], 1))), x0[4], -(x1[4], 1))
COND_522_1_F_INVOKEMETHOD(TRUE, 369_0_f_Return, x0[5], x1[5]) → 360_0_F_STORE(-(x0[5], -(x1[5], 1)))
360_0_F_STORE(x0[0]) → COND_360_0_F_STORE(>(x0[0], 0), x0[0])
COND_360_0_F_STORE(TRUE, x0[2]) → 360_0_F_STORE(-(x0[2], 2))
COND_522_1_F_INVOKEMETHOD(TRUE, 369_0_f_Return, x0[5], x1[5]) → 360_0_F_STORE(-(x0[5], -(x1[5], 1)))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(2) -> (0), if (x0[2] - 2 →* x0[0])
(5) -> (0), if (x0[5] - x1[5] - 1 →* x0[0])
(0) -> (2), if (x0[0] > 0 ∧x0[0] →* x0[2])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(2) -> (0), if (x0[2] - 2 →* x0[0])
(0) -> (2), if (x0[0] > 0 ∧x0[0] →* x0[2])
(1) (>(x0[0], 0)=TRUE∧x0[0]=x0[2]∧-(x0[2], 2)=x0[0]1 ⇒ COND_360_0_F_STORE(TRUE, x0[2])≥NonInfC∧COND_360_0_F_STORE(TRUE, x0[2])≥360_0_F_STORE(-(x0[2], 2))∧(UIncreasing(360_0_F_STORE(-(x0[2], 2))), ≥))
(2) (>(x0[0], 0)=TRUE ⇒ COND_360_0_F_STORE(TRUE, x0[0])≥NonInfC∧COND_360_0_F_STORE(TRUE, x0[0])≥360_0_F_STORE(-(x0[0], 2))∧(UIncreasing(360_0_F_STORE(-(x0[2], 2))), ≥))
(3) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(360_0_F_STORE(-(x0[2], 2))), ≥)∧[(2)bni_9 + (-1)Bound*bni_9] + [bni_9]x0[0] ≥ 0∧[2 + (-1)bso_10] ≥ 0)
(4) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(360_0_F_STORE(-(x0[2], 2))), ≥)∧[(2)bni_9 + (-1)Bound*bni_9] + [bni_9]x0[0] ≥ 0∧[2 + (-1)bso_10] ≥ 0)
(5) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(360_0_F_STORE(-(x0[2], 2))), ≥)∧[(2)bni_9 + (-1)Bound*bni_9] + [bni_9]x0[0] ≥ 0∧[2 + (-1)bso_10] ≥ 0)
(6) (x0[0] ≥ 0 ⇒ (UIncreasing(360_0_F_STORE(-(x0[2], 2))), ≥)∧[(3)bni_9 + (-1)Bound*bni_9] + [bni_9]x0[0] ≥ 0∧[2 + (-1)bso_10] ≥ 0)
(7) (>(x0[0], 0)=TRUE∧x0[0]=x0[2] ⇒ 360_0_F_STORE(x0[0])≥NonInfC∧360_0_F_STORE(x0[0])≥COND_360_0_F_STORE(>(x0[0], 0), x0[0])∧(UIncreasing(COND_360_0_F_STORE(>(x0[0], 0), x0[0])), ≥))
(8) (>(x0[0], 0)=TRUE ⇒ 360_0_F_STORE(x0[0])≥NonInfC∧360_0_F_STORE(x0[0])≥COND_360_0_F_STORE(>(x0[0], 0), x0[0])∧(UIncreasing(COND_360_0_F_STORE(>(x0[0], 0), x0[0])), ≥))
(9) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_360_0_F_STORE(>(x0[0], 0), x0[0])), ≥)∧[(2)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(10) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_360_0_F_STORE(>(x0[0], 0), x0[0])), ≥)∧[(2)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(11) (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_360_0_F_STORE(>(x0[0], 0), x0[0])), ≥)∧[(2)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(12) (x0[0] ≥ 0 ⇒ (UIncreasing(COND_360_0_F_STORE(>(x0[0], 0), x0[0])), ≥)∧[(3)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[(-1)bso_12] ≥ 0)
POL(TRUE) = [3]
POL(FALSE) = 0
POL(COND_360_0_F_STORE(x1, x2)) = [2] + x2
POL(360_0_F_STORE(x1)) = [2] + x1
POL(-(x1, x2)) = x1 + [-1]x2
POL(2) = [2]
POL(>(x1, x2)) = [-1]
POL(0) = 0
COND_360_0_F_STORE(TRUE, x0[2]) → 360_0_F_STORE(-(x0[2], 2))
COND_360_0_F_STORE(TRUE, x0[2]) → 360_0_F_STORE(-(x0[2], 2))
360_0_F_STORE(x0[0]) → COND_360_0_F_STORE(>(x0[0], 0), x0[0])
360_0_F_STORE(x0[0]) → COND_360_0_F_STORE(>(x0[0], 0), x0[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer