0 JBC
↳1 JBCToGraph (⇒, 110 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 100 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 430 ms)
↳8 IDP
↳9 IDependencyGraphProof (⇔, 0 ms)
↳10 IDP
↳11 IDPNonInfProof (⇒, 70 ms)
↳12 IDP
↳13 IDependencyGraphProof (⇔, 0 ms)
↳14 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaC2 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
while (x >= 0) {
x = x+1;
int y = 1;
while (x >= y) {
y++;
}
x = x-2;
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 28 rules for P and 0 rules for R.
P rules:
394_0_main_LT(EOS(STATIC_394), i45, i45) → 398_0_main_LT(EOS(STATIC_398), i45, i45)
398_0_main_LT(EOS(STATIC_398), i45, i45) → 402_0_main_Load(EOS(STATIC_402), i45) | >=(i45, 0)
402_0_main_Load(EOS(STATIC_402), i45) → 406_0_main_ConstantStackPush(EOS(STATIC_406), i45)
406_0_main_ConstantStackPush(EOS(STATIC_406), i45) → 408_0_main_IntArithmetic(EOS(STATIC_408), i45, 1)
408_0_main_IntArithmetic(EOS(STATIC_408), i45, matching1) → 410_0_main_Store(EOS(STATIC_410), +(i45, 1)) | &&(>=(i45, 0), =(matching1, 1))
410_0_main_Store(EOS(STATIC_410), i46) → 412_0_main_ConstantStackPush(EOS(STATIC_412), i46)
412_0_main_ConstantStackPush(EOS(STATIC_412), i46) → 414_0_main_Store(EOS(STATIC_414), i46, 1)
414_0_main_Store(EOS(STATIC_414), i46, matching1) → 416_0_main_Load(EOS(STATIC_416), i46, 1) | =(matching1, 1)
416_0_main_Load(EOS(STATIC_416), i46, matching1) → 431_0_main_Load(EOS(STATIC_431), i46, 1) | =(matching1, 1)
431_0_main_Load(EOS(STATIC_431), i46, i47) → 459_0_main_Load(EOS(STATIC_459), i46, i47)
459_0_main_Load(EOS(STATIC_459), i46, i51) → 487_0_main_Load(EOS(STATIC_487), i46, i51)
487_0_main_Load(EOS(STATIC_487), i46, i54) → 515_0_main_Load(EOS(STATIC_515), i46, i54)
515_0_main_Load(EOS(STATIC_515), i46, i58) → 518_0_main_Load(EOS(STATIC_518), i46, i58, i46)
518_0_main_Load(EOS(STATIC_518), i46, i58, i46) → 521_0_main_LT(EOS(STATIC_521), i46, i58, i46, i58)
521_0_main_LT(EOS(STATIC_521), i46, i58, i46, i58) → 523_0_main_LT(EOS(STATIC_523), i46, i58, i46, i58)
521_0_main_LT(EOS(STATIC_521), i46, i58, i46, i58) → 524_0_main_LT(EOS(STATIC_524), i46, i58, i46, i58)
523_0_main_LT(EOS(STATIC_523), i46, i58, i46, i58) → 526_0_main_Load(EOS(STATIC_526), i46) | <(i46, i58)
526_0_main_Load(EOS(STATIC_526), i46) → 530_0_main_ConstantStackPush(EOS(STATIC_530), i46)
530_0_main_ConstantStackPush(EOS(STATIC_530), i46) → 535_0_main_IntArithmetic(EOS(STATIC_535), i46, 2)
535_0_main_IntArithmetic(EOS(STATIC_535), i46, matching1) → 541_0_main_Store(EOS(STATIC_541), -(i46, 2)) | &&(>(i46, 0), =(matching1, 2))
541_0_main_Store(EOS(STATIC_541), i62) → 543_0_main_JMP(EOS(STATIC_543), i62)
543_0_main_JMP(EOS(STATIC_543), i62) → 546_0_main_Load(EOS(STATIC_546), i62)
546_0_main_Load(EOS(STATIC_546), i62) → 391_0_main_Load(EOS(STATIC_391), i62)
391_0_main_Load(EOS(STATIC_391), i42) → 394_0_main_LT(EOS(STATIC_394), i42, i42)
524_0_main_LT(EOS(STATIC_524), i46, i58, i46, i58) → 528_0_main_Inc(EOS(STATIC_528), i46, i58) | >=(i46, i58)
528_0_main_Inc(EOS(STATIC_528), i46, i58) → 532_0_main_JMP(EOS(STATIC_532), i46, +(i58, 1)) | >(i58, 0)
532_0_main_JMP(EOS(STATIC_532), i46, i60) → 539_0_main_Load(EOS(STATIC_539), i46, i60)
539_0_main_Load(EOS(STATIC_539), i46, i60) → 515_0_main_Load(EOS(STATIC_515), i46, i60)
R rules:
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
521_0_main_LT(EOS(STATIC_521), x0, x1, x0, x1) → 521_0_main_LT(EOS(STATIC_521), +(-(x0, 2), 1), 1, +(-(x0, 2), 1), 1) | &&(>(x1, x0), >(+(x0, 1), 2))
521_0_main_LT(EOS(STATIC_521), x0, x1, x0, x1) → 521_0_main_LT(EOS(STATIC_521), x0, +(x1, 1), x0, +(x1, 1)) | &&(>(x1, 0), <=(x1, x0))
R rules:
Filtered ground terms:
521_0_main_LT(x1, x2, x3, x4, x5) → 521_0_main_LT(x2, x3, x4, x5)
EOS(x1) → EOS
Cond_521_0_main_LT1(x1, x2, x3, x4, x5, x6) → Cond_521_0_main_LT1(x1, x3, x4, x5, x6)
Cond_521_0_main_LT(x1, x2, x3, x4, x5, x6) → Cond_521_0_main_LT(x1, x3, x4, x5, x6)
Filtered duplicate args:
521_0_main_LT(x1, x2, x3, x4) → 521_0_main_LT(x3, x4)
Cond_521_0_main_LT(x1, x2, x3, x4, x5) → Cond_521_0_main_LT(x1, x4, x5)
Cond_521_0_main_LT1(x1, x2, x3, x4, x5) → Cond_521_0_main_LT1(x1, x4, x5)
Filtered unneeded arguments:
Cond_521_0_main_LT(x1, x2, x3) → Cond_521_0_main_LT(x1, x2)
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
521_0_main_LT(x0, x1) → 521_0_main_LT(+(-(x0, 2), 1), 1) | &&(>(x1, x0), >(x0, 1))
521_0_main_LT(x0, x1) → 521_0_main_LT(x0, +(x1, 1)) | &&(>(x1, 0), <=(x1, x0))
R rules:
Finished conversion. Obtained 4 rules for P and 0 rules for R. System has predefined symbols.
P rules:
521_0_MAIN_LT(x0, x1) → COND_521_0_MAIN_LT(&&(>(x1, x0), >(x0, 1)), x0, x1)
COND_521_0_MAIN_LT(TRUE, x0, x1) → 521_0_MAIN_LT(+(-(x0, 2), 1), 1)
521_0_MAIN_LT(x0, x1) → COND_521_0_MAIN_LT1(&&(>(x1, 0), <=(x1, x0)), x0, x1)
COND_521_0_MAIN_LT1(TRUE, x0, x1) → 521_0_MAIN_LT(x0, +(x1, 1))
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if (x1[0] > x0[0] && x0[0] > 1 ∧x0[0] →* x0[1]∧x1[0] →* x1[1])
(1) -> (0), if (x0[1] - 2 + 1 →* x0[0]∧1 →* x1[0])
(1) -> (2), if (x0[1] - 2 + 1 →* x0[2]∧1 →* x1[2])
(2) -> (3), if (x1[2] > 0 && x1[2] <= x0[2] ∧x0[2] →* x0[3]∧x1[2] →* x1[3])
(3) -> (0), if (x0[3] →* x0[0]∧x1[3] + 1 →* x1[0])
(3) -> (2), if (x0[3] →* x0[2]∧x1[3] + 1 →* x1[2])
(1) (&&(>(x1[0], x0[0]), >(x0[0], 1))=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1] ⇒ 521_0_MAIN_LT(x0[0], x1[0])≥NonInfC∧521_0_MAIN_LT(x0[0], x1[0])≥COND_521_0_MAIN_LT(&&(>(x1[0], x0[0]), >(x0[0], 1)), x0[0], x1[0])∧(UIncreasing(COND_521_0_MAIN_LT(&&(>(x1[0], x0[0]), >(x0[0], 1)), x0[0], x1[0])), ≥))
(2) (>(x1[0], x0[0])=TRUE∧>(x0[0], 1)=TRUE ⇒ 521_0_MAIN_LT(x0[0], x1[0])≥NonInfC∧521_0_MAIN_LT(x0[0], x1[0])≥COND_521_0_MAIN_LT(&&(>(x1[0], x0[0]), >(x0[0], 1)), x0[0], x1[0])∧(UIncreasing(COND_521_0_MAIN_LT(&&(>(x1[0], x0[0]), >(x0[0], 1)), x0[0], x1[0])), ≥))
(3) (x1[0] + [-1] + [-1]x0[0] ≥ 0∧x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_521_0_MAIN_LT(&&(>(x1[0], x0[0]), >(x0[0], 1)), x0[0], x1[0])), ≥)∧[(2)bni_17 + (-1)Bound*bni_17] + [bni_17]x0[0] ≥ 0∧[1 + (-1)bso_18] ≥ 0)
(4) (x1[0] + [-1] + [-1]x0[0] ≥ 0∧x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_521_0_MAIN_LT(&&(>(x1[0], x0[0]), >(x0[0], 1)), x0[0], x1[0])), ≥)∧[(2)bni_17 + (-1)Bound*bni_17] + [bni_17]x0[0] ≥ 0∧[1 + (-1)bso_18] ≥ 0)
(5) (x1[0] + [-1] + [-1]x0[0] ≥ 0∧x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_521_0_MAIN_LT(&&(>(x1[0], x0[0]), >(x0[0], 1)), x0[0], x1[0])), ≥)∧[(2)bni_17 + (-1)Bound*bni_17] + [bni_17]x0[0] ≥ 0∧[1 + (-1)bso_18] ≥ 0)
(6) (x1[0] ≥ 0∧x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_521_0_MAIN_LT(&&(>(x1[0], x0[0]), >(x0[0], 1)), x0[0], x1[0])), ≥)∧[(2)bni_17 + (-1)Bound*bni_17] + [bni_17]x0[0] ≥ 0∧[1 + (-1)bso_18] ≥ 0)
(7) (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_521_0_MAIN_LT(&&(>(x1[0], x0[0]), >(x0[0], 1)), x0[0], x1[0])), ≥)∧[(4)bni_17 + (-1)Bound*bni_17] + [bni_17]x0[0] ≥ 0∧[1 + (-1)bso_18] ≥ 0)
(8) (&&(>(x1[0], x0[0]), >(x0[0], 1))=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1]∧+(-(x0[1], 2), 1)=x0[0]1∧1=x1[0]1 ⇒ COND_521_0_MAIN_LT(TRUE, x0[1], x1[1])≥NonInfC∧COND_521_0_MAIN_LT(TRUE, x0[1], x1[1])≥521_0_MAIN_LT(+(-(x0[1], 2), 1), 1)∧(UIncreasing(521_0_MAIN_LT(+(-(x0[1], 2), 1), 1)), ≥))
(9) (>(x1[0], x0[0])=TRUE∧>(x0[0], 1)=TRUE ⇒ COND_521_0_MAIN_LT(TRUE, x0[0], x1[0])≥NonInfC∧COND_521_0_MAIN_LT(TRUE, x0[0], x1[0])≥521_0_MAIN_LT(+(-(x0[0], 2), 1), 1)∧(UIncreasing(521_0_MAIN_LT(+(-(x0[1], 2), 1), 1)), ≥))
(10) (x1[0] + [-1] + [-1]x0[0] ≥ 0∧x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(521_0_MAIN_LT(+(-(x0[1], 2), 1), 1)), ≥)∧[bni_19 + (-1)Bound*bni_19] + [bni_19]x0[0] ≥ 0∧[(-1)bso_20] ≥ 0)
(11) (x1[0] + [-1] + [-1]x0[0] ≥ 0∧x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(521_0_MAIN_LT(+(-(x0[1], 2), 1), 1)), ≥)∧[bni_19 + (-1)Bound*bni_19] + [bni_19]x0[0] ≥ 0∧[(-1)bso_20] ≥ 0)
(12) (x1[0] + [-1] + [-1]x0[0] ≥ 0∧x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(521_0_MAIN_LT(+(-(x0[1], 2), 1), 1)), ≥)∧[bni_19 + (-1)Bound*bni_19] + [bni_19]x0[0] ≥ 0∧[(-1)bso_20] ≥ 0)
(13) (x1[0] ≥ 0∧x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(521_0_MAIN_LT(+(-(x0[1], 2), 1), 1)), ≥)∧[bni_19 + (-1)Bound*bni_19] + [bni_19]x0[0] ≥ 0∧[(-1)bso_20] ≥ 0)
(14) (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(521_0_MAIN_LT(+(-(x0[1], 2), 1), 1)), ≥)∧[(3)bni_19 + (-1)Bound*bni_19] + [bni_19]x0[0] ≥ 0∧[(-1)bso_20] ≥ 0)
(15) (&&(>(x1[0], x0[0]), >(x0[0], 1))=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1]∧+(-(x0[1], 2), 1)=x0[2]∧1=x1[2] ⇒ COND_521_0_MAIN_LT(TRUE, x0[1], x1[1])≥NonInfC∧COND_521_0_MAIN_LT(TRUE, x0[1], x1[1])≥521_0_MAIN_LT(+(-(x0[1], 2), 1), 1)∧(UIncreasing(521_0_MAIN_LT(+(-(x0[1], 2), 1), 1)), ≥))
(16) (>(x1[0], x0[0])=TRUE∧>(x0[0], 1)=TRUE ⇒ COND_521_0_MAIN_LT(TRUE, x0[0], x1[0])≥NonInfC∧COND_521_0_MAIN_LT(TRUE, x0[0], x1[0])≥521_0_MAIN_LT(+(-(x0[0], 2), 1), 1)∧(UIncreasing(521_0_MAIN_LT(+(-(x0[1], 2), 1), 1)), ≥))
(17) (x1[0] + [-1] + [-1]x0[0] ≥ 0∧x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(521_0_MAIN_LT(+(-(x0[1], 2), 1), 1)), ≥)∧[bni_19 + (-1)Bound*bni_19] + [bni_19]x0[0] ≥ 0∧[(-1)bso_20] ≥ 0)
(18) (x1[0] + [-1] + [-1]x0[0] ≥ 0∧x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(521_0_MAIN_LT(+(-(x0[1], 2), 1), 1)), ≥)∧[bni_19 + (-1)Bound*bni_19] + [bni_19]x0[0] ≥ 0∧[(-1)bso_20] ≥ 0)
(19) (x1[0] + [-1] + [-1]x0[0] ≥ 0∧x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(521_0_MAIN_LT(+(-(x0[1], 2), 1), 1)), ≥)∧[bni_19 + (-1)Bound*bni_19] + [bni_19]x0[0] ≥ 0∧[(-1)bso_20] ≥ 0)
(20) (x1[0] ≥ 0∧x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(521_0_MAIN_LT(+(-(x0[1], 2), 1), 1)), ≥)∧[bni_19 + (-1)Bound*bni_19] + [bni_19]x0[0] ≥ 0∧[(-1)bso_20] ≥ 0)
(21) (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(521_0_MAIN_LT(+(-(x0[1], 2), 1), 1)), ≥)∧[(3)bni_19 + (-1)Bound*bni_19] + [bni_19]x0[0] ≥ 0∧[(-1)bso_20] ≥ 0)
(22) (&&(>(x1[2], 0), <=(x1[2], x0[2]))=TRUE∧x0[2]=x0[3]∧x1[2]=x1[3] ⇒ 521_0_MAIN_LT(x0[2], x1[2])≥NonInfC∧521_0_MAIN_LT(x0[2], x1[2])≥COND_521_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])∧(UIncreasing(COND_521_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])), ≥))
(23) (>(x1[2], 0)=TRUE∧<=(x1[2], x0[2])=TRUE ⇒ 521_0_MAIN_LT(x0[2], x1[2])≥NonInfC∧521_0_MAIN_LT(x0[2], x1[2])≥COND_521_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])∧(UIncreasing(COND_521_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])), ≥))
(24) (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_521_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])), ≥)∧[(2)bni_21 + (-1)Bound*bni_21] + [bni_21]x0[2] ≥ 0∧[(-1)bso_22] ≥ 0)
(25) (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_521_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])), ≥)∧[(2)bni_21 + (-1)Bound*bni_21] + [bni_21]x0[2] ≥ 0∧[(-1)bso_22] ≥ 0)
(26) (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_521_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])), ≥)∧[(2)bni_21 + (-1)Bound*bni_21] + [bni_21]x0[2] ≥ 0∧[(-1)bso_22] ≥ 0)
(27) (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_521_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])), ≥)∧[(2)bni_21 + (-1)Bound*bni_21] + [bni_21]x0[2] ≥ 0∧[(-1)bso_22] ≥ 0)
(28) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_521_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])), ≥)∧[(3)bni_21 + (-1)Bound*bni_21] + [bni_21]x1[2] + [bni_21]x0[2] ≥ 0∧[(-1)bso_22] ≥ 0)
(29) (&&(>(x1[2], 0), <=(x1[2], x0[2]))=TRUE∧x0[2]=x0[3]∧x1[2]=x1[3]∧x0[3]=x0[0]∧+(x1[3], 1)=x1[0] ⇒ COND_521_0_MAIN_LT1(TRUE, x0[3], x1[3])≥NonInfC∧COND_521_0_MAIN_LT1(TRUE, x0[3], x1[3])≥521_0_MAIN_LT(x0[3], +(x1[3], 1))∧(UIncreasing(521_0_MAIN_LT(x0[3], +(x1[3], 1))), ≥))
(30) (>(x1[2], 0)=TRUE∧<=(x1[2], x0[2])=TRUE ⇒ COND_521_0_MAIN_LT1(TRUE, x0[2], x1[2])≥NonInfC∧COND_521_0_MAIN_LT1(TRUE, x0[2], x1[2])≥521_0_MAIN_LT(x0[2], +(x1[2], 1))∧(UIncreasing(521_0_MAIN_LT(x0[3], +(x1[3], 1))), ≥))
(31) (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(521_0_MAIN_LT(x0[3], +(x1[3], 1))), ≥)∧[(2)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(32) (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(521_0_MAIN_LT(x0[3], +(x1[3], 1))), ≥)∧[(2)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(33) (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(521_0_MAIN_LT(x0[3], +(x1[3], 1))), ≥)∧[(2)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(34) (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(521_0_MAIN_LT(x0[3], +(x1[3], 1))), ≥)∧[(2)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(35) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(521_0_MAIN_LT(x0[3], +(x1[3], 1))), ≥)∧[(3)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x0[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(36) (&&(>(x1[2], 0), <=(x1[2], x0[2]))=TRUE∧x0[2]=x0[3]∧x1[2]=x1[3]∧x0[3]=x0[2]1∧+(x1[3], 1)=x1[2]1 ⇒ COND_521_0_MAIN_LT1(TRUE, x0[3], x1[3])≥NonInfC∧COND_521_0_MAIN_LT1(TRUE, x0[3], x1[3])≥521_0_MAIN_LT(x0[3], +(x1[3], 1))∧(UIncreasing(521_0_MAIN_LT(x0[3], +(x1[3], 1))), ≥))
(37) (>(x1[2], 0)=TRUE∧<=(x1[2], x0[2])=TRUE ⇒ COND_521_0_MAIN_LT1(TRUE, x0[2], x1[2])≥NonInfC∧COND_521_0_MAIN_LT1(TRUE, x0[2], x1[2])≥521_0_MAIN_LT(x0[2], +(x1[2], 1))∧(UIncreasing(521_0_MAIN_LT(x0[3], +(x1[3], 1))), ≥))
(38) (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(521_0_MAIN_LT(x0[3], +(x1[3], 1))), ≥)∧[(2)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(39) (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(521_0_MAIN_LT(x0[3], +(x1[3], 1))), ≥)∧[(2)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(40) (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(521_0_MAIN_LT(x0[3], +(x1[3], 1))), ≥)∧[(2)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(41) (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(521_0_MAIN_LT(x0[3], +(x1[3], 1))), ≥)∧[(2)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(42) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(521_0_MAIN_LT(x0[3], +(x1[3], 1))), ≥)∧[(3)bni_23 + (-1)Bound*bni_23] + [bni_23]x1[2] + [bni_23]x0[2] ≥ 0∧[(-1)bso_24] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(521_0_MAIN_LT(x1, x2)) = [2] + x1
POL(COND_521_0_MAIN_LT(x1, x2, x3)) = [1] + x2
POL(&&(x1, x2)) = 0
POL(>(x1, x2)) = [-1]
POL(1) = [1]
POL(+(x1, x2)) = x1 + x2
POL(-(x1, x2)) = x1 + [-1]x2
POL(2) = [2]
POL(COND_521_0_MAIN_LT1(x1, x2, x3)) = [2] + x2 + [-1]x1
POL(0) = 0
POL(<=(x1, x2)) = [-1]
521_0_MAIN_LT(x0[0], x1[0]) → COND_521_0_MAIN_LT(&&(>(x1[0], x0[0]), >(x0[0], 1)), x0[0], x1[0])
521_0_MAIN_LT(x0[0], x1[0]) → COND_521_0_MAIN_LT(&&(>(x1[0], x0[0]), >(x0[0], 1)), x0[0], x1[0])
COND_521_0_MAIN_LT(TRUE, x0[1], x1[1]) → 521_0_MAIN_LT(+(-(x0[1], 2), 1), 1)
521_0_MAIN_LT(x0[2], x1[2]) → COND_521_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])
COND_521_0_MAIN_LT1(TRUE, x0[3], x1[3]) → 521_0_MAIN_LT(x0[3], +(x1[3], 1))
COND_521_0_MAIN_LT(TRUE, x0[1], x1[1]) → 521_0_MAIN_LT(+(-(x0[1], 2), 1), 1)
521_0_MAIN_LT(x0[2], x1[2]) → COND_521_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])
COND_521_0_MAIN_LT1(TRUE, x0[3], x1[3]) → 521_0_MAIN_LT(x0[3], +(x1[3], 1))
TRUE1 → &&(TRUE, TRUE)1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(FALSE, FALSE)1 ↔ FALSE1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(1) -> (2), if (x0[1] - 2 + 1 →* x0[2]∧1 →* x1[2])
(3) -> (2), if (x0[3] →* x0[2]∧x1[3] + 1 →* x1[2])
(2) -> (3), if (x1[2] > 0 && x1[2] <= x0[2] ∧x0[2] →* x0[3]∧x1[2] →* x1[3])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(3) -> (2), if (x0[3] →* x0[2]∧x1[3] + 1 →* x1[2])
(2) -> (3), if (x1[2] > 0 && x1[2] <= x0[2] ∧x0[2] →* x0[3]∧x1[2] →* x1[3])
(1) (&&(>(x1[2], 0), <=(x1[2], x0[2]))=TRUE∧x0[2]=x0[3]∧x1[2]=x1[3]∧x0[3]=x0[2]1∧+(x1[3], 1)=x1[2]1 ⇒ COND_521_0_MAIN_LT1(TRUE, x0[3], x1[3])≥NonInfC∧COND_521_0_MAIN_LT1(TRUE, x0[3], x1[3])≥521_0_MAIN_LT(x0[3], +(x1[3], 1))∧(UIncreasing(521_0_MAIN_LT(x0[3], +(x1[3], 1))), ≥))
(2) (>(x1[2], 0)=TRUE∧<=(x1[2], x0[2])=TRUE ⇒ COND_521_0_MAIN_LT1(TRUE, x0[2], x1[2])≥NonInfC∧COND_521_0_MAIN_LT1(TRUE, x0[2], x1[2])≥521_0_MAIN_LT(x0[2], +(x1[2], 1))∧(UIncreasing(521_0_MAIN_LT(x0[3], +(x1[3], 1))), ≥))
(3) (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(521_0_MAIN_LT(x0[3], +(x1[3], 1))), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x1[2] + [bni_13]x0[2] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(4) (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(521_0_MAIN_LT(x0[3], +(x1[3], 1))), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x1[2] + [bni_13]x0[2] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(5) (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(521_0_MAIN_LT(x0[3], +(x1[3], 1))), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x1[2] + [bni_13]x0[2] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(6) (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(521_0_MAIN_LT(x0[3], +(x1[3], 1))), ≥)∧[(-2)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x1[2] + [bni_13]x0[2] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(7) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(521_0_MAIN_LT(x0[3], +(x1[3], 1))), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[2] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(8) (&&(>(x1[2], 0), <=(x1[2], x0[2]))=TRUE∧x0[2]=x0[3]∧x1[2]=x1[3] ⇒ 521_0_MAIN_LT(x0[2], x1[2])≥NonInfC∧521_0_MAIN_LT(x0[2], x1[2])≥COND_521_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])∧(UIncreasing(COND_521_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])), ≥))
(9) (>(x1[2], 0)=TRUE∧<=(x1[2], x0[2])=TRUE ⇒ 521_0_MAIN_LT(x0[2], x1[2])≥NonInfC∧521_0_MAIN_LT(x0[2], x1[2])≥COND_521_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])∧(UIncreasing(COND_521_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])), ≥))
(10) (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_521_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]x1[2] + [bni_15]x0[2] ≥ 0∧[(-1)bso_16] ≥ 0)
(11) (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_521_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]x1[2] + [bni_15]x0[2] ≥ 0∧[(-1)bso_16] ≥ 0)
(12) (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_521_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]x1[2] + [bni_15]x0[2] ≥ 0∧[(-1)bso_16] ≥ 0)
(13) (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_521_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])), ≥)∧[(-2)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]x1[2] + [bni_15]x0[2] ≥ 0∧[(-1)bso_16] ≥ 0)
(14) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_521_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [bni_15]x0[2] ≥ 0∧[(-1)bso_16] ≥ 0)
POL(TRUE) = [3]
POL(FALSE) = 0
POL(COND_521_0_MAIN_LT1(x1, x2, x3)) = [-1] + [-1]x3 + x2
POL(521_0_MAIN_LT(x1, x2)) = [-1] + [-1]x2 + x1
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
POL(&&(x1, x2)) = 0
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(<=(x1, x2)) = [-1]
COND_521_0_MAIN_LT1(TRUE, x0[3], x1[3]) → 521_0_MAIN_LT(x0[3], +(x1[3], 1))
COND_521_0_MAIN_LT1(TRUE, x0[3], x1[3]) → 521_0_MAIN_LT(x0[3], +(x1[3], 1))
521_0_MAIN_LT(x0[2], x1[2]) → COND_521_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])
521_0_MAIN_LT(x0[2], x1[2]) → COND_521_0_MAIN_LT1(&&(>(x1[2], 0), <=(x1[2], x0[2])), x0[2], x1[2])
TRUE1 → &&(TRUE, TRUE)1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer