0 JBC
↳1 JBCToGraph (⇒, 120 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 200 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 150 ms)
↳8 AND
↳9 IDP
↳10 IDependencyGraphProof (⇔, 0 ms)
↳11 TRUE
↳12 IDP
↳13 IDependencyGraphProof (⇔, 0 ms)
↳14 TRUE
public class EqUserDefRec {
public static void main(String[] args) {
int x = args[0].length();
int y = args[1].length();
eq(x, y);
}
public static boolean eq(int x, int y) {
if (x > 0 && y > 0) {
return eq(x-1, y-1);
} else {
return (x == 0 && y == 0);
}
}
}
Generated 15 rules for P and 30 rules for R.
P rules:
263_0_eq_LE(EOS(STATIC_263), i43, i37, i43) → 272_0_eq_LE(EOS(STATIC_272), i43, i37, i43)
272_0_eq_LE(EOS(STATIC_272), i43, i37, i43) → 281_0_eq_Load(EOS(STATIC_281), i43, i37) | >(i43, 0)
281_0_eq_Load(EOS(STATIC_281), i43, i37) → 292_0_eq_LE(EOS(STATIC_292), i43, i37, i37)
292_0_eq_LE(EOS(STATIC_292), i43, i46, i46) → 307_0_eq_LE(EOS(STATIC_307), i43, i46, i46)
307_0_eq_LE(EOS(STATIC_307), i43, i46, i46) → 321_0_eq_Load(EOS(STATIC_321), i43, i46) | >(i46, 0)
321_0_eq_Load(EOS(STATIC_321), i43, i46) → 336_0_eq_ConstantStackPush(EOS(STATIC_336), i43, i46, i43)
336_0_eq_ConstantStackPush(EOS(STATIC_336), i43, i46, i43) → 351_0_eq_IntArithmetic(EOS(STATIC_351), i43, i46, i43, 1)
351_0_eq_IntArithmetic(EOS(STATIC_351), i43, i46, i43, matching1) → 365_0_eq_Load(EOS(STATIC_365), i43, i46, -(i43, 1)) | &&(>(i43, 0), =(matching1, 1))
365_0_eq_Load(EOS(STATIC_365), i43, i46, i53) → 380_0_eq_ConstantStackPush(EOS(STATIC_380), i43, i46, i53, i46)
380_0_eq_ConstantStackPush(EOS(STATIC_380), i43, i46, i53, i46) → 405_0_eq_IntArithmetic(EOS(STATIC_405), i43, i46, i53, i46, 1)
405_0_eq_IntArithmetic(EOS(STATIC_405), i43, i46, i53, i46, matching1) → 434_0_eq_InvokeMethod(EOS(STATIC_434), i43, i46, i53, -(i46, 1)) | &&(>(i46, 0), =(matching1, 1))
434_0_eq_InvokeMethod(EOS(STATIC_434), i43, i46, i53, i64) → 456_1_eq_InvokeMethod(456_0_eq_Load(EOS(STATIC_456), i53, i64), i43, i46, i53, i64)
456_0_eq_Load(EOS(STATIC_456), i53, i64) → 461_0_eq_Load(EOS(STATIC_461), i53, i64)
461_0_eq_Load(EOS(STATIC_461), i53, i64) → 251_0_eq_Load(EOS(STATIC_251), i53, i64)
251_0_eq_Load(EOS(STATIC_251), i18, i37) → 263_0_eq_LE(EOS(STATIC_263), i18, i37, i18)
R rules:
263_0_eq_LE(EOS(STATIC_263), matching1, i37, matching2) → 271_0_eq_LE(EOS(STATIC_271), 0, i37, 0) | &&(=(matching1, 0), =(matching2, 0))
271_0_eq_LE(EOS(STATIC_271), matching1, i37, matching2) → 280_0_eq_Load(EOS(STATIC_280), 0, i37) | &&(&&(<=(0, 0), =(matching1, 0)), =(matching2, 0))
280_0_eq_Load(EOS(STATIC_280), matching1, i37) → 289_0_eq_NE(EOS(STATIC_289), i37, 0) | =(matching1, 0)
289_0_eq_NE(EOS(STATIC_289), i37, matching1) → 304_0_eq_Load(EOS(STATIC_304), i37) | =(matching1, 0)
292_0_eq_LE(EOS(STATIC_292), i43, matching1, matching2) → 306_0_eq_LE(EOS(STATIC_306), i43, 0, 0) | &&(=(matching1, 0), =(matching2, 0))
304_0_eq_Load(EOS(STATIC_304), i37) → 317_0_eq_NE(EOS(STATIC_317), i37)
306_0_eq_LE(EOS(STATIC_306), i43, matching1, matching2) → 319_0_eq_Load(EOS(STATIC_319), i43, 0) | &&(&&(<=(0, 0), =(matching1, 0)), =(matching2, 0))
317_0_eq_NE(EOS(STATIC_317), i50) → 331_0_eq_NE(EOS(STATIC_331), i50)
317_0_eq_NE(EOS(STATIC_317), matching1) → 332_0_eq_NE(EOS(STATIC_332), 0) | =(matching1, 0)
319_0_eq_Load(EOS(STATIC_319), i43, matching1) → 334_0_eq_NE(EOS(STATIC_334), 0, i43) | =(matching1, 0)
331_0_eq_NE(EOS(STATIC_331), i50) → 344_0_eq_ConstantStackPush(EOS(STATIC_344)) | >(i50, 0)
332_0_eq_NE(EOS(STATIC_332), matching1) → 346_0_eq_ConstantStackPush(EOS(STATIC_346)) | =(matching1, 0)
334_0_eq_NE(EOS(STATIC_334), matching1, i43) → 349_0_eq_ConstantStackPush(EOS(STATIC_349)) | &&(>(i43, 0), =(matching1, 0))
344_0_eq_ConstantStackPush(EOS(STATIC_344)) → 359_0_eq_Return(EOS(STATIC_359), 0)
346_0_eq_ConstantStackPush(EOS(STATIC_346)) → 360_0_eq_JMP(EOS(STATIC_360), 1)
349_0_eq_ConstantStackPush(EOS(STATIC_349)) → 363_0_eq_Return(EOS(STATIC_363), 0)
360_0_eq_JMP(EOS(STATIC_360), matching1) → 376_0_eq_Return(EOS(STATIC_376), 1) | =(matching1, 1)
456_1_eq_InvokeMethod(359_0_eq_Return(EOS(STATIC_359), matching1), i43, i46, matching2, i77) → 487_0_eq_Return(EOS(STATIC_487), i43, i46, 0, i77, 0) | &&(=(matching1, 0), =(matching2, 0))
456_1_eq_InvokeMethod(363_0_eq_Return(EOS(STATIC_363), matching1), i43, i46, i80, matching2) → 494_0_eq_Return(EOS(STATIC_494), i43, i46, i80, 0, 0) | &&(=(matching1, 0), =(matching2, 0))
456_1_eq_InvokeMethod(376_0_eq_Return(EOS(STATIC_376), matching1), i43, i46, matching2, matching3) → 502_0_eq_Return(EOS(STATIC_502), i43, i46, 0, 0, 1) | &&(&&(=(matching1, 1), =(matching2, 0)), =(matching3, 0))
456_1_eq_InvokeMethod(506_0_eq_Return(EOS(STATIC_506), i95, i96, i84), i43, i46, i95, i96) → 516_0_eq_Return(EOS(STATIC_516), i43, i46, i95, i96, i95, i96, i84)
456_1_eq_InvokeMethod(522_0_eq_Return(EOS(STATIC_522), i104, i105, i84), i43, i46, i104, i105) → 540_0_eq_Return(EOS(STATIC_540), i43, i46, i104, i105, i104, i105, i84)
487_0_eq_Return(EOS(STATIC_487), i43, i46, matching1, i77, matching2) → 495_0_eq_Return(EOS(STATIC_495), i43, i46, 0, i77, 0) | &&(=(matching1, 0), =(matching2, 0))
494_0_eq_Return(EOS(STATIC_494), i43, i46, i80, matching1, matching2) → 495_0_eq_Return(EOS(STATIC_495), i43, i46, i80, 0, 0) | &&(=(matching1, 0), =(matching2, 0))
495_0_eq_Return(EOS(STATIC_495), i43, i46, i82, i81, matching1) → 503_0_eq_Return(EOS(STATIC_503), i43, i46, i82, i81, 0) | =(matching1, 0)
502_0_eq_Return(EOS(STATIC_502), i43, i46, matching1, matching2, matching3) → 503_0_eq_Return(EOS(STATIC_503), i43, i46, 0, 0, 1) | &&(&&(=(matching1, 0), =(matching2, 0)), =(matching3, 1))
503_0_eq_Return(EOS(STATIC_503), i43, i46, i86, i85, i84) → 506_0_eq_Return(EOS(STATIC_506), i43, i46, i84)
506_0_eq_Return(EOS(STATIC_506), i43, i46, i84) → 522_0_eq_Return(EOS(STATIC_522), i43, i46, i84)
516_0_eq_Return(EOS(STATIC_516), i43, i46, i95, i96, i95, i96, i84) → 522_0_eq_Return(EOS(STATIC_522), i43, i46, i84)
540_0_eq_Return(EOS(STATIC_540), i43, i46, i104, i105, i104, i105, i84) → 516_0_eq_Return(EOS(STATIC_516), i43, i46, i104, i105, i104, i105, i84)
Combined rules. Obtained 1 conditional rules for P and 7 conditional rules for R.
P rules:
263_0_eq_LE(EOS(STATIC_263), x0, x1, x0) → 456_1_eq_InvokeMethod(263_0_eq_LE(EOS(STATIC_263), -(x0, 1), -(x1, 1), -(x0, 1)), x0, x1, -(x0, 1), -(x1, 1)) | &&(>(x1, 0), >(x0, 0))
R rules:
263_0_eq_LE(EOS(STATIC_263), 0, x1, 0) → 359_0_eq_Return(EOS(STATIC_359), 0) | >(x1, 0)
263_0_eq_LE(EOS(STATIC_263), 0, 0, 0) → 376_0_eq_Return(EOS(STATIC_376), 1)
456_1_eq_InvokeMethod(506_0_eq_Return(EOS(STATIC_506), x0, x1, x2), x3, x4, x0, x1) → 522_0_eq_Return(EOS(STATIC_522), x3, x4, x2)
456_1_eq_InvokeMethod(522_0_eq_Return(EOS(STATIC_522), x0, x1, x2), x3, x4, x0, x1) → 522_0_eq_Return(EOS(STATIC_522), x3, x4, x2)
456_1_eq_InvokeMethod(376_0_eq_Return(EOS(STATIC_376), 1), x1, x2, 0, 0) → 522_0_eq_Return(EOS(STATIC_522), x1, x2, 1)
456_1_eq_InvokeMethod(359_0_eq_Return(EOS(STATIC_359), 0), x1, x2, 0, x4) → 522_0_eq_Return(EOS(STATIC_522), x1, x2, 0)
456_1_eq_InvokeMethod(363_0_eq_Return(EOS(STATIC_363), 0), x1, x2, x3, 0) → 522_0_eq_Return(EOS(STATIC_522), x1, x2, 0)
Filtered ground terms:
263_0_eq_LE(x1, x2, x3, x4) → 263_0_eq_LE(x2, x3, x4)
Cond_263_0_eq_LE(x1, x2, x3, x4, x5) → Cond_263_0_eq_LE(x1, x3, x4, x5)
522_0_eq_Return(x1, x2, x3, x4) → 522_0_eq_Return(x2, x3, x4)
363_0_eq_Return(x1, x2) → 363_0_eq_Return
359_0_eq_Return(x1, x2) → 359_0_eq_Return
376_0_eq_Return(x1, x2) → 376_0_eq_Return
506_0_eq_Return(x1, x2, x3, x4) → 506_0_eq_Return(x2, x3, x4)
Filtered duplicate args:
263_0_eq_LE(x1, x2, x3) → 263_0_eq_LE(x2, x3)
Cond_263_0_eq_LE(x1, x2, x3, x4) → Cond_263_0_eq_LE(x1, x3, x4)
Filtered unneeded arguments:
456_1_eq_InvokeMethod(x1, x2, x3, x4, x5) → 456_1_eq_InvokeMethod(x1, x4, x5)
Combined rules. Obtained 1 conditional rules for P and 7 conditional rules for R.
P rules:
263_0_eq_LE(x1, x0) → 456_1_eq_InvokeMethod(263_0_eq_LE(-(x1, 1), -(x0, 1)), -(x0, 1), -(x1, 1)) | &&(>(x1, 0), >(x0, 0))
R rules:
263_0_eq_LE(x1, 0) → 359_0_eq_Return | >(x1, 0)
263_0_eq_LE(0, 0) → 376_0_eq_Return
456_1_eq_InvokeMethod(506_0_eq_Return(x0, x1, x2), x0, x1) → 522_0_eq_Return(x3, x4, x2)
456_1_eq_InvokeMethod(522_0_eq_Return(x0, x1, x2), x0, x1) → 522_0_eq_Return(x3, x4, x2)
456_1_eq_InvokeMethod(376_0_eq_Return, 0, 0) → 522_0_eq_Return(x1, x2, 1)
456_1_eq_InvokeMethod(359_0_eq_Return, 0, x4) → 522_0_eq_Return(x1, x2, 0)
456_1_eq_InvokeMethod(363_0_eq_Return, x3, 0) → 522_0_eq_Return(x1, x2, 0)
Performed bisimulation on rules. Used the following equivalence classes: {[359_0_eq_Return, 376_0_eq_Return, 363_0_eq_Return]=359_0_eq_Return}
Finished conversion. Obtained 2 rules for P and 8 rules for R. System has predefined symbols.
P rules:
263_0_EQ_LE(x1, x0) → COND_263_0_EQ_LE(&&(>(x1, 0), >(x0, 0)), x1, x0)
COND_263_0_EQ_LE(TRUE, x1, x0) → 263_0_EQ_LE(-(x1, 1), -(x0, 1))
R rules:
263_0_eq_LE(x1, 0) → Cond_263_0_eq_LE(>(x1, 0), x1, 0)
Cond_263_0_eq_LE(TRUE, x1, 0) → 359_0_eq_Return
263_0_eq_LE(0, 0) → 359_0_eq_Return
456_1_eq_InvokeMethod(506_0_eq_Return(x0, x1, x2), x0, x1) → 522_0_eq_Return(x3, x4, x2)
456_1_eq_InvokeMethod(522_0_eq_Return(x0, x1, x2), x0, x1) → 522_0_eq_Return(x3, x4, x2)
456_1_eq_InvokeMethod(359_0_eq_Return, 0, 0) → 522_0_eq_Return(x1, x2, 1)
456_1_eq_InvokeMethod(359_0_eq_Return, 0, x4) → 522_0_eq_Return(x1, x2, 0)
456_1_eq_InvokeMethod(359_0_eq_Return, x3, 0) → 522_0_eq_Return(x1, x2, 0)
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(0) -> (1), if (x1[0] > 0 && x0[0] > 0 ∧x1[0] →* x1[1]∧x0[0] →* x0[1])
(1) -> (0), if (x1[1] - 1 →* x1[0]∧x0[1] - 1 →* x0[0])
(1) (&&(>(x1[0], 0), >(x0[0], 0))=TRUE∧x1[0]=x1[1]∧x0[0]=x0[1] ⇒ 263_0_EQ_LE(x1[0], x0[0])≥NonInfC∧263_0_EQ_LE(x1[0], x0[0])≥COND_263_0_EQ_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])∧(UIncreasing(COND_263_0_EQ_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥))
(2) (>(x1[0], 0)=TRUE∧>(x0[0], 0)=TRUE ⇒ 263_0_EQ_LE(x1[0], x0[0])≥NonInfC∧263_0_EQ_LE(x1[0], x0[0])≥COND_263_0_EQ_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])∧(UIncreasing(COND_263_0_EQ_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥))
(3) (x1[0] + [-1] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_263_0_EQ_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[bni_17 + (-1)Bound*bni_17] + [(2)bni_17]x0[0] + [(2)bni_17]x1[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(4) (x1[0] + [-1] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_263_0_EQ_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[bni_17 + (-1)Bound*bni_17] + [(2)bni_17]x0[0] + [(2)bni_17]x1[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(5) (x1[0] + [-1] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_263_0_EQ_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[bni_17 + (-1)Bound*bni_17] + [(2)bni_17]x0[0] + [(2)bni_17]x1[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(6) (x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_263_0_EQ_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(3)bni_17 + (-1)Bound*bni_17] + [(2)bni_17]x0[0] + [(2)bni_17]x1[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(7) (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_263_0_EQ_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(5)bni_17 + (-1)Bound*bni_17] + [(2)bni_17]x0[0] + [(2)bni_17]x1[0] ≥ 0∧[(-1)bso_18] ≥ 0)
(8) (COND_263_0_EQ_LE(TRUE, x1[1], x0[1])≥NonInfC∧COND_263_0_EQ_LE(TRUE, x1[1], x0[1])≥263_0_EQ_LE(-(x1[1], 1), -(x0[1], 1))∧(UIncreasing(263_0_EQ_LE(-(x1[1], 1), -(x0[1], 1))), ≥))
(9) ((UIncreasing(263_0_EQ_LE(-(x1[1], 1), -(x0[1], 1))), ≥)∧[bni_19] = 0∧[4 + (-1)bso_20] ≥ 0)
(10) ((UIncreasing(263_0_EQ_LE(-(x1[1], 1), -(x0[1], 1))), ≥)∧[bni_19] = 0∧[4 + (-1)bso_20] ≥ 0)
(11) ((UIncreasing(263_0_EQ_LE(-(x1[1], 1), -(x0[1], 1))), ≥)∧[bni_19] = 0∧[4 + (-1)bso_20] ≥ 0)
(12) ((UIncreasing(263_0_EQ_LE(-(x1[1], 1), -(x0[1], 1))), ≥)∧[bni_19] = 0∧0 = 0∧0 = 0∧[4 + (-1)bso_20] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(263_0_eq_LE(x1, x2)) = [-1] + [-1]x1
POL(0) = 0
POL(Cond_263_0_eq_LE(x1, x2, x3)) = [-1] + [-1]x2
POL(>(x1, x2)) = [-1]
POL(359_0_eq_Return) = [-1]
POL(456_1_eq_InvokeMethod(x1, x2, x3)) = [-1]
POL(506_0_eq_Return(x1, x2, x3)) = [-1]
POL(522_0_eq_Return(x1, x2, x3)) = [-1]
POL(1) = [1]
POL(263_0_EQ_LE(x1, x2)) = [1] + [2]x2 + [2]x1
POL(COND_263_0_EQ_LE(x1, x2, x3)) = [1] + [2]x3 + [2]x2
POL(&&(x1, x2)) = [-1]
POL(-(x1, x2)) = x1 + [-1]x2
COND_263_0_EQ_LE(TRUE, x1[1], x0[1]) → 263_0_EQ_LE(-(x1[1], 1), -(x0[1], 1))
263_0_EQ_LE(x1[0], x0[0]) → COND_263_0_EQ_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])
263_0_EQ_LE(x1[0], x0[0]) → COND_263_0_EQ_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer