(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: Take
/**
* Java can do infinite data objects, too.
* Here we take the first n elements from an
* ascending infinite list of integer numbers.
*
* @author Carsten Fuhs
*/
public class Take {

public static int[] take(int n, MyIterator f) {
int[] result = new int[n];
for (int i = 0; i < n; ++i) {
if (f.hasNext()) {
result[i] = f.next();
}
else {
break;
}
}
return result;
}

public static void main(String args[]) {
int start = args[0].length();
int howMany = args[1].length();
From f = new From(start);
int[] firstHowMany = take(howMany, f);
}
}

interface MyIterator {
boolean hasNext();
int next();
}

class From implements MyIterator {

private int current;

public From(int start) {
this.current = start;
}

public boolean hasNext() {
return true;
}

public int next() {
return current++;
}
}



(1) JBCToGraph (SOUND transformation)

Constructed TerminationGraph.

(2) Obligation:

Termination Graph based on JBC Program:
Take.main([Ljava/lang/String;)V: Graph of 218 nodes with 1 SCC.


(3) TerminationGraphToSCCProof (SOUND transformation)

Splitted TerminationGraph to 1 SCCs.

(4) Obligation:

SCC of termination graph based on JBC Program.
SCC contains nodes from the following methods: Take.main([Ljava/lang/String;)V
SCC calls the following helper methods:
Performed SCC analyses: UsedFieldsAnalysis

(5) SCCToIDPv1Proof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Log:

Generated 26 rules for P and 0 rules for R.


P rules:
664_0_take_Load(EOS(STATIC_664), i47, i47, java.lang.Object(ARRAY(i47)), i81, i81) → 666_0_take_GE(EOS(STATIC_666), i47, i47, java.lang.Object(ARRAY(i47)), i81, i81, i47)
666_0_take_GE(EOS(STATIC_666), i47, i47, java.lang.Object(ARRAY(i47)), i81, i81, i47) → 670_0_take_GE(EOS(STATIC_670), i47, i47, java.lang.Object(ARRAY(i47)), i81, i81, i47)
670_0_take_GE(EOS(STATIC_670), i47, i47, java.lang.Object(ARRAY(i47)), i81, i81, i47) → 673_0_take_Load(EOS(STATIC_673), i47, i47, java.lang.Object(ARRAY(i47)), i81) | <(i81, i47)
673_0_take_Load(EOS(STATIC_673), i47, i47, java.lang.Object(ARRAY(i47)), i81) → 677_0_take_InvokeMethod(EOS(STATIC_677), i47, i47, java.lang.Object(ARRAY(i47)), i81)
677_0_take_InvokeMethod(EOS(STATIC_677), i47, i47, java.lang.Object(ARRAY(i47)), i81) → 681_0_hasNext_ConstantStackPush(EOS(STATIC_681), i47, i47, java.lang.Object(ARRAY(i47)), i81)
681_0_hasNext_ConstantStackPush(EOS(STATIC_681), i47, i47, java.lang.Object(ARRAY(i47)), i81) → 687_0_hasNext_Return(EOS(STATIC_687), i47, i47, java.lang.Object(ARRAY(i47)), i81, 1)
687_0_hasNext_Return(EOS(STATIC_687), i47, i47, java.lang.Object(ARRAY(i47)), i81, matching1) → 689_0_take_EQ(EOS(STATIC_689), i47, i47, java.lang.Object(ARRAY(i47)), i81, 1) | =(matching1, 1)
689_0_take_EQ(EOS(STATIC_689), i47, i47, java.lang.Object(ARRAY(i47)), i81, matching1) → 690_0_take_Load(EOS(STATIC_690), i47, i47, java.lang.Object(ARRAY(i47)), i81) | &&(>(1, 0), =(matching1, 1))
690_0_take_Load(EOS(STATIC_690), i47, i47, java.lang.Object(ARRAY(i47)), i81) → 692_0_take_Load(EOS(STATIC_692), i47, i47, java.lang.Object(ARRAY(i47)), i81, java.lang.Object(ARRAY(i47)))
692_0_take_Load(EOS(STATIC_692), i47, i47, java.lang.Object(ARRAY(i47)), i81, java.lang.Object(ARRAY(i47))) → 694_0_take_Load(EOS(STATIC_694), i47, i47, java.lang.Object(ARRAY(i47)), i81, java.lang.Object(ARRAY(i47)), i81)
694_0_take_Load(EOS(STATIC_694), i47, i47, java.lang.Object(ARRAY(i47)), i81, java.lang.Object(ARRAY(i47)), i81) → 696_0_take_InvokeMethod(EOS(STATIC_696), i47, i47, java.lang.Object(ARRAY(i47)), i81, java.lang.Object(ARRAY(i47)), i81)
696_0_take_InvokeMethod(EOS(STATIC_696), i47, i47, java.lang.Object(ARRAY(i47)), i81, java.lang.Object(ARRAY(i47)), i81) → 698_0_next_Load(EOS(STATIC_698), i47, i47, java.lang.Object(ARRAY(i47)), i81, java.lang.Object(ARRAY(i47)), i81)
698_0_next_Load(EOS(STATIC_698), i47, i47, java.lang.Object(ARRAY(i47)), i81, java.lang.Object(ARRAY(i47)), i81) → 700_0_next_Duplicate(EOS(STATIC_700), i47, i47, java.lang.Object(ARRAY(i47)), i81, java.lang.Object(ARRAY(i47)), i81)
700_0_next_Duplicate(EOS(STATIC_700), i47, i47, java.lang.Object(ARRAY(i47)), i81, java.lang.Object(ARRAY(i47)), i81) → 702_0_next_FieldAccess(EOS(STATIC_702), i47, i47, java.lang.Object(ARRAY(i47)), i81, java.lang.Object(ARRAY(i47)), i81)
702_0_next_FieldAccess(EOS(STATIC_702), i47, i47, java.lang.Object(ARRAY(i47)), i81, java.lang.Object(ARRAY(i47)), i81) → 704_0_next_Duplicate(EOS(STATIC_704), i47, i47, java.lang.Object(ARRAY(i47)), i81, java.lang.Object(ARRAY(i47)), i81)
704_0_next_Duplicate(EOS(STATIC_704), i47, i47, java.lang.Object(ARRAY(i47)), i81, java.lang.Object(ARRAY(i47)), i81) → 706_0_next_ConstantStackPush(EOS(STATIC_706), i47, i47, java.lang.Object(ARRAY(i47)), i81, java.lang.Object(ARRAY(i47)), i81)
706_0_next_ConstantStackPush(EOS(STATIC_706), i47, i47, java.lang.Object(ARRAY(i47)), i81, java.lang.Object(ARRAY(i47)), i81) → 708_0_next_IntArithmetic(EOS(STATIC_708), i47, i47, java.lang.Object(ARRAY(i47)), i81, java.lang.Object(ARRAY(i47)), i81, 1)
708_0_next_IntArithmetic(EOS(STATIC_708), i47, i47, java.lang.Object(ARRAY(i47)), i81, java.lang.Object(ARRAY(i47)), i81, matching1) → 709_0_next_FieldAccess(EOS(STATIC_709), i47, i47, java.lang.Object(ARRAY(i47)), i81, java.lang.Object(ARRAY(i47)), i81) | =(matching1, 1)
709_0_next_FieldAccess(EOS(STATIC_709), i47, i47, java.lang.Object(ARRAY(i47)), i81, java.lang.Object(ARRAY(i47)), i81) → 712_0_next_Return(EOS(STATIC_712), i47, i47, java.lang.Object(ARRAY(i47)), i81, java.lang.Object(ARRAY(i47)), i81)
712_0_next_Return(EOS(STATIC_712), i47, i47, java.lang.Object(ARRAY(i47)), i81, java.lang.Object(ARRAY(i47)), i81) → 714_0_take_ArrayAccess(EOS(STATIC_714), i47, i47, java.lang.Object(ARRAY(i47)), i81, java.lang.Object(ARRAY(i47)), i81)
714_0_take_ArrayAccess(EOS(STATIC_714), i47, i47, java.lang.Object(ARRAY(i47)), i81, java.lang.Object(ARRAY(i47)), i81) → 716_0_take_ArrayAccess(EOS(STATIC_716), i47, i47, java.lang.Object(ARRAY(i47)), i81, java.lang.Object(ARRAY(i47)), i81)
716_0_take_ArrayAccess(EOS(STATIC_716), i47, i47, java.lang.Object(ARRAY(i47)), i81, java.lang.Object(ARRAY(i47)), i81) → 719_0_take_Inc(EOS(STATIC_719), i47, i47, java.lang.Object(ARRAY(i47)), i81) | <(i81, i47)
719_0_take_Inc(EOS(STATIC_719), i47, i47, java.lang.Object(ARRAY(i47)), i81) → 723_0_take_JMP(EOS(STATIC_723), i47, i47, java.lang.Object(ARRAY(i47)), +(i81, 1)) | >=(i81, 0)
723_0_take_JMP(EOS(STATIC_723), i47, i47, java.lang.Object(ARRAY(i47)), i87) → 727_0_take_Load(EOS(STATIC_727), i47, i47, java.lang.Object(ARRAY(i47)), i87)
727_0_take_Load(EOS(STATIC_727), i47, i47, java.lang.Object(ARRAY(i47)), i87) → 661_0_take_Load(EOS(STATIC_661), i47, i47, java.lang.Object(ARRAY(i47)), i87)
661_0_take_Load(EOS(STATIC_661), i47, i47, java.lang.Object(ARRAY(i47)), i81) → 664_0_take_Load(EOS(STATIC_664), i47, i47, java.lang.Object(ARRAY(i47)), i81, i81)
R rules:

Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.


P rules:
664_0_take_Load(EOS(STATIC_664), x0, x0, java.lang.Object(ARRAY(x0)), x1, x1) → 664_0_take_Load(EOS(STATIC_664), x0, x0, java.lang.Object(ARRAY(x0)), +(x1, 1), +(x1, 1)) | &&(>(+(x1, 1), 0), <(x1, x0))
R rules:

Filtered ground terms:



664_0_take_Load(x1, x2, x3, x4, x5, x6) → 664_0_take_Load(x2, x3, x4, x5, x6)
EOS(x1) → EOS
Cond_664_0_take_Load(x1, x2, x3, x4, x5, x6, x7) → Cond_664_0_take_Load(x1, x3, x4, x5, x6, x7)

Filtered duplicate args:



664_0_take_Load(x1, x2, x3, x4, x5) → 664_0_take_Load(x3, x5)
Cond_664_0_take_Load(x1, x2, x3, x4, x5, x6) → Cond_664_0_take_Load(x1, x4, x6)

Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.


P rules:
664_0_take_Load(java.lang.Object(ARRAY(x0)), x1) → 664_0_take_Load(java.lang.Object(ARRAY(x0)), +(x1, 1)) | &&(>(x1, -1), <(x1, x0))
R rules:

Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.


P rules:
664_0_TAKE_LOAD(java.lang.Object(ARRAY(x0)), x1) → COND_664_0_TAKE_LOAD(&&(>(x1, -1), <(x1, x0)), java.lang.Object(ARRAY(x0)), x1)
COND_664_0_TAKE_LOAD(TRUE, java.lang.Object(ARRAY(x0)), x1) → 664_0_TAKE_LOAD(java.lang.Object(ARRAY(x0)), +(x1, 1))
R rules:

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 664_0_TAKE_LOAD(java.lang.Object(ARRAY(x0[0])), x1[0]) → COND_664_0_TAKE_LOAD(x1[0] > -1 && x1[0] < x0[0], java.lang.Object(ARRAY(x0[0])), x1[0])
(1): COND_664_0_TAKE_LOAD(TRUE, java.lang.Object(ARRAY(x0[1])), x1[1]) → 664_0_TAKE_LOAD(java.lang.Object(ARRAY(x0[1])), x1[1] + 1)

(0) -> (1), if (x1[0] > -1 && x1[0] < x0[0]java.lang.Object(ARRAY(x0[0])) →* java.lang.Object(ARRAY(x0[1]))∧x1[0]* x1[1])


(1) -> (0), if (java.lang.Object(ARRAY(x0[1])) →* java.lang.Object(ARRAY(x0[0]))∧x1[1] + 1* x1[0])



The set Q is empty.

(7) IDPNonInfProof (SOUND transformation)

Used the following options for this NonInfProof:
IDPGPoloSolver: Range: [(-1,2)] IsNat: false Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpCand1ShapeHeuristic@487c9b46 Constraint Generator: NonInfConstraintGenerator: PathGenerator: MetricPathGenerator: Max Left Steps: 0 Max Right Steps: 0

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 664_0_TAKE_LOAD(java.lang.Object(ARRAY(x0)), x1) → COND_664_0_TAKE_LOAD(&&(>(x1, -1), <(x1, x0)), java.lang.Object(ARRAY(x0)), x1) the following chains were created:
  • We consider the chain 664_0_TAKE_LOAD(java.lang.Object(ARRAY(x0[0])), x1[0]) → COND_664_0_TAKE_LOAD(&&(>(x1[0], -1), <(x1[0], x0[0])), java.lang.Object(ARRAY(x0[0])), x1[0]), COND_664_0_TAKE_LOAD(TRUE, java.lang.Object(ARRAY(x0[1])), x1[1]) → 664_0_TAKE_LOAD(java.lang.Object(ARRAY(x0[1])), +(x1[1], 1)) which results in the following constraint:

    (1)    (&&(>(x1[0], -1), <(x1[0], x0[0]))=TRUEjava.lang.Object(ARRAY(x0[0]))=java.lang.Object(ARRAY(x0[1]))∧x1[0]=x1[1]664_0_TAKE_LOAD(java.lang.Object(ARRAY(x0[0])), x1[0])≥NonInfC∧664_0_TAKE_LOAD(java.lang.Object(ARRAY(x0[0])), x1[0])≥COND_664_0_TAKE_LOAD(&&(>(x1[0], -1), <(x1[0], x0[0])), java.lang.Object(ARRAY(x0[0])), x1[0])∧(UIncreasing(COND_664_0_TAKE_LOAD(&&(>(x1[0], -1), <(x1[0], x0[0])), java.lang.Object(ARRAY(x0[0])), x1[0])), ≥))



    We simplified constraint (1) using rules (I), (II), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>(x1[0], -1)=TRUE<(x1[0], x0[0])=TRUE664_0_TAKE_LOAD(java.lang.Object(ARRAY(x0[0])), x1[0])≥NonInfC∧664_0_TAKE_LOAD(java.lang.Object(ARRAY(x0[0])), x1[0])≥COND_664_0_TAKE_LOAD(&&(>(x1[0], -1), <(x1[0], x0[0])), java.lang.Object(ARRAY(x0[0])), x1[0])∧(UIncreasing(COND_664_0_TAKE_LOAD(&&(>(x1[0], -1), <(x1[0], x0[0])), java.lang.Object(ARRAY(x0[0])), x1[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_664_0_TAKE_LOAD(&&(>(x1[0], -1), <(x1[0], x0[0])), java.lang.Object(ARRAY(x0[0])), x1[0])), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] + [(-1)bni_10]x1[0] + [(2)bni_10]x0[0] ≥ 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_664_0_TAKE_LOAD(&&(>(x1[0], -1), <(x1[0], x0[0])), java.lang.Object(ARRAY(x0[0])), x1[0])), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] + [(-1)bni_10]x1[0] + [(2)bni_10]x0[0] ≥ 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_664_0_TAKE_LOAD(&&(>(x1[0], -1), <(x1[0], x0[0])), java.lang.Object(ARRAY(x0[0])), x1[0])), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] + [(-1)bni_10]x1[0] + [(2)bni_10]x0[0] ≥ 0∧[(-1)bso_11] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_664_0_TAKE_LOAD(&&(>(x1[0], -1), <(x1[0], x0[0])), java.lang.Object(ARRAY(x0[0])), x1[0])), ≥)∧[bni_10 + (-1)Bound*bni_10] + [bni_10]x1[0] + [(2)bni_10]x0[0] ≥ 0∧[(-1)bso_11] ≥ 0)







For Pair COND_664_0_TAKE_LOAD(TRUE, java.lang.Object(ARRAY(x0)), x1) → 664_0_TAKE_LOAD(java.lang.Object(ARRAY(x0)), +(x1, 1)) the following chains were created:
  • We consider the chain COND_664_0_TAKE_LOAD(TRUE, java.lang.Object(ARRAY(x0[1])), x1[1]) → 664_0_TAKE_LOAD(java.lang.Object(ARRAY(x0[1])), +(x1[1], 1)) which results in the following constraint:

    (7)    (COND_664_0_TAKE_LOAD(TRUE, java.lang.Object(ARRAY(x0[1])), x1[1])≥NonInfC∧COND_664_0_TAKE_LOAD(TRUE, java.lang.Object(ARRAY(x0[1])), x1[1])≥664_0_TAKE_LOAD(java.lang.Object(ARRAY(x0[1])), +(x1[1], 1))∧(UIncreasing(664_0_TAKE_LOAD(java.lang.Object(ARRAY(x0[1])), +(x1[1], 1))), ≥))



    We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (8)    ((UIncreasing(664_0_TAKE_LOAD(java.lang.Object(ARRAY(x0[1])), +(x1[1], 1))), ≥)∧[bni_12] = 0∧[1 + (-1)bso_13] ≥ 0)



    We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (9)    ((UIncreasing(664_0_TAKE_LOAD(java.lang.Object(ARRAY(x0[1])), +(x1[1], 1))), ≥)∧[bni_12] = 0∧[1 + (-1)bso_13] ≥ 0)



    We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (10)    ((UIncreasing(664_0_TAKE_LOAD(java.lang.Object(ARRAY(x0[1])), +(x1[1], 1))), ≥)∧[bni_12] = 0∧[1 + (-1)bso_13] ≥ 0)



    We simplified constraint (10) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (11)    ((UIncreasing(664_0_TAKE_LOAD(java.lang.Object(ARRAY(x0[1])), +(x1[1], 1))), ≥)∧[bni_12] = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_13] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 664_0_TAKE_LOAD(java.lang.Object(ARRAY(x0)), x1) → COND_664_0_TAKE_LOAD(&&(>(x1, -1), <(x1, x0)), java.lang.Object(ARRAY(x0)), x1)
    • (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_664_0_TAKE_LOAD(&&(>(x1[0], -1), <(x1[0], x0[0])), java.lang.Object(ARRAY(x0[0])), x1[0])), ≥)∧[bni_10 + (-1)Bound*bni_10] + [bni_10]x1[0] + [(2)bni_10]x0[0] ≥ 0∧[(-1)bso_11] ≥ 0)

  • COND_664_0_TAKE_LOAD(TRUE, java.lang.Object(ARRAY(x0)), x1) → 664_0_TAKE_LOAD(java.lang.Object(ARRAY(x0)), +(x1, 1))
    • ((UIncreasing(664_0_TAKE_LOAD(java.lang.Object(ARRAY(x0[1])), +(x1[1], 1))), ≥)∧[bni_12] = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_13] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(664_0_TAKE_LOAD(x1, x2)) = [-1] + [-1]x2 + [2]x1   
POL(java.lang.Object(x1)) = x1   
POL(ARRAY(x1)) = x1   
POL(COND_664_0_TAKE_LOAD(x1, x2, x3)) = [-1] + [-1]x3 + [2]x2   
POL(&&(x1, x2)) = [-1]   
POL(>(x1, x2)) = [-1]   
POL(-1) = [-1]   
POL(<(x1, x2)) = [-1]   
POL(+(x1, x2)) = x1 + x2   
POL(1) = [1]   

The following pairs are in P>:

COND_664_0_TAKE_LOAD(TRUE, java.lang.Object(ARRAY(x0[1])), x1[1]) → 664_0_TAKE_LOAD(java.lang.Object(ARRAY(x0[1])), +(x1[1], 1))

The following pairs are in Pbound:

664_0_TAKE_LOAD(java.lang.Object(ARRAY(x0[0])), x1[0]) → COND_664_0_TAKE_LOAD(&&(>(x1[0], -1), <(x1[0], x0[0])), java.lang.Object(ARRAY(x0[0])), x1[0])

The following pairs are in P:

664_0_TAKE_LOAD(java.lang.Object(ARRAY(x0[0])), x1[0]) → COND_664_0_TAKE_LOAD(&&(>(x1[0], -1), <(x1[0], x0[0])), java.lang.Object(ARRAY(x0[0])), x1[0])

There are no usable rules.

(8) Complex Obligation (AND)

(9) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 664_0_TAKE_LOAD(java.lang.Object(ARRAY(x0[0])), x1[0]) → COND_664_0_TAKE_LOAD(x1[0] > -1 && x1[0] < x0[0], java.lang.Object(ARRAY(x0[0])), x1[0])


The set Q is empty.

(10) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(11) TRUE

(12) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_664_0_TAKE_LOAD(TRUE, java.lang.Object(ARRAY(x0[1])), x1[1]) → 664_0_TAKE_LOAD(java.lang.Object(ARRAY(x0[1])), x1[1] + 1)


The set Q is empty.

(13) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(14) TRUE