(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: RunningPointers
public class ObjectList {
Object value;
ObjectList next;

public ObjectList(Object value, ObjectList next) {
this.value = value;
this.next = next;
}

public static ObjectList createList() {
ObjectList result = null;
int length = Random.random();
while (length > 0) {
result = new ObjectList(new Object(), result);
length--;
}
return result;
}
}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


/**
* Allegedly based on an interview question at Microsoft.
*/
public class RunningPointers {

public static boolean isCyclic(ObjectList l) {
if (l == null) {
return false;
}
ObjectList l1, l2;
l1 = l;
l2 = l.next;
while (l2 != null && l1 != l2) {
l2 = l2.next;
if (l2 == null) {
return false;
}
else if (l2 == l1) {
return true;
}
else {
l2 = l2.next;
}
l1 = l1.next;
}
return l2 != null;
}

public static void main(String[] args) {
Random.args = args;
ObjectList list = ObjectList.createList();
isCyclic(list);
}
}


(1) JBCToGraph (SOUND transformation)

Constructed TerminationGraph.

(2) Obligation:

Termination Graph based on JBC Program:
RunningPointers.main([Ljava/lang/String;)V: Graph of 164 nodes with 1 SCC.

ObjectList.createList()LObjectList;: Graph of 97 nodes with 1 SCC.


(3) TerminationGraphToSCCProof (SOUND transformation)

Splitted TerminationGraph to 2 SCCss.

(4) Complex Obligation (AND)

(5) Obligation:

SCC of termination graph based on JBC Program.
SCC contains nodes from the following methods: ObjectList.createList()LObjectList;
SCC calls the following helper methods:
Performed SCC analyses: UsedFieldsAnalysis

(6) SCCToIDPv1Proof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Log:

Generated 23 rules for P and 0 rules for R.


P rules:
362_0_createList_LE(EOS(STATIC_362), i37, i37) → 365_0_createList_LE(EOS(STATIC_365), i37, i37)
365_0_createList_LE(EOS(STATIC_365), i37, i37) → 369_0_createList_New(EOS(STATIC_369), i37) | >(i37, 0)
369_0_createList_New(EOS(STATIC_369), i37) → 373_0_createList_Duplicate(EOS(STATIC_373), i37)
373_0_createList_Duplicate(EOS(STATIC_373), i37) → 375_0_createList_New(EOS(STATIC_375), i37)
375_0_createList_New(EOS(STATIC_375), i37) → 380_0_createList_Duplicate(EOS(STATIC_380), i37)
380_0_createList_Duplicate(EOS(STATIC_380), i37) → 388_0_createList_InvokeMethod(EOS(STATIC_388), i37)
388_0_createList_InvokeMethod(EOS(STATIC_388), i37) → 393_0_createList_Load(EOS(STATIC_393), i37)
393_0_createList_Load(EOS(STATIC_393), i37) → 397_0_createList_InvokeMethod(EOS(STATIC_397), i37)
397_0_createList_InvokeMethod(EOS(STATIC_397), i37) → 400_0_<init>_Load(EOS(STATIC_400), i37)
400_0_<init>_Load(EOS(STATIC_400), i37) → 405_0_<init>_InvokeMethod(EOS(STATIC_405), i37)
405_0_<init>_InvokeMethod(EOS(STATIC_405), i37) → 409_0_<init>_Load(EOS(STATIC_409), i37)
409_0_<init>_Load(EOS(STATIC_409), i37) → 414_0_<init>_Load(EOS(STATIC_414), i37)
414_0_<init>_Load(EOS(STATIC_414), i37) → 420_0_<init>_FieldAccess(EOS(STATIC_420), i37)
420_0_<init>_FieldAccess(EOS(STATIC_420), i37) → 427_0_<init>_Load(EOS(STATIC_427), i37)
427_0_<init>_Load(EOS(STATIC_427), i37) → 433_0_<init>_Load(EOS(STATIC_433), i37)
433_0_<init>_Load(EOS(STATIC_433), i37) → 439_0_<init>_FieldAccess(EOS(STATIC_439), i37)
439_0_<init>_FieldAccess(EOS(STATIC_439), i37) → 446_0_<init>_Return(EOS(STATIC_446), i37)
446_0_<init>_Return(EOS(STATIC_446), i37) → 450_0_createList_Store(EOS(STATIC_450), i37)
450_0_createList_Store(EOS(STATIC_450), i37) → 454_0_createList_Inc(EOS(STATIC_454), i37)
454_0_createList_Inc(EOS(STATIC_454), i37) → 457_0_createList_JMP(EOS(STATIC_457), +(i37, -1)) | >(i37, 0)
457_0_createList_JMP(EOS(STATIC_457), i43) → 463_0_createList_Load(EOS(STATIC_463), i43)
463_0_createList_Load(EOS(STATIC_463), i43) → 360_0_createList_Load(EOS(STATIC_360), i43)
360_0_createList_Load(EOS(STATIC_360), i34) → 362_0_createList_LE(EOS(STATIC_362), i34, i34)
R rules:

Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.


P rules:
362_0_createList_LE(EOS(STATIC_362), x0, x0) → 362_0_createList_LE(EOS(STATIC_362), +(x0, -1), +(x0, -1)) | >(x0, 0)
R rules:

Filtered ground terms:



362_0_createList_LE(x1, x2, x3) → 362_0_createList_LE(x2, x3)
EOS(x1) → EOS
Cond_362_0_createList_LE(x1, x2, x3, x4) → Cond_362_0_createList_LE(x1, x3, x4)

Filtered duplicate args:



362_0_createList_LE(x1, x2) → 362_0_createList_LE(x2)
Cond_362_0_createList_LE(x1, x2, x3) → Cond_362_0_createList_LE(x1, x3)

Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.


P rules:
362_0_createList_LE(x0) → 362_0_createList_LE(+(x0, -1)) | >(x0, 0)
R rules:

Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.


P rules:
362_0_CREATELIST_LE(x0) → COND_362_0_CREATELIST_LE(>(x0, 0), x0)
COND_362_0_CREATELIST_LE(TRUE, x0) → 362_0_CREATELIST_LE(+(x0, -1))
R rules:

(7) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 362_0_CREATELIST_LE(x0[0]) → COND_362_0_CREATELIST_LE(x0[0] > 0, x0[0])
(1): COND_362_0_CREATELIST_LE(TRUE, x0[1]) → 362_0_CREATELIST_LE(x0[1] + -1)

(0) -> (1), if (x0[0] > 0x0[0]* x0[1])


(1) -> (0), if (x0[1] + -1* x0[0])



The set Q is empty.

(8) IDPNonInfProof (SOUND transformation)

Used the following options for this NonInfProof:
IDPGPoloSolver: Range: [(-1,2)] IsNat: false Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpCand1ShapeHeuristic@70c221d7 Constraint Generator: NonInfConstraintGenerator: PathGenerator: MetricPathGenerator: Max Left Steps: 0 Max Right Steps: 0

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 362_0_CREATELIST_LE(x0) → COND_362_0_CREATELIST_LE(>(x0, 0), x0) the following chains were created:
  • We consider the chain 362_0_CREATELIST_LE(x0[0]) → COND_362_0_CREATELIST_LE(>(x0[0], 0), x0[0]), COND_362_0_CREATELIST_LE(TRUE, x0[1]) → 362_0_CREATELIST_LE(+(x0[1], -1)) which results in the following constraint:

    (1)    (>(x0[0], 0)=TRUEx0[0]=x0[1]362_0_CREATELIST_LE(x0[0])≥NonInfC∧362_0_CREATELIST_LE(x0[0])≥COND_362_0_CREATELIST_LE(>(x0[0], 0), x0[0])∧(UIncreasing(COND_362_0_CREATELIST_LE(>(x0[0], 0), x0[0])), ≥))



    We simplified constraint (1) using rule (IV) which results in the following new constraint:

    (2)    (>(x0[0], 0)=TRUE362_0_CREATELIST_LE(x0[0])≥NonInfC∧362_0_CREATELIST_LE(x0[0])≥COND_362_0_CREATELIST_LE(>(x0[0], 0), x0[0])∧(UIncreasing(COND_362_0_CREATELIST_LE(>(x0[0], 0), x0[0])), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_362_0_CREATELIST_LE(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_8] + [(2)bni_8]x0[0] ≥ 0∧[(-1)bso_9] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_362_0_CREATELIST_LE(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_8] + [(2)bni_8]x0[0] ≥ 0∧[(-1)bso_9] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_362_0_CREATELIST_LE(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_8] + [(2)bni_8]x0[0] ≥ 0∧[(-1)bso_9] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x0[0] ≥ 0 ⇒ (UIncreasing(COND_362_0_CREATELIST_LE(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_8 + (2)bni_8] + [(2)bni_8]x0[0] ≥ 0∧[(-1)bso_9] ≥ 0)







For Pair COND_362_0_CREATELIST_LE(TRUE, x0) → 362_0_CREATELIST_LE(+(x0, -1)) the following chains were created:
  • We consider the chain COND_362_0_CREATELIST_LE(TRUE, x0[1]) → 362_0_CREATELIST_LE(+(x0[1], -1)) which results in the following constraint:

    (7)    (COND_362_0_CREATELIST_LE(TRUE, x0[1])≥NonInfC∧COND_362_0_CREATELIST_LE(TRUE, x0[1])≥362_0_CREATELIST_LE(+(x0[1], -1))∧(UIncreasing(362_0_CREATELIST_LE(+(x0[1], -1))), ≥))



    We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (8)    ((UIncreasing(362_0_CREATELIST_LE(+(x0[1], -1))), ≥)∧[bni_10] = 0∧[2 + (-1)bso_11] ≥ 0)



    We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (9)    ((UIncreasing(362_0_CREATELIST_LE(+(x0[1], -1))), ≥)∧[bni_10] = 0∧[2 + (-1)bso_11] ≥ 0)



    We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (10)    ((UIncreasing(362_0_CREATELIST_LE(+(x0[1], -1))), ≥)∧[bni_10] = 0∧[2 + (-1)bso_11] ≥ 0)



    We simplified constraint (10) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (11)    ((UIncreasing(362_0_CREATELIST_LE(+(x0[1], -1))), ≥)∧[bni_10] = 0∧0 = 0∧[2 + (-1)bso_11] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 362_0_CREATELIST_LE(x0) → COND_362_0_CREATELIST_LE(>(x0, 0), x0)
    • (x0[0] ≥ 0 ⇒ (UIncreasing(COND_362_0_CREATELIST_LE(>(x0[0], 0), x0[0])), ≥)∧[(-1)Bound*bni_8 + (2)bni_8] + [(2)bni_8]x0[0] ≥ 0∧[(-1)bso_9] ≥ 0)

  • COND_362_0_CREATELIST_LE(TRUE, x0) → 362_0_CREATELIST_LE(+(x0, -1))
    • ((UIncreasing(362_0_CREATELIST_LE(+(x0[1], -1))), ≥)∧[bni_10] = 0∧0 = 0∧[2 + (-1)bso_11] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(362_0_CREATELIST_LE(x1)) = [2]x1   
POL(COND_362_0_CREATELIST_LE(x1, x2)) = [2]x2   
POL(>(x1, x2)) = [-1]   
POL(0) = 0   
POL(+(x1, x2)) = x1 + x2   
POL(-1) = [-1]   

The following pairs are in P>:

COND_362_0_CREATELIST_LE(TRUE, x0[1]) → 362_0_CREATELIST_LE(+(x0[1], -1))

The following pairs are in Pbound:

362_0_CREATELIST_LE(x0[0]) → COND_362_0_CREATELIST_LE(>(x0[0], 0), x0[0])

The following pairs are in P:

362_0_CREATELIST_LE(x0[0]) → COND_362_0_CREATELIST_LE(>(x0[0], 0), x0[0])

There are no usable rules.

(9) Complex Obligation (AND)

(10) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 362_0_CREATELIST_LE(x0[0]) → COND_362_0_CREATELIST_LE(x0[0] > 0, x0[0])


The set Q is empty.

(11) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(12) TRUE

(13) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_362_0_CREATELIST_LE(TRUE, x0[1]) → 362_0_CREATELIST_LE(x0[1] + -1)


The set Q is empty.

(14) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(15) TRUE

(16) Obligation:

SCC of termination graph based on JBC Program.
SCC contains nodes from the following methods: RunningPointers.main([Ljava/lang/String;)V
SCC calls the following helper methods:
Performed SCC analyses: UsedFieldsAnalysis

(17) SCCToIDPv1Proof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Log:

Generated 35 rules for P and 0 rules for R.


P rules:
818_0_isCyclic_NULL(EOS(STATIC_818), java.lang.Object(o259sub), o257, java.lang.Object(o269sub), java.lang.Object(o269sub)) → 819_0_isCyclic_NULL(EOS(STATIC_819), java.lang.Object(o259sub), o257, java.lang.Object(o269sub), java.lang.Object(o269sub))
819_0_isCyclic_NULL(EOS(STATIC_819), java.lang.Object(o259sub), o257, java.lang.Object(o269sub), java.lang.Object(o269sub)) → 821_0_isCyclic_Load(EOS(STATIC_821), java.lang.Object(o259sub), o257, java.lang.Object(o269sub))
821_0_isCyclic_Load(EOS(STATIC_821), java.lang.Object(o259sub), o257, java.lang.Object(o269sub)) → 823_0_isCyclic_Load(EOS(STATIC_823), java.lang.Object(o259sub), o257, java.lang.Object(o269sub), o257)
823_0_isCyclic_Load(EOS(STATIC_823), java.lang.Object(o259sub), o257, java.lang.Object(o269sub), o257) → 827_0_isCyclic_EQ(EOS(STATIC_827), java.lang.Object(o259sub), o257, java.lang.Object(o269sub), o257, java.lang.Object(o269sub))
827_0_isCyclic_EQ(EOS(STATIC_827), java.lang.Object(o259sub), java.lang.Object(o271sub), java.lang.Object(o269sub), java.lang.Object(o271sub), java.lang.Object(o269sub)) → 830_0_isCyclic_EQ(EOS(STATIC_830), java.lang.Object(o259sub), java.lang.Object(o271sub), java.lang.Object(o269sub), java.lang.Object(o271sub), java.lang.Object(o269sub))
830_0_isCyclic_EQ(EOS(STATIC_830), java.lang.Object(o259sub), java.lang.Object(o271sub), java.lang.Object(o269sub), java.lang.Object(o271sub), java.lang.Object(o269sub)) → 836_0_isCyclic_EQ(EOS(STATIC_836), java.lang.Object(o259sub), java.lang.Object(o271sub), java.lang.Object(o269sub), java.lang.Object(o271sub), java.lang.Object(o269sub))
836_0_isCyclic_EQ(EOS(STATIC_836), java.lang.Object(o259sub), java.lang.Object(o271sub), java.lang.Object(o269sub), java.lang.Object(o271sub), java.lang.Object(o269sub)) → 843_0_isCyclic_Load(EOS(STATIC_843), java.lang.Object(o259sub), java.lang.Object(o271sub), java.lang.Object(o269sub))
843_0_isCyclic_Load(EOS(STATIC_843), java.lang.Object(o259sub), java.lang.Object(o271sub), java.lang.Object(o269sub)) → 852_0_isCyclic_FieldAccess(EOS(STATIC_852), java.lang.Object(o259sub), java.lang.Object(o271sub), java.lang.Object(o269sub))
852_0_isCyclic_FieldAccess(EOS(STATIC_852), java.lang.Object(o259sub), java.lang.Object(o271sub), java.lang.Object(ObjectList(EOC, o294))) → 859_0_isCyclic_FieldAccess(EOS(STATIC_859), java.lang.Object(o259sub), java.lang.Object(o271sub), java.lang.Object(ObjectList(EOC, o294)))
859_0_isCyclic_FieldAccess(EOS(STATIC_859), java.lang.Object(o259sub), java.lang.Object(o271sub), java.lang.Object(ObjectList(EOC, o294))) → 864_0_isCyclic_Store(EOS(STATIC_864), java.lang.Object(o259sub), java.lang.Object(o271sub), o294)
864_0_isCyclic_Store(EOS(STATIC_864), java.lang.Object(o259sub), java.lang.Object(o271sub), o294) → 870_0_isCyclic_Load(EOS(STATIC_870), java.lang.Object(o259sub), java.lang.Object(o271sub), o294)
870_0_isCyclic_Load(EOS(STATIC_870), java.lang.Object(o259sub), java.lang.Object(o271sub), o294) → 876_0_isCyclic_NONNULL(EOS(STATIC_876), java.lang.Object(o259sub), java.lang.Object(o271sub), o294, o294)
876_0_isCyclic_NONNULL(EOS(STATIC_876), java.lang.Object(o259sub), java.lang.Object(o271sub), java.lang.Object(o309sub), java.lang.Object(o309sub)) → 883_0_isCyclic_NONNULL(EOS(STATIC_883), java.lang.Object(o259sub), java.lang.Object(o271sub), java.lang.Object(o309sub), java.lang.Object(o309sub))
883_0_isCyclic_NONNULL(EOS(STATIC_883), java.lang.Object(o259sub), java.lang.Object(o271sub), java.lang.Object(o309sub), java.lang.Object(o309sub)) → 892_0_isCyclic_Load(EOS(STATIC_892), java.lang.Object(o259sub), java.lang.Object(o271sub), java.lang.Object(o309sub))
892_0_isCyclic_Load(EOS(STATIC_892), java.lang.Object(o259sub), java.lang.Object(o271sub), java.lang.Object(o309sub)) → 901_0_isCyclic_Load(EOS(STATIC_901), java.lang.Object(o259sub), java.lang.Object(o271sub), java.lang.Object(o309sub), java.lang.Object(o309sub))
901_0_isCyclic_Load(EOS(STATIC_901), java.lang.Object(o259sub), java.lang.Object(o271sub), java.lang.Object(o309sub), java.lang.Object(o309sub)) → 909_0_isCyclic_NE(EOS(STATIC_909), java.lang.Object(o259sub), java.lang.Object(o271sub), java.lang.Object(o309sub), java.lang.Object(o309sub), java.lang.Object(o271sub))
909_0_isCyclic_NE(EOS(STATIC_909), java.lang.Object(o259sub), java.lang.Object(o271sub), java.lang.Object(o309sub), java.lang.Object(o309sub), java.lang.Object(o271sub)) → 917_0_isCyclic_Load(EOS(STATIC_917), java.lang.Object(o259sub), java.lang.Object(o271sub), java.lang.Object(o309sub))
917_0_isCyclic_Load(EOS(STATIC_917), java.lang.Object(o259sub), java.lang.Object(o271sub), java.lang.Object(o309sub)) → 924_0_isCyclic_FieldAccess(EOS(STATIC_924), java.lang.Object(o259sub), java.lang.Object(o271sub), java.lang.Object(o309sub))
924_0_isCyclic_FieldAccess(EOS(STATIC_924), java.lang.Object(o259sub), java.lang.Object(o271sub), java.lang.Object(ObjectList(EOC, o345))) → 929_0_isCyclic_FieldAccess(EOS(STATIC_929), java.lang.Object(o259sub), java.lang.Object(o271sub), java.lang.Object(ObjectList(EOC, o345)))
929_0_isCyclic_FieldAccess(EOS(STATIC_929), java.lang.Object(o259sub), java.lang.Object(o271sub), java.lang.Object(ObjectList(EOC, o345))) → 933_0_isCyclic_Store(EOS(STATIC_933), java.lang.Object(o259sub), java.lang.Object(o271sub), o345)
933_0_isCyclic_Store(EOS(STATIC_933), java.lang.Object(o259sub), java.lang.Object(o271sub), o345) → 936_0_isCyclic_Load(EOS(STATIC_936), java.lang.Object(o259sub), java.lang.Object(o271sub), o345)
936_0_isCyclic_Load(EOS(STATIC_936), java.lang.Object(o259sub), java.lang.Object(o271sub), o345) → 941_0_isCyclic_FieldAccess(EOS(STATIC_941), java.lang.Object(o259sub), o345, java.lang.Object(o271sub))
941_0_isCyclic_FieldAccess(EOS(STATIC_941), java.lang.Object(o259sub), o345, java.lang.Object(o271sub)) → 945_0_isCyclic_FieldAccess(EOS(STATIC_945), java.lang.Object(o259sub), o345, java.lang.Object(o271sub))
941_0_isCyclic_FieldAccess(EOS(STATIC_941), java.lang.Object(o259sub), o345, java.lang.Object(o259sub)) → 947_0_isCyclic_FieldAccess(EOS(STATIC_947), java.lang.Object(o259sub), o345, java.lang.Object(o259sub))
945_0_isCyclic_FieldAccess(EOS(STATIC_945), java.lang.Object(o259sub), o345, java.lang.Object(ObjectList(EOC, o359))) → 950_0_isCyclic_FieldAccess(EOS(STATIC_950), java.lang.Object(o259sub), o345, java.lang.Object(ObjectList(EOC, o359)))
950_0_isCyclic_FieldAccess(EOS(STATIC_950), java.lang.Object(o259sub), o345, java.lang.Object(ObjectList(EOC, o359))) → 954_0_isCyclic_Store(EOS(STATIC_954), java.lang.Object(o259sub), o345, o359)
954_0_isCyclic_Store(EOS(STATIC_954), java.lang.Object(o259sub), o345, o359) → 959_0_isCyclic_JMP(EOS(STATIC_959), java.lang.Object(o259sub), o359, o345)
959_0_isCyclic_JMP(EOS(STATIC_959), java.lang.Object(o259sub), o359, o345) → 966_0_isCyclic_Load(EOS(STATIC_966), java.lang.Object(o259sub), o359, o345)
966_0_isCyclic_Load(EOS(STATIC_966), java.lang.Object(o259sub), o359, o345) → 817_0_isCyclic_Load(EOS(STATIC_817), java.lang.Object(o259sub), o359, o345)
817_0_isCyclic_Load(EOS(STATIC_817), java.lang.Object(o259sub), o257, o258) → 818_0_isCyclic_NULL(EOS(STATIC_818), java.lang.Object(o259sub), o257, o258, o258)
947_0_isCyclic_FieldAccess(EOS(STATIC_947), java.lang.Object(ObjectList(EOC, o362)), o345, java.lang.Object(ObjectList(EOC, o362))) → 952_0_isCyclic_FieldAccess(EOS(STATIC_952), java.lang.Object(ObjectList(EOC, o362)), o345, java.lang.Object(ObjectList(EOC, o362)))
952_0_isCyclic_FieldAccess(EOS(STATIC_952), java.lang.Object(ObjectList(EOC, o362)), o345, java.lang.Object(ObjectList(EOC, o362))) → 956_0_isCyclic_Store(EOS(STATIC_956), java.lang.Object(ObjectList(EOC, o362)), o345, o362)
956_0_isCyclic_Store(EOS(STATIC_956), java.lang.Object(ObjectList(EOC, o362)), o345, o362) → 961_0_isCyclic_JMP(EOS(STATIC_961), java.lang.Object(ObjectList(EOC, o362)), o362, o345)
961_0_isCyclic_JMP(EOS(STATIC_961), java.lang.Object(ObjectList(EOC, o362)), o362, o345) → 970_0_isCyclic_Load(EOS(STATIC_970), java.lang.Object(ObjectList(EOC, o362)), o362, o345)
970_0_isCyclic_Load(EOS(STATIC_970), java.lang.Object(ObjectList(EOC, o362)), o362, o345) → 817_0_isCyclic_Load(EOS(STATIC_817), java.lang.Object(ObjectList(EOC, o362)), o362, o345)
R rules:

Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.


P rules:
818_0_isCyclic_NULL(EOS(STATIC_818), java.lang.Object(x0), java.lang.Object(ObjectList(EOC, x1)), java.lang.Object(ObjectList(EOC, java.lang.Object(ObjectList(EOC, x2)))), java.lang.Object(ObjectList(EOC, java.lang.Object(ObjectList(EOC, x2))))) → 818_0_isCyclic_NULL(EOS(STATIC_818), java.lang.Object(x0), x1, x2, x2)
818_0_isCyclic_NULL(EOS(STATIC_818), java.lang.Object(ObjectList(EOC, x0)), java.lang.Object(ObjectList(EOC, x0)), java.lang.Object(ObjectList(EOC, java.lang.Object(ObjectList(EOC, x1)))), java.lang.Object(ObjectList(EOC, java.lang.Object(ObjectList(EOC, x1))))) → 818_0_isCyclic_NULL(EOS(STATIC_818), java.lang.Object(ObjectList(EOC, x0)), x0, x1, x1)
R rules:

Filtered ground terms:



818_0_isCyclic_NULL(x1, x2, x3, x4, x5) → 818_0_isCyclic_NULL(x2, x3, x4, x5)
ObjectList(x1, x2) → ObjectList(x2)
EOS(x1) → EOS

Filtered duplicate args:



818_0_isCyclic_NULL(x1, x2, x3, x4) → 818_0_isCyclic_NULL(x1, x2, x4)

Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.


P rules:
818_0_isCyclic_NULL(java.lang.Object(x0), java.lang.Object(ObjectList(x1)), java.lang.Object(ObjectList(java.lang.Object(ObjectList(x2))))) → 818_0_isCyclic_NULL(java.lang.Object(x0), x1, x2)
818_0_isCyclic_NULL(java.lang.Object(ObjectList(x0)), java.lang.Object(ObjectList(x0)), java.lang.Object(ObjectList(java.lang.Object(ObjectList(x1))))) → 818_0_isCyclic_NULL(java.lang.Object(ObjectList(x0)), x0, x1)
R rules:

Finished conversion. Obtained 2 rules for P and 0 rules for R. System has no predefined symbols.


P rules:
818_0_ISCYCLIC_NULL(java.lang.Object(x0), java.lang.Object(ObjectList(x1)), java.lang.Object(ObjectList(java.lang.Object(ObjectList(x2))))) → 818_0_ISCYCLIC_NULL(java.lang.Object(x0), x1, x2)
818_0_ISCYCLIC_NULL(java.lang.Object(ObjectList(x0)), java.lang.Object(ObjectList(x0)), java.lang.Object(ObjectList(java.lang.Object(ObjectList(x1))))) → 818_0_ISCYCLIC_NULL(java.lang.Object(ObjectList(x0)), x0, x1)
R rules:

(18) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:
none


R is empty.

The integer pair graph contains the following rules and edges:
(0): 818_0_ISCYCLIC_NULL(java.lang.Object(x0[0]), java.lang.Object(ObjectList(x1[0])), java.lang.Object(ObjectList(java.lang.Object(ObjectList(x2[0]))))) → 818_0_ISCYCLIC_NULL(java.lang.Object(x0[0]), x1[0], x2[0])
(1): 818_0_ISCYCLIC_NULL(java.lang.Object(ObjectList(x0[1])), java.lang.Object(ObjectList(x0[1])), java.lang.Object(ObjectList(java.lang.Object(ObjectList(x1[1]))))) → 818_0_ISCYCLIC_NULL(java.lang.Object(ObjectList(x0[1])), x0[1], x1[1])

(0) -> (0), if (java.lang.Object(x0[0]) →* java.lang.Object(x0[0]')∧x1[0]* java.lang.Object(ObjectList(x1[0]'))∧x2[0]* java.lang.Object(ObjectList(java.lang.Object(ObjectList(x2[0]')))))


(0) -> (1), if (java.lang.Object(x0[0]) →* java.lang.Object(ObjectList(x0[1]))∧x1[0]* java.lang.Object(ObjectList(x0[1]))∧x2[0]* java.lang.Object(ObjectList(java.lang.Object(ObjectList(x1[1])))))


(1) -> (0), if (java.lang.Object(ObjectList(x0[1])) →* java.lang.Object(x0[0])∧x0[1]* java.lang.Object(ObjectList(x1[0]))∧x1[1]* java.lang.Object(ObjectList(java.lang.Object(ObjectList(x2[0])))))


(1) -> (1), if (java.lang.Object(ObjectList(x0[1])) →* java.lang.Object(ObjectList(x0[1]'))∧x0[1]* java.lang.Object(ObjectList(x0[1]'))∧x1[1]* java.lang.Object(ObjectList(java.lang.Object(ObjectList(x1[1]')))))



The set Q is empty.

(19) IDPtoQDPProof (SOUND transformation)

Represented integers and predefined function symbols by Terms

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

818_0_ISCYCLIC_NULL(java.lang.Object(x0[0]), java.lang.Object(ObjectList(x1[0])), java.lang.Object(ObjectList(java.lang.Object(ObjectList(x2[0]))))) → 818_0_ISCYCLIC_NULL(java.lang.Object(x0[0]), x1[0], x2[0])
818_0_ISCYCLIC_NULL(java.lang.Object(ObjectList(x0[1])), java.lang.Object(ObjectList(x0[1])), java.lang.Object(ObjectList(java.lang.Object(ObjectList(x1[1]))))) → 818_0_ISCYCLIC_NULL(java.lang.Object(ObjectList(x0[1])), x0[1], x1[1])

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • 818_0_ISCYCLIC_NULL(java.lang.Object(x0[0]), java.lang.Object(ObjectList(x1[0])), java.lang.Object(ObjectList(java.lang.Object(ObjectList(x2[0]))))) → 818_0_ISCYCLIC_NULL(java.lang.Object(x0[0]), x1[0], x2[0])
    The graph contains the following edges 1 >= 1, 2 > 2, 3 > 3

  • 818_0_ISCYCLIC_NULL(java.lang.Object(ObjectList(x0[1])), java.lang.Object(ObjectList(x0[1])), java.lang.Object(ObjectList(java.lang.Object(ObjectList(x1[1]))))) → 818_0_ISCYCLIC_NULL(java.lang.Object(ObjectList(x0[1])), x0[1], x1[1])
    The graph contains the following edges 1 >= 1, 2 >= 1, 1 > 2, 2 > 2, 3 > 3

(22) YES