0 JBC
↳1 JBCToGraph (⇒, 150 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 60 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 920 ms)
↳8 IDP
↳9 IDependencyGraphProof (⇔, 0 ms)
↳10 IDP
↳11 IDPNonInfProof (⇒, 80 ms)
↳12 IDP
↳13 IDependencyGraphProof (⇔, 0 ms)
↳14 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaC3 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
int z = Random.random();
while (x < y) {
if (x < z) {
x++;
} else {
z++;
}
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 16 rules for P and 0 rules for R.
P rules:
538_0_main_Load(EOS(STATIC_538), i18, i47, i91, i18) → 545_0_main_GE(EOS(STATIC_545), i18, i47, i91, i18, i47)
545_0_main_GE(EOS(STATIC_545), i18, i47, i91, i18, i47) → 560_0_main_GE(EOS(STATIC_560), i18, i47, i91, i18, i47)
560_0_main_GE(EOS(STATIC_560), i18, i47, i91, i18, i47) → 571_0_main_Load(EOS(STATIC_571), i18, i47, i91) | <(i18, i47)
571_0_main_Load(EOS(STATIC_571), i18, i47, i91) → 579_0_main_Load(EOS(STATIC_579), i18, i47, i91, i18)
579_0_main_Load(EOS(STATIC_579), i18, i47, i91, i18) → 590_0_main_GE(EOS(STATIC_590), i18, i47, i91, i18, i91)
590_0_main_GE(EOS(STATIC_590), i18, i47, i91, i18, i91) → 601_0_main_GE(EOS(STATIC_601), i18, i47, i91, i18, i91)
590_0_main_GE(EOS(STATIC_590), i18, i47, i91, i18, i91) → 602_0_main_GE(EOS(STATIC_602), i18, i47, i91, i18, i91)
601_0_main_GE(EOS(STATIC_601), i18, i47, i91, i18, i91) → 613_0_main_Inc(EOS(STATIC_613), i18, i47, i91) | >=(i18, i91)
613_0_main_Inc(EOS(STATIC_613), i18, i47, i91) → 623_0_main_JMP(EOS(STATIC_623), i18, i47, +(i91, 1)) | >=(i91, 0)
623_0_main_JMP(EOS(STATIC_623), i18, i47, i101) → 643_0_main_Load(EOS(STATIC_643), i18, i47, i101)
643_0_main_Load(EOS(STATIC_643), i18, i47, i101) → 530_0_main_Load(EOS(STATIC_530), i18, i47, i101)
530_0_main_Load(EOS(STATIC_530), i18, i47, i91) → 538_0_main_Load(EOS(STATIC_538), i18, i47, i91, i18)
602_0_main_GE(EOS(STATIC_602), i18, i47, i91, i18, i91) → 615_0_main_Inc(EOS(STATIC_615), i18, i47, i91) | <(i18, i91)
615_0_main_Inc(EOS(STATIC_615), i18, i47, i91) → 625_0_main_JMP(EOS(STATIC_625), +(i18, 1), i47, i91) | >=(i18, 0)
625_0_main_JMP(EOS(STATIC_625), i102, i47, i91) → 647_0_main_Load(EOS(STATIC_647), i102, i47, i91)
647_0_main_Load(EOS(STATIC_647), i102, i47, i91) → 530_0_main_Load(EOS(STATIC_530), i102, i47, i91)
R rules:
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
538_0_main_Load(EOS(STATIC_538), x0, x1, x2, x0) → 538_0_main_Load(EOS(STATIC_538), x0, x1, +(x2, 1), x0) | &&(&&(>(+(x2, 1), 0), <=(x2, x0)), >(x1, x0))
538_0_main_Load(EOS(STATIC_538), x0, x1, x2, x0) → 538_0_main_Load(EOS(STATIC_538), +(x0, 1), x1, x2, +(x0, 1)) | &&(&&(>(x2, x0), >(x1, x0)), >(+(x0, 1), 0))
R rules:
Filtered ground terms:
538_0_main_Load(x1, x2, x3, x4, x5) → 538_0_main_Load(x2, x3, x4, x5)
EOS(x1) → EOS
Cond_538_0_main_Load1(x1, x2, x3, x4, x5, x6) → Cond_538_0_main_Load1(x1, x3, x4, x5, x6)
Cond_538_0_main_Load(x1, x2, x3, x4, x5, x6) → Cond_538_0_main_Load(x1, x3, x4, x5, x6)
Filtered duplicate args:
538_0_main_Load(x1, x2, x3, x4) → 538_0_main_Load(x2, x3, x4)
Cond_538_0_main_Load(x1, x2, x3, x4, x5) → Cond_538_0_main_Load(x1, x3, x4, x5)
Cond_538_0_main_Load1(x1, x2, x3, x4, x5) → Cond_538_0_main_Load1(x1, x3, x4, x5)
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
538_0_main_Load(x1, x2, x0) → 538_0_main_Load(x1, +(x2, 1), x0) | &&(&&(>(x2, -1), <=(x2, x0)), >(x1, x0))
538_0_main_Load(x1, x2, x0) → 538_0_main_Load(x1, x2, +(x0, 1)) | &&(&&(>(x2, x0), >(x1, x0)), >(x0, -1))
R rules:
Finished conversion. Obtained 4 rules for P and 0 rules for R. System has predefined symbols.
P rules:
538_0_MAIN_LOAD(x1, x2, x0) → COND_538_0_MAIN_LOAD(&&(&&(>(x2, -1), <=(x2, x0)), >(x1, x0)), x1, x2, x0)
COND_538_0_MAIN_LOAD(TRUE, x1, x2, x0) → 538_0_MAIN_LOAD(x1, +(x2, 1), x0)
538_0_MAIN_LOAD(x1, x2, x0) → COND_538_0_MAIN_LOAD1(&&(&&(>(x2, x0), >(x1, x0)), >(x0, -1)), x1, x2, x0)
COND_538_0_MAIN_LOAD1(TRUE, x1, x2, x0) → 538_0_MAIN_LOAD(x1, x2, +(x0, 1))
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if (x2[0] > -1 && x2[0] <= x0[0] && x1[0] > x0[0] ∧x1[0] →* x1[1]∧x2[0] →* x2[1]∧x0[0] →* x0[1])
(1) -> (0), if (x1[1] →* x1[0]∧x2[1] + 1 →* x2[0]∧x0[1] →* x0[0])
(1) -> (2), if (x1[1] →* x1[2]∧x2[1] + 1 →* x2[2]∧x0[1] →* x0[2])
(2) -> (3), if (x2[2] > x0[2] && x1[2] > x0[2] && x0[2] > -1 ∧x1[2] →* x1[3]∧x2[2] →* x2[3]∧x0[2] →* x0[3])
(3) -> (0), if (x1[3] →* x1[0]∧x2[3] →* x2[0]∧x0[3] + 1 →* x0[0])
(3) -> (2), if (x1[3] →* x1[2]∧x2[3] →* x2[2]∧x0[3] + 1 →* x0[2])
(1) (&&(&&(>(x2[0], -1), <=(x2[0], x0[0])), >(x1[0], x0[0]))=TRUE∧x1[0]=x1[1]∧x2[0]=x2[1]∧x0[0]=x0[1] ⇒ 538_0_MAIN_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧538_0_MAIN_LOAD(x1[0], x2[0], x0[0])≥COND_538_0_MAIN_LOAD(&&(&&(>(x2[0], -1), <=(x2[0], x0[0])), >(x1[0], x0[0])), x1[0], x2[0], x0[0])∧(UIncreasing(COND_538_0_MAIN_LOAD(&&(&&(>(x2[0], -1), <=(x2[0], x0[0])), >(x1[0], x0[0])), x1[0], x2[0], x0[0])), ≥))
(2) (>(x1[0], x0[0])=TRUE∧>(x2[0], -1)=TRUE∧<=(x2[0], x0[0])=TRUE ⇒ 538_0_MAIN_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧538_0_MAIN_LOAD(x1[0], x2[0], x0[0])≥COND_538_0_MAIN_LOAD(&&(&&(>(x2[0], -1), <=(x2[0], x0[0])), >(x1[0], x0[0])), x1[0], x2[0], x0[0])∧(UIncreasing(COND_538_0_MAIN_LOAD(&&(&&(>(x2[0], -1), <=(x2[0], x0[0])), >(x1[0], x0[0])), x1[0], x2[0], x0[0])), ≥))
(3) (x1[0] + [-1] + [-1]x0[0] ≥ 0∧x2[0] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_538_0_MAIN_LOAD(&&(&&(>(x2[0], -1), <=(x2[0], x0[0])), >(x1[0], x0[0])), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [(-1)bni_20]x2[0] + [bni_20]x1[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(4) (x1[0] + [-1] + [-1]x0[0] ≥ 0∧x2[0] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_538_0_MAIN_LOAD(&&(&&(>(x2[0], -1), <=(x2[0], x0[0])), >(x1[0], x0[0])), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [(-1)bni_20]x2[0] + [bni_20]x1[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(5) (x1[0] + [-1] + [-1]x0[0] ≥ 0∧x2[0] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_538_0_MAIN_LOAD(&&(&&(>(x2[0], -1), <=(x2[0], x0[0])), >(x1[0], x0[0])), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [(-1)bni_20]x2[0] + [bni_20]x1[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(6) (x1[0] ≥ 0∧x2[0] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_538_0_MAIN_LOAD(&&(&&(>(x2[0], -1), <=(x2[0], x0[0])), >(x1[0], x0[0])), x1[0], x2[0], x0[0])), ≥)∧[(-1)Bound*bni_20] + [bni_20]x0[0] + [(-1)bni_20]x2[0] + [bni_20]x1[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(7) (x1[0] ≥ 0∧x2[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_538_0_MAIN_LOAD(&&(&&(>(x2[0], -1), <=(x2[0], x0[0])), >(x1[0], x0[0])), x1[0], x2[0], x0[0])), ≥)∧[(-1)Bound*bni_20] + [bni_20]x0[0] + [bni_20]x1[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(8) (&&(&&(>(x2[0], -1), <=(x2[0], x0[0])), >(x1[0], x0[0]))=TRUE∧x1[0]=x1[1]∧x2[0]=x2[1]∧x0[0]=x0[1]∧x1[1]=x1[0]1∧+(x2[1], 1)=x2[0]1∧x0[1]=x0[0]1 ⇒ COND_538_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_538_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥538_0_MAIN_LOAD(x1[1], +(x2[1], 1), x0[1])∧(UIncreasing(538_0_MAIN_LOAD(x1[1], +(x2[1], 1), x0[1])), ≥))
(9) (>(x1[0], x0[0])=TRUE∧>(x2[0], -1)=TRUE∧<=(x2[0], x0[0])=TRUE ⇒ COND_538_0_MAIN_LOAD(TRUE, x1[0], x2[0], x0[0])≥NonInfC∧COND_538_0_MAIN_LOAD(TRUE, x1[0], x2[0], x0[0])≥538_0_MAIN_LOAD(x1[0], +(x2[0], 1), x0[0])∧(UIncreasing(538_0_MAIN_LOAD(x1[1], +(x2[1], 1), x0[1])), ≥))
(10) (x1[0] + [-1] + [-1]x0[0] ≥ 0∧x2[0] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(538_0_MAIN_LOAD(x1[1], +(x2[1], 1), x0[1])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]x2[0] + [bni_22]x1[0] ≥ 0∧[1 + (-1)bso_23] ≥ 0)
(11) (x1[0] + [-1] + [-1]x0[0] ≥ 0∧x2[0] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(538_0_MAIN_LOAD(x1[1], +(x2[1], 1), x0[1])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]x2[0] + [bni_22]x1[0] ≥ 0∧[1 + (-1)bso_23] ≥ 0)
(12) (x1[0] + [-1] + [-1]x0[0] ≥ 0∧x2[0] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(538_0_MAIN_LOAD(x1[1], +(x2[1], 1), x0[1])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]x2[0] + [bni_22]x1[0] ≥ 0∧[1 + (-1)bso_23] ≥ 0)
(13) (x1[0] ≥ 0∧x2[0] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(538_0_MAIN_LOAD(x1[1], +(x2[1], 1), x0[1])), ≥)∧[(-1)Bound*bni_22] + [bni_22]x0[0] + [(-1)bni_22]x2[0] + [bni_22]x1[0] ≥ 0∧[1 + (-1)bso_23] ≥ 0)
(14) (x1[0] ≥ 0∧x2[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(538_0_MAIN_LOAD(x1[1], +(x2[1], 1), x0[1])), ≥)∧[(-1)Bound*bni_22] + [bni_22]x0[0] + [bni_22]x1[0] ≥ 0∧[1 + (-1)bso_23] ≥ 0)
(15) (&&(&&(>(x2[0], -1), <=(x2[0], x0[0])), >(x1[0], x0[0]))=TRUE∧x1[0]=x1[1]∧x2[0]=x2[1]∧x0[0]=x0[1]∧x1[1]=x1[2]∧+(x2[1], 1)=x2[2]∧x0[1]=x0[2] ⇒ COND_538_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_538_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥538_0_MAIN_LOAD(x1[1], +(x2[1], 1), x0[1])∧(UIncreasing(538_0_MAIN_LOAD(x1[1], +(x2[1], 1), x0[1])), ≥))
(16) (>(x1[0], x0[0])=TRUE∧>(x2[0], -1)=TRUE∧<=(x2[0], x0[0])=TRUE ⇒ COND_538_0_MAIN_LOAD(TRUE, x1[0], x2[0], x0[0])≥NonInfC∧COND_538_0_MAIN_LOAD(TRUE, x1[0], x2[0], x0[0])≥538_0_MAIN_LOAD(x1[0], +(x2[0], 1), x0[0])∧(UIncreasing(538_0_MAIN_LOAD(x1[1], +(x2[1], 1), x0[1])), ≥))
(17) (x1[0] + [-1] + [-1]x0[0] ≥ 0∧x2[0] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(538_0_MAIN_LOAD(x1[1], +(x2[1], 1), x0[1])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]x2[0] + [bni_22]x1[0] ≥ 0∧[1 + (-1)bso_23] ≥ 0)
(18) (x1[0] + [-1] + [-1]x0[0] ≥ 0∧x2[0] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(538_0_MAIN_LOAD(x1[1], +(x2[1], 1), x0[1])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]x2[0] + [bni_22]x1[0] ≥ 0∧[1 + (-1)bso_23] ≥ 0)
(19) (x1[0] + [-1] + [-1]x0[0] ≥ 0∧x2[0] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(538_0_MAIN_LOAD(x1[1], +(x2[1], 1), x0[1])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [(-1)bni_22]x2[0] + [bni_22]x1[0] ≥ 0∧[1 + (-1)bso_23] ≥ 0)
(20) (x1[0] ≥ 0∧x2[0] ≥ 0∧x0[0] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(538_0_MAIN_LOAD(x1[1], +(x2[1], 1), x0[1])), ≥)∧[(-1)Bound*bni_22] + [bni_22]x0[0] + [(-1)bni_22]x2[0] + [bni_22]x1[0] ≥ 0∧[1 + (-1)bso_23] ≥ 0)
(21) (x1[0] ≥ 0∧x2[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(538_0_MAIN_LOAD(x1[1], +(x2[1], 1), x0[1])), ≥)∧[(-1)Bound*bni_22] + [bni_22]x0[0] + [bni_22]x1[0] ≥ 0∧[1 + (-1)bso_23] ≥ 0)
(22) (&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >(x0[2], -1))=TRUE∧x1[2]=x1[3]∧x2[2]=x2[3]∧x0[2]=x0[3] ⇒ 538_0_MAIN_LOAD(x1[2], x2[2], x0[2])≥NonInfC∧538_0_MAIN_LOAD(x1[2], x2[2], x0[2])≥COND_538_0_MAIN_LOAD1(&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >(x0[2], -1)), x1[2], x2[2], x0[2])∧(UIncreasing(COND_538_0_MAIN_LOAD1(&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >(x0[2], -1)), x1[2], x2[2], x0[2])), ≥))
(23) (>(x0[2], -1)=TRUE∧>(x2[2], x0[2])=TRUE∧>(x1[2], x0[2])=TRUE ⇒ 538_0_MAIN_LOAD(x1[2], x2[2], x0[2])≥NonInfC∧538_0_MAIN_LOAD(x1[2], x2[2], x0[2])≥COND_538_0_MAIN_LOAD1(&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >(x0[2], -1)), x1[2], x2[2], x0[2])∧(UIncreasing(COND_538_0_MAIN_LOAD1(&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >(x0[2], -1)), x1[2], x2[2], x0[2])), ≥))
(24) (x0[2] ≥ 0∧x2[2] + [-1] + [-1]x0[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_538_0_MAIN_LOAD1(&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >(x0[2], -1)), x1[2], x2[2], x0[2])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [(-1)bni_24]x2[2] + [bni_24]x1[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(25) (x0[2] ≥ 0∧x2[2] + [-1] + [-1]x0[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_538_0_MAIN_LOAD1(&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >(x0[2], -1)), x1[2], x2[2], x0[2])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [(-1)bni_24]x2[2] + [bni_24]x1[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(26) (x0[2] ≥ 0∧x2[2] + [-1] + [-1]x0[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_538_0_MAIN_LOAD1(&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >(x0[2], -1)), x1[2], x2[2], x0[2])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [(-1)bni_24]x2[2] + [bni_24]x1[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(27) (x0[2] ≥ 0∧x2[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_538_0_MAIN_LOAD1(&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >(x0[2], -1)), x1[2], x2[2], x0[2])), ≥)∧[(-2)bni_24 + (-1)Bound*bni_24] + [(-1)bni_24]x0[2] + [(-1)bni_24]x2[2] + [bni_24]x1[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(28) (x0[2] ≥ 0∧x2[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(COND_538_0_MAIN_LOAD1(&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >(x0[2], -1)), x1[2], x2[2], x0[2])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [(-1)bni_24]x2[2] + [bni_24]x1[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(29) (&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >(x0[2], -1))=TRUE∧x1[2]=x1[3]∧x2[2]=x2[3]∧x0[2]=x0[3]∧x1[3]=x1[0]∧x2[3]=x2[0]∧+(x0[3], 1)=x0[0] ⇒ COND_538_0_MAIN_LOAD1(TRUE, x1[3], x2[3], x0[3])≥NonInfC∧COND_538_0_MAIN_LOAD1(TRUE, x1[3], x2[3], x0[3])≥538_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))∧(UIncreasing(538_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))), ≥))
(30) (>(x0[2], -1)=TRUE∧>(x2[2], x0[2])=TRUE∧>(x1[2], x0[2])=TRUE ⇒ COND_538_0_MAIN_LOAD1(TRUE, x1[2], x2[2], x0[2])≥NonInfC∧COND_538_0_MAIN_LOAD1(TRUE, x1[2], x2[2], x0[2])≥538_0_MAIN_LOAD(x1[2], x2[2], +(x0[2], 1))∧(UIncreasing(538_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))), ≥))
(31) (x0[2] ≥ 0∧x2[2] + [-1] + [-1]x0[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(538_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [(-1)bni_26]x2[2] + [bni_26]x1[2] ≥ 0∧[(-1)bso_27] ≥ 0)
(32) (x0[2] ≥ 0∧x2[2] + [-1] + [-1]x0[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(538_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [(-1)bni_26]x2[2] + [bni_26]x1[2] ≥ 0∧[(-1)bso_27] ≥ 0)
(33) (x0[2] ≥ 0∧x2[2] + [-1] + [-1]x0[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(538_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [(-1)bni_26]x2[2] + [bni_26]x1[2] ≥ 0∧[(-1)bso_27] ≥ 0)
(34) (x0[2] ≥ 0∧x2[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(538_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))), ≥)∧[(-2)bni_26 + (-1)Bound*bni_26] + [(-1)bni_26]x0[2] + [(-1)bni_26]x2[2] + [bni_26]x1[2] ≥ 0∧[(-1)bso_27] ≥ 0)
(35) (x0[2] ≥ 0∧x2[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(538_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [(-1)bni_26]x2[2] + [bni_26]x1[2] ≥ 0∧[(-1)bso_27] ≥ 0)
(36) (&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >(x0[2], -1))=TRUE∧x1[2]=x1[3]∧x2[2]=x2[3]∧x0[2]=x0[3]∧x1[3]=x1[2]1∧x2[3]=x2[2]1∧+(x0[3], 1)=x0[2]1 ⇒ COND_538_0_MAIN_LOAD1(TRUE, x1[3], x2[3], x0[3])≥NonInfC∧COND_538_0_MAIN_LOAD1(TRUE, x1[3], x2[3], x0[3])≥538_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))∧(UIncreasing(538_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))), ≥))
(37) (>(x0[2], -1)=TRUE∧>(x2[2], x0[2])=TRUE∧>(x1[2], x0[2])=TRUE ⇒ COND_538_0_MAIN_LOAD1(TRUE, x1[2], x2[2], x0[2])≥NonInfC∧COND_538_0_MAIN_LOAD1(TRUE, x1[2], x2[2], x0[2])≥538_0_MAIN_LOAD(x1[2], x2[2], +(x0[2], 1))∧(UIncreasing(538_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))), ≥))
(38) (x0[2] ≥ 0∧x2[2] + [-1] + [-1]x0[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(538_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [(-1)bni_26]x2[2] + [bni_26]x1[2] ≥ 0∧[(-1)bso_27] ≥ 0)
(39) (x0[2] ≥ 0∧x2[2] + [-1] + [-1]x0[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(538_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [(-1)bni_26]x2[2] + [bni_26]x1[2] ≥ 0∧[(-1)bso_27] ≥ 0)
(40) (x0[2] ≥ 0∧x2[2] + [-1] + [-1]x0[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(538_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [(-1)bni_26]x2[2] + [bni_26]x1[2] ≥ 0∧[(-1)bso_27] ≥ 0)
(41) (x0[2] ≥ 0∧x2[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(538_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))), ≥)∧[(-2)bni_26 + (-1)Bound*bni_26] + [(-1)bni_26]x0[2] + [(-1)bni_26]x2[2] + [bni_26]x1[2] ≥ 0∧[(-1)bso_27] ≥ 0)
(42) (x0[2] ≥ 0∧x2[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(538_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [(-1)bni_26]x2[2] + [bni_26]x1[2] ≥ 0∧[(-1)bso_27] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = [3]
POL(538_0_MAIN_LOAD(x1, x2, x3)) = [-1] + [-1]x2 + x1
POL(COND_538_0_MAIN_LOAD(x1, x2, x3, x4)) = [-1] + [-1]x3 + x2
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(-1) = [-1]
POL(<=(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
POL(COND_538_0_MAIN_LOAD1(x1, x2, x3, x4)) = [-1] + [-1]x3 + x2
COND_538_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1]) → 538_0_MAIN_LOAD(x1[1], +(x2[1], 1), x0[1])
538_0_MAIN_LOAD(x1[0], x2[0], x0[0]) → COND_538_0_MAIN_LOAD(&&(&&(>(x2[0], -1), <=(x2[0], x0[0])), >(x1[0], x0[0])), x1[0], x2[0], x0[0])
COND_538_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1]) → 538_0_MAIN_LOAD(x1[1], +(x2[1], 1), x0[1])
538_0_MAIN_LOAD(x1[0], x2[0], x0[0]) → COND_538_0_MAIN_LOAD(&&(&&(>(x2[0], -1), <=(x2[0], x0[0])), >(x1[0], x0[0])), x1[0], x2[0], x0[0])
538_0_MAIN_LOAD(x1[2], x2[2], x0[2]) → COND_538_0_MAIN_LOAD1(&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >(x0[2], -1)), x1[2], x2[2], x0[2])
COND_538_0_MAIN_LOAD1(TRUE, x1[3], x2[3], x0[3]) → 538_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(3) -> (0), if (x1[3] →* x1[0]∧x2[3] →* x2[0]∧x0[3] + 1 →* x0[0])
(3) -> (2), if (x1[3] →* x1[2]∧x2[3] →* x2[2]∧x0[3] + 1 →* x0[2])
(2) -> (3), if (x2[2] > x0[2] && x1[2] > x0[2] && x0[2] > -1 ∧x1[2] →* x1[3]∧x2[2] →* x2[3]∧x0[2] →* x0[3])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(3) -> (2), if (x1[3] →* x1[2]∧x2[3] →* x2[2]∧x0[3] + 1 →* x0[2])
(2) -> (3), if (x2[2] > x0[2] && x1[2] > x0[2] && x0[2] > -1 ∧x1[2] →* x1[3]∧x2[2] →* x2[3]∧x0[2] →* x0[3])
(1) (&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >(x0[2], -1))=TRUE∧x1[2]=x1[3]∧x2[2]=x2[3]∧x0[2]=x0[3]∧x1[3]=x1[2]1∧x2[3]=x2[2]1∧+(x0[3], 1)=x0[2]1 ⇒ COND_538_0_MAIN_LOAD1(TRUE, x1[3], x2[3], x0[3])≥NonInfC∧COND_538_0_MAIN_LOAD1(TRUE, x1[3], x2[3], x0[3])≥538_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))∧(UIncreasing(538_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))), ≥))
(2) (>(x0[2], -1)=TRUE∧>(x2[2], x0[2])=TRUE∧>(x1[2], x0[2])=TRUE ⇒ COND_538_0_MAIN_LOAD1(TRUE, x1[2], x2[2], x0[2])≥NonInfC∧COND_538_0_MAIN_LOAD1(TRUE, x1[2], x2[2], x0[2])≥538_0_MAIN_LOAD(x1[2], x2[2], +(x0[2], 1))∧(UIncreasing(538_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))), ≥))
(3) (x0[2] ≥ 0∧x2[2] + [-1] + [-1]x0[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(538_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [(-1)bni_14]x0[2] + [bni_14]x2[2] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(4) (x0[2] ≥ 0∧x2[2] + [-1] + [-1]x0[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(538_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [(-1)bni_14]x0[2] + [bni_14]x2[2] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(5) (x0[2] ≥ 0∧x2[2] + [-1] + [-1]x0[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(538_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))), ≥)∧[(-1)bni_14 + (-1)Bound*bni_14] + [(-1)bni_14]x0[2] + [bni_14]x2[2] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(6) (x0[2] ≥ 0∧x2[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(538_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))), ≥)∧[(-1)Bound*bni_14] + [bni_14]x2[2] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(7) (x0[2] ≥ 0∧x2[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(538_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))), ≥)∧[(-1)Bound*bni_14] + [bni_14]x2[2] ≥ 0∧[1 + (-1)bso_15] ≥ 0)
(8) (&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >(x0[2], -1))=TRUE∧x1[2]=x1[3]∧x2[2]=x2[3]∧x0[2]=x0[3] ⇒ 538_0_MAIN_LOAD(x1[2], x2[2], x0[2])≥NonInfC∧538_0_MAIN_LOAD(x1[2], x2[2], x0[2])≥COND_538_0_MAIN_LOAD1(&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >(x0[2], -1)), x1[2], x2[2], x0[2])∧(UIncreasing(COND_538_0_MAIN_LOAD1(&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >(x0[2], -1)), x1[2], x2[2], x0[2])), ≥))
(9) (>(x0[2], -1)=TRUE∧>(x2[2], x0[2])=TRUE∧>(x1[2], x0[2])=TRUE ⇒ 538_0_MAIN_LOAD(x1[2], x2[2], x0[2])≥NonInfC∧538_0_MAIN_LOAD(x1[2], x2[2], x0[2])≥COND_538_0_MAIN_LOAD1(&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >(x0[2], -1)), x1[2], x2[2], x0[2])∧(UIncreasing(COND_538_0_MAIN_LOAD1(&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >(x0[2], -1)), x1[2], x2[2], x0[2])), ≥))
(10) (x0[2] ≥ 0∧x2[2] + [-1] + [-1]x0[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_538_0_MAIN_LOAD1(&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >(x0[2], -1)), x1[2], x2[2], x0[2])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [(-1)bni_16]x0[2] + [bni_16]x2[2] ≥ 0∧[(-1)bso_17] ≥ 0)
(11) (x0[2] ≥ 0∧x2[2] + [-1] + [-1]x0[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_538_0_MAIN_LOAD1(&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >(x0[2], -1)), x1[2], x2[2], x0[2])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [(-1)bni_16]x0[2] + [bni_16]x2[2] ≥ 0∧[(-1)bso_17] ≥ 0)
(12) (x0[2] ≥ 0∧x2[2] + [-1] + [-1]x0[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_538_0_MAIN_LOAD1(&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >(x0[2], -1)), x1[2], x2[2], x0[2])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [(-1)bni_16]x0[2] + [bni_16]x2[2] ≥ 0∧[(-1)bso_17] ≥ 0)
(13) (x0[2] ≥ 0∧x2[2] ≥ 0∧x1[2] + [-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_538_0_MAIN_LOAD1(&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >(x0[2], -1)), x1[2], x2[2], x0[2])), ≥)∧[(-1)Bound*bni_16] + [bni_16]x2[2] ≥ 0∧[(-1)bso_17] ≥ 0)
(14) (x0[2] ≥ 0∧x2[2] ≥ 0∧x1[2] ≥ 0 ⇒ (UIncreasing(COND_538_0_MAIN_LOAD1(&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >(x0[2], -1)), x1[2], x2[2], x0[2])), ≥)∧[(-1)Bound*bni_16] + [bni_16]x2[2] ≥ 0∧[(-1)bso_17] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_538_0_MAIN_LOAD1(x1, x2, x3, x4)) = [-1] + [-1]x4 + x3 + [-1]x1
POL(538_0_MAIN_LOAD(x1, x2, x3)) = [-1] + [-1]x3 + x2
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
POL(&&(x1, x2)) = 0
POL(>(x1, x2)) = [-1]
POL(-1) = [-1]
COND_538_0_MAIN_LOAD1(TRUE, x1[3], x2[3], x0[3]) → 538_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))
COND_538_0_MAIN_LOAD1(TRUE, x1[3], x2[3], x0[3]) → 538_0_MAIN_LOAD(x1[3], x2[3], +(x0[3], 1))
538_0_MAIN_LOAD(x1[2], x2[2], x0[2]) → COND_538_0_MAIN_LOAD1(&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >(x0[2], -1)), x1[2], x2[2], x0[2])
538_0_MAIN_LOAD(x1[2], x2[2], x0[2]) → COND_538_0_MAIN_LOAD1(&&(&&(>(x2[2], x0[2]), >(x1[2], x0[2])), >(x0[2], -1)), x1[2], x2[2], x0[2])
&&(TRUE, TRUE)1 ↔ TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(FALSE, FALSE)1 ↔ FALSE1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer