0 JBC
↳1 JBCToGraph (⇒, 120 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 210 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 150 ms)
↳8 AND
↳9 IDP
↳10 IDependencyGraphProof (⇔, 0 ms)
↳11 TRUE
↳12 IDP
↳13 IDependencyGraphProof (⇔, 0 ms)
↳14 TRUE
public class EqUserDefRec {
public static void main(String[] args) {
int x = args[0].length();
int y = args[1].length();
eq(x, y);
}
public static boolean eq(int x, int y) {
if (x > 0 && y > 0) {
return eq(x-1, y-1);
} else {
return (x == 0 && y == 0);
}
}
}
Generated 15 rules for P and 30 rules for R.
P rules:
253_0_eq_LE(EOS(STATIC_253), i42, i37, i42) → 260_0_eq_LE(EOS(STATIC_260), i42, i37, i42)
260_0_eq_LE(EOS(STATIC_260), i42, i37, i42) → 270_0_eq_Load(EOS(STATIC_270), i42, i37) | >(i42, 0)
270_0_eq_Load(EOS(STATIC_270), i42, i37) → 284_0_eq_LE(EOS(STATIC_284), i42, i37, i37)
284_0_eq_LE(EOS(STATIC_284), i42, i46, i46) → 293_0_eq_LE(EOS(STATIC_293), i42, i46, i46)
293_0_eq_LE(EOS(STATIC_293), i42, i46, i46) → 306_0_eq_Load(EOS(STATIC_306), i42, i46) | >(i46, 0)
306_0_eq_Load(EOS(STATIC_306), i42, i46) → 320_0_eq_ConstantStackPush(EOS(STATIC_320), i42, i46, i42)
320_0_eq_ConstantStackPush(EOS(STATIC_320), i42, i46, i42) → 337_0_eq_IntArithmetic(EOS(STATIC_337), i42, i46, i42, 1)
337_0_eq_IntArithmetic(EOS(STATIC_337), i42, i46, i42, matching1) → 355_0_eq_Load(EOS(STATIC_355), i42, i46, -(i42, 1)) | &&(>(i42, 0), =(matching1, 1))
355_0_eq_Load(EOS(STATIC_355), i42, i46, i53) → 374_0_eq_ConstantStackPush(EOS(STATIC_374), i42, i46, i53, i46)
374_0_eq_ConstantStackPush(EOS(STATIC_374), i42, i46, i53, i46) → 407_0_eq_IntArithmetic(EOS(STATIC_407), i42, i46, i53, i46, 1)
407_0_eq_IntArithmetic(EOS(STATIC_407), i42, i46, i53, i46, matching1) → 440_0_eq_InvokeMethod(EOS(STATIC_440), i42, i46, i53, -(i46, 1)) | &&(>(i46, 0), =(matching1, 1))
440_0_eq_InvokeMethod(EOS(STATIC_440), i42, i46, i53, i65) → 459_1_eq_InvokeMethod(459_0_eq_Load(EOS(STATIC_459), i53, i65), i42, i46, i53, i65)
459_0_eq_Load(EOS(STATIC_459), i53, i65) → 463_0_eq_Load(EOS(STATIC_463), i53, i65)
463_0_eq_Load(EOS(STATIC_463), i53, i65) → 244_0_eq_Load(EOS(STATIC_244), i53, i65)
244_0_eq_Load(EOS(STATIC_244), i13, i37) → 253_0_eq_LE(EOS(STATIC_253), i13, i37, i13)
R rules:
253_0_eq_LE(EOS(STATIC_253), matching1, i37, matching2) → 259_0_eq_LE(EOS(STATIC_259), 0, i37, 0) | &&(=(matching1, 0), =(matching2, 0))
259_0_eq_LE(EOS(STATIC_259), matching1, i37, matching2) → 268_0_eq_Load(EOS(STATIC_268), 0, i37) | &&(&&(<=(0, 0), =(matching1, 0)), =(matching2, 0))
268_0_eq_Load(EOS(STATIC_268), matching1, i37) → 281_0_eq_NE(EOS(STATIC_281), i37, 0) | =(matching1, 0)
281_0_eq_NE(EOS(STATIC_281), i37, matching1) → 289_0_eq_Load(EOS(STATIC_289), i37) | =(matching1, 0)
284_0_eq_LE(EOS(STATIC_284), i42, matching1, matching2) → 291_0_eq_LE(EOS(STATIC_291), i42, 0, 0) | &&(=(matching1, 0), =(matching2, 0))
289_0_eq_Load(EOS(STATIC_289), i37) → 302_0_eq_NE(EOS(STATIC_302), i37)
291_0_eq_LE(EOS(STATIC_291), i42, matching1, matching2) → 304_0_eq_Load(EOS(STATIC_304), i42, 0) | &&(&&(<=(0, 0), =(matching1, 0)), =(matching2, 0))
302_0_eq_NE(EOS(STATIC_302), i48) → 315_0_eq_NE(EOS(STATIC_315), i48)
302_0_eq_NE(EOS(STATIC_302), matching1) → 316_0_eq_NE(EOS(STATIC_316), 0) | =(matching1, 0)
304_0_eq_Load(EOS(STATIC_304), i42, matching1) → 319_0_eq_NE(EOS(STATIC_319), 0, i42) | =(matching1, 0)
315_0_eq_NE(EOS(STATIC_315), i48) → 329_0_eq_ConstantStackPush(EOS(STATIC_329)) | >(i48, 0)
316_0_eq_NE(EOS(STATIC_316), matching1) → 332_0_eq_ConstantStackPush(EOS(STATIC_332)) | =(matching1, 0)
319_0_eq_NE(EOS(STATIC_319), matching1, i42) → 334_0_eq_ConstantStackPush(EOS(STATIC_334)) | &&(>(i42, 0), =(matching1, 0))
329_0_eq_ConstantStackPush(EOS(STATIC_329)) → 347_0_eq_Return(EOS(STATIC_347), 0)
332_0_eq_ConstantStackPush(EOS(STATIC_332)) → 350_0_eq_JMP(EOS(STATIC_350), 1)
334_0_eq_ConstantStackPush(EOS(STATIC_334)) → 352_0_eq_Return(EOS(STATIC_352), 0)
350_0_eq_JMP(EOS(STATIC_350), matching1) → 369_0_eq_Return(EOS(STATIC_369), 1) | =(matching1, 1)
459_1_eq_InvokeMethod(347_0_eq_Return(EOS(STATIC_347), matching1), i42, i46, matching2, i77) → 479_0_eq_Return(EOS(STATIC_479), i42, i46, 0, i77, 0) | &&(=(matching1, 0), =(matching2, 0))
459_1_eq_InvokeMethod(352_0_eq_Return(EOS(STATIC_352), matching1), i42, i46, i79, matching2) → 483_0_eq_Return(EOS(STATIC_483), i42, i46, i79, 0, 0) | &&(=(matching1, 0), =(matching2, 0))
459_1_eq_InvokeMethod(369_0_eq_Return(EOS(STATIC_369), matching1), i42, i46, matching2, matching3) → 492_0_eq_Return(EOS(STATIC_492), i42, i46, 0, 0, 1) | &&(&&(=(matching1, 1), =(matching2, 0)), =(matching3, 0))
459_1_eq_InvokeMethod(496_0_eq_Return(EOS(STATIC_496), i94, i95, i83), i42, i46, i94, i95) → 506_0_eq_Return(EOS(STATIC_506), i42, i46, i94, i95, i94, i95, i83)
459_1_eq_InvokeMethod(512_0_eq_Return(EOS(STATIC_512), i102, i103, i83), i42, i46, i102, i103) → 527_0_eq_Return(EOS(STATIC_527), i42, i46, i102, i103, i102, i103, i83)
479_0_eq_Return(EOS(STATIC_479), i42, i46, matching1, i77, matching2) → 484_0_eq_Return(EOS(STATIC_484), i42, i46, 0, i77, 0) | &&(=(matching1, 0), =(matching2, 0))
483_0_eq_Return(EOS(STATIC_483), i42, i46, i79, matching1, matching2) → 484_0_eq_Return(EOS(STATIC_484), i42, i46, i79, 0, 0) | &&(=(matching1, 0), =(matching2, 0))
484_0_eq_Return(EOS(STATIC_484), i42, i46, i82, i81, matching1) → 493_0_eq_Return(EOS(STATIC_493), i42, i46, i82, i81, 0) | =(matching1, 0)
492_0_eq_Return(EOS(STATIC_492), i42, i46, matching1, matching2, matching3) → 493_0_eq_Return(EOS(STATIC_493), i42, i46, 0, 0, 1) | &&(&&(=(matching1, 0), =(matching2, 0)), =(matching3, 1))
493_0_eq_Return(EOS(STATIC_493), i42, i46, i85, i84, i83) → 496_0_eq_Return(EOS(STATIC_496), i42, i46, i83)
496_0_eq_Return(EOS(STATIC_496), i42, i46, i83) → 512_0_eq_Return(EOS(STATIC_512), i42, i46, i83)
506_0_eq_Return(EOS(STATIC_506), i42, i46, i94, i95, i94, i95, i83) → 512_0_eq_Return(EOS(STATIC_512), i42, i46, i83)
527_0_eq_Return(EOS(STATIC_527), i42, i46, i102, i103, i102, i103, i83) → 506_0_eq_Return(EOS(STATIC_506), i42, i46, i102, i103, i102, i103, i83)
Combined rules. Obtained 1 conditional rules for P and 7 conditional rules for R.
P rules:
253_0_eq_LE(EOS(STATIC_253), x0, x1, x0) → 459_1_eq_InvokeMethod(253_0_eq_LE(EOS(STATIC_253), -(x0, 1), -(x1, 1), -(x0, 1)), x0, x1, -(x0, 1), -(x1, 1)) | &&(>(x1, 0), >(x0, 0))
R rules:
253_0_eq_LE(EOS(STATIC_253), 0, x1, 0) → 347_0_eq_Return(EOS(STATIC_347), 0) | >(x1, 0)
253_0_eq_LE(EOS(STATIC_253), 0, 0, 0) → 369_0_eq_Return(EOS(STATIC_369), 1)
459_1_eq_InvokeMethod(496_0_eq_Return(EOS(STATIC_496), x0, x1, x2), x3, x4, x0, x1) → 512_0_eq_Return(EOS(STATIC_512), x3, x4, x2)
459_1_eq_InvokeMethod(512_0_eq_Return(EOS(STATIC_512), x0, x1, x2), x3, x4, x0, x1) → 512_0_eq_Return(EOS(STATIC_512), x3, x4, x2)
459_1_eq_InvokeMethod(369_0_eq_Return(EOS(STATIC_369), 1), x1, x2, 0, 0) → 512_0_eq_Return(EOS(STATIC_512), x1, x2, 1)
459_1_eq_InvokeMethod(347_0_eq_Return(EOS(STATIC_347), 0), x1, x2, 0, x4) → 512_0_eq_Return(EOS(STATIC_512), x1, x2, 0)
459_1_eq_InvokeMethod(352_0_eq_Return(EOS(STATIC_352), 0), x1, x2, x3, 0) → 512_0_eq_Return(EOS(STATIC_512), x1, x2, 0)
Filtered ground terms:
253_0_eq_LE(x1, x2, x3, x4) → 253_0_eq_LE(x2, x3, x4)
Cond_253_0_eq_LE(x1, x2, x3, x4, x5) → Cond_253_0_eq_LE(x1, x3, x4, x5)
512_0_eq_Return(x1, x2, x3, x4) → 512_0_eq_Return(x2, x3, x4)
352_0_eq_Return(x1, x2) → 352_0_eq_Return
347_0_eq_Return(x1, x2) → 347_0_eq_Return
369_0_eq_Return(x1, x2) → 369_0_eq_Return
496_0_eq_Return(x1, x2, x3, x4) → 496_0_eq_Return(x2, x3, x4)
Filtered duplicate args:
253_0_eq_LE(x1, x2, x3) → 253_0_eq_LE(x2, x3)
Cond_253_0_eq_LE(x1, x2, x3, x4) → Cond_253_0_eq_LE(x1, x3, x4)
Filtered unneeded arguments:
459_1_eq_InvokeMethod(x1, x2, x3, x4, x5) → 459_1_eq_InvokeMethod(x1, x4, x5)
Combined rules. Obtained 1 conditional rules for P and 7 conditional rules for R.
P rules:
253_0_eq_LE(x1, x0) → 459_1_eq_InvokeMethod(253_0_eq_LE(-(x1, 1), -(x0, 1)), -(x0, 1), -(x1, 1)) | &&(>(x1, 0), >(x0, 0))
R rules:
253_0_eq_LE(x1, 0) → 347_0_eq_Return | >(x1, 0)
253_0_eq_LE(0, 0) → 369_0_eq_Return
459_1_eq_InvokeMethod(496_0_eq_Return(x0, x1, x2), x0, x1) → 512_0_eq_Return(x3, x4, x2)
459_1_eq_InvokeMethod(512_0_eq_Return(x0, x1, x2), x0, x1) → 512_0_eq_Return(x3, x4, x2)
459_1_eq_InvokeMethod(369_0_eq_Return, 0, 0) → 512_0_eq_Return(x1, x2, 1)
459_1_eq_InvokeMethod(347_0_eq_Return, 0, x4) → 512_0_eq_Return(x1, x2, 0)
459_1_eq_InvokeMethod(352_0_eq_Return, x3, 0) → 512_0_eq_Return(x1, x2, 0)
Performed bisimulation on rules. Used the following equivalence classes: {[347_0_eq_Return, 369_0_eq_Return, 352_0_eq_Return]=347_0_eq_Return}
Finished conversion. Obtained 2 rules for P and 8 rules for R. System has predefined symbols.
P rules:
253_0_EQ_LE(x1, x0) → COND_253_0_EQ_LE(&&(>(x1, 0), >(x0, 0)), x1, x0)
COND_253_0_EQ_LE(TRUE, x1, x0) → 253_0_EQ_LE(-(x1, 1), -(x0, 1))
R rules:
253_0_eq_LE(x1, 0) → Cond_253_0_eq_LE(>(x1, 0), x1, 0)
Cond_253_0_eq_LE(TRUE, x1, 0) → 347_0_eq_Return
253_0_eq_LE(0, 0) → 347_0_eq_Return
459_1_eq_InvokeMethod(496_0_eq_Return(x0, x1, x2), x0, x1) → 512_0_eq_Return(x3, x4, x2)
459_1_eq_InvokeMethod(512_0_eq_Return(x0, x1, x2), x0, x1) → 512_0_eq_Return(x3, x4, x2)
459_1_eq_InvokeMethod(347_0_eq_Return, 0, 0) → 512_0_eq_Return(x1, x2, 1)
459_1_eq_InvokeMethod(347_0_eq_Return, 0, x4) → 512_0_eq_Return(x1, x2, 0)
459_1_eq_InvokeMethod(347_0_eq_Return, x3, 0) → 512_0_eq_Return(x1, x2, 0)
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(0) -> (1), if (x1[0] > 0 && x0[0] > 0 ∧x1[0] →* x1[1]∧x0[0] →* x0[1])
(1) -> (0), if (x1[1] - 1 →* x1[0]∧x0[1] - 1 →* x0[0])
(1) (&&(>(x1[0], 0), >(x0[0], 0))=TRUE∧x1[0]=x1[1]∧x0[0]=x0[1] ⇒ 253_0_EQ_LE(x1[0], x0[0])≥NonInfC∧253_0_EQ_LE(x1[0], x0[0])≥COND_253_0_EQ_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])∧(UIncreasing(COND_253_0_EQ_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥))
(2) (>(x1[0], 0)=TRUE∧>(x0[0], 0)=TRUE ⇒ 253_0_EQ_LE(x1[0], x0[0])≥NonInfC∧253_0_EQ_LE(x1[0], x0[0])≥COND_253_0_EQ_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])∧(UIncreasing(COND_253_0_EQ_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥))
(3) (x1[0] + [-1] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_253_0_EQ_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[bni_17 + (-1)Bound*bni_17] + [(2)bni_17]x0[0] + [(2)bni_17]x1[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(4) (x1[0] + [-1] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_253_0_EQ_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[bni_17 + (-1)Bound*bni_17] + [(2)bni_17]x0[0] + [(2)bni_17]x1[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(5) (x1[0] + [-1] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_253_0_EQ_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[bni_17 + (-1)Bound*bni_17] + [(2)bni_17]x0[0] + [(2)bni_17]x1[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(6) (x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_253_0_EQ_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(3)bni_17 + (-1)Bound*bni_17] + [(2)bni_17]x0[0] + [(2)bni_17]x1[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(7) (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_253_0_EQ_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(5)bni_17 + (-1)Bound*bni_17] + [(2)bni_17]x0[0] + [(2)bni_17]x1[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(8) (COND_253_0_EQ_LE(TRUE, x1[1], x0[1])≥NonInfC∧COND_253_0_EQ_LE(TRUE, x1[1], x0[1])≥253_0_EQ_LE(-(x1[1], 1), -(x0[1], 1))∧(UIncreasing(253_0_EQ_LE(-(x1[1], 1), -(x0[1], 1))), ≥))
(9) ((UIncreasing(253_0_EQ_LE(-(x1[1], 1), -(x0[1], 1))), ≥)∧[bni_19] = 0∧[4 + (-1)bso_20] ≥ 0)
(10) ((UIncreasing(253_0_EQ_LE(-(x1[1], 1), -(x0[1], 1))), ≥)∧[bni_19] = 0∧[4 + (-1)bso_20] ≥ 0)
(11) ((UIncreasing(253_0_EQ_LE(-(x1[1], 1), -(x0[1], 1))), ≥)∧[bni_19] = 0∧[4 + (-1)bso_20] ≥ 0)
(12) ((UIncreasing(253_0_EQ_LE(-(x1[1], 1), -(x0[1], 1))), ≥)∧[bni_19] = 0∧0 = 0∧0 = 0∧[4 + (-1)bso_20] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(253_0_eq_LE(x1, x2)) = [-1] + [-1]x1
POL(0) = 0
POL(Cond_253_0_eq_LE(x1, x2, x3)) = [-1] + [-1]x2
POL(>(x1, x2)) = [-1]
POL(347_0_eq_Return) = [-1]
POL(459_1_eq_InvokeMethod(x1, x2, x3)) = [-1]
POL(496_0_eq_Return(x1, x2, x3)) = [-1]
POL(512_0_eq_Return(x1, x2, x3)) = [-1]
POL(1) = [1]
POL(253_0_EQ_LE(x1, x2)) = [1] + [2]x2 + [2]x1
POL(COND_253_0_EQ_LE(x1, x2, x3)) = [1] + [2]x3 + [2]x2
POL(&&(x1, x2)) = [-1]
POL(-(x1, x2)) = x1 + [-1]x2
COND_253_0_EQ_LE(TRUE, x1[1], x0[1]) → 253_0_EQ_LE(-(x1[1], 1), -(x0[1], 1))
253_0_EQ_LE(x1[0], x0[0]) → COND_253_0_EQ_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])
253_0_EQ_LE(x1[0], x0[0]) → COND_253_0_EQ_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer