(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: PastaC11
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/

public class PastaC11 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();

while (true) {
if (x >= 0) {
x--;
y = Random.random();
} else if (y >= 0) {
y--;
} else {
break;
}
}
}
}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBCToGraph (SOUND transformation)

Constructed TerminationGraph.

(2) Obligation:

Termination Graph based on JBC Program:
PastaC11.main([Ljava/lang/String;)V: Graph of 252 nodes with 1 SCC.


(3) TerminationGraphToSCCProof (SOUND transformation)

Splitted TerminationGraph to 1 SCCs.

(4) Obligation:

SCC of termination graph based on JBC Program.
SCC contains nodes from the following methods: PastaC11.main([Ljava/lang/String;)V
SCC calls the following helper methods:
Performed SCC analyses: UsedFieldsAnalysis

(5) SCCToIDPv1Proof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Log:

Generated 33 rules for P and 0 rules for R.


P rules:
1462_0_main_LT(EOS(STATIC_1462), matching1, i734, matching2) → 1464_0_main_LT(EOS(STATIC_1464), -1, i734, -1) | &&(=(matching1, -1), =(matching2, -1))
1462_0_main_LT(EOS(STATIC_1462), i740, i734, i740) → 1465_0_main_LT(EOS(STATIC_1465), i740, i734, i740)
1464_0_main_LT(EOS(STATIC_1464), matching1, i734, matching2) → 1466_0_main_Load(EOS(STATIC_1466), -1, i734) | &&(&&(<(-1, 0), =(matching1, -1)), =(matching2, -1))
1466_0_main_Load(EOS(STATIC_1466), matching1, i734) → 1469_0_main_LT(EOS(STATIC_1469), -1, i734, i734) | =(matching1, -1)
1469_0_main_LT(EOS(STATIC_1469), matching1, i745, i745) → 1473_0_main_LT(EOS(STATIC_1473), -1, i745, i745) | =(matching1, -1)
1473_0_main_LT(EOS(STATIC_1473), matching1, i745, i745) → 1477_0_main_Inc(EOS(STATIC_1477), -1, i745) | &&(>=(i745, 0), =(matching1, -1))
1477_0_main_Inc(EOS(STATIC_1477), matching1, i745) → 1480_0_main_JMP(EOS(STATIC_1480), -1, +(i745, -1)) | &&(>=(i745, 0), =(matching1, -1))
1480_0_main_JMP(EOS(STATIC_1480), matching1, i746) → 1484_0_main_Load(EOS(STATIC_1484), -1, i746) | =(matching1, -1)
1484_0_main_Load(EOS(STATIC_1484), matching1, i746) → 1460_0_main_Load(EOS(STATIC_1460), -1, i746) | =(matching1, -1)
1460_0_main_Load(EOS(STATIC_1460), i733, i734) → 1462_0_main_LT(EOS(STATIC_1462), i733, i734, i733)
1465_0_main_LT(EOS(STATIC_1465), i740, i734, i740) → 1467_0_main_Inc(EOS(STATIC_1467), i740) | >=(i740, 0)
1467_0_main_Inc(EOS(STATIC_1467), i740) → 1470_0_main_InvokeMethod(EOS(STATIC_1470), +(i740, -1)) | >=(i740, 0)
1470_0_main_InvokeMethod(EOS(STATIC_1470), i743) → 1475_0_random_FieldAccess(EOS(STATIC_1475), i743)
1475_0_random_FieldAccess(EOS(STATIC_1475), i743) → 1481_0_random_FieldAccess(EOS(STATIC_1481), i743)
1481_0_random_FieldAccess(EOS(STATIC_1481), i743) → 1486_0_random_ArrayAccess(EOS(STATIC_1486), i743)
1486_0_random_ArrayAccess(EOS(STATIC_1486), i743) → 1603_0_random_ArrayAccess(EOS(STATIC_1603), i743)
1603_0_random_ArrayAccess(EOS(STATIC_1603), i743) → 1606_0_random_Store(EOS(STATIC_1606), i743, o551)
1606_0_random_Store(EOS(STATIC_1606), i743, o551) → 1608_0_random_FieldAccess(EOS(STATIC_1608), i743, o551)
1608_0_random_FieldAccess(EOS(STATIC_1608), i743, o551) → 1610_0_random_ConstantStackPush(EOS(STATIC_1610), i743, o551)
1610_0_random_ConstantStackPush(EOS(STATIC_1610), i743, o551) → 1615_0_random_IntArithmetic(EOS(STATIC_1615), i743, o551)
1615_0_random_IntArithmetic(EOS(STATIC_1615), i743, o551) → 1617_0_random_FieldAccess(EOS(STATIC_1617), i743, o551)
1617_0_random_FieldAccess(EOS(STATIC_1617), i743, o551) → 1619_0_random_Load(EOS(STATIC_1619), i743, o551)
1619_0_random_Load(EOS(STATIC_1619), i743, o551) → 1625_0_random_InvokeMethod(EOS(STATIC_1625), i743, o551)
1625_0_random_InvokeMethod(EOS(STATIC_1625), i743, java.lang.Object(o571sub)) → 1628_0_random_InvokeMethod(EOS(STATIC_1628), i743, java.lang.Object(o571sub))
1628_0_random_InvokeMethod(EOS(STATIC_1628), i743, java.lang.Object(o571sub)) → 1630_0_length_Load(EOS(STATIC_1630), i743, java.lang.Object(o571sub), java.lang.Object(o571sub))
1630_0_length_Load(EOS(STATIC_1630), i743, java.lang.Object(o571sub), java.lang.Object(o571sub)) → 1638_0_length_FieldAccess(EOS(STATIC_1638), i743, java.lang.Object(o571sub), java.lang.Object(o571sub))
1638_0_length_FieldAccess(EOS(STATIC_1638), i743, java.lang.Object(java.lang.String(o579sub, i926)), java.lang.Object(java.lang.String(o579sub, i926))) → 1640_0_length_FieldAccess(EOS(STATIC_1640), i743, java.lang.Object(java.lang.String(o579sub, i926)), java.lang.Object(java.lang.String(o579sub, i926))) | &&(>=(i926, 0), >=(i927, 0))
1640_0_length_FieldAccess(EOS(STATIC_1640), i743, java.lang.Object(java.lang.String(o579sub, i926)), java.lang.Object(java.lang.String(o579sub, i926))) → 1644_0_length_Return(EOS(STATIC_1644), i743, java.lang.Object(java.lang.String(o579sub, i926)), i926)
1644_0_length_Return(EOS(STATIC_1644), i743, java.lang.Object(java.lang.String(o579sub, i926)), i926) → 1648_0_random_Return(EOS(STATIC_1648), i743, i926)
1648_0_random_Return(EOS(STATIC_1648), i743, i926) → 1650_0_main_Store(EOS(STATIC_1650), i743, i926)
1650_0_main_Store(EOS(STATIC_1650), i743, i926) → 1656_0_main_JMP(EOS(STATIC_1656), i743, i926)
1656_0_main_JMP(EOS(STATIC_1656), i743, i926) → 1662_0_main_Load(EOS(STATIC_1662), i743, i926)
1662_0_main_Load(EOS(STATIC_1662), i743, i926) → 1460_0_main_Load(EOS(STATIC_1460), i743, i926)
R rules:

Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.


P rules:
1462_0_main_LT(EOS(STATIC_1462), -1, x1, -1) → 1462_0_main_LT(EOS(STATIC_1462), -1, +(x1, -1), -1) | >(+(x1, 1), 0)
1462_0_main_LT(EOS(STATIC_1462), x0, x1, x0) → 1462_0_main_LT(EOS(STATIC_1462), +(x0, -1), x2, +(x0, -1)) | &&(>(+(x2, 1), 0), >(+(x0, 1), 0))
R rules:

Filtered ground terms:



1462_0_main_LT(x1, x2, x3, x4) → 1462_0_main_LT(x2, x3, x4)
EOS(x1) → EOS
Cond_1462_0_main_LT1(x1, x2, x3, x4, x5, x6) → Cond_1462_0_main_LT1(x1, x3, x4, x5, x6)
Cond_1462_0_main_LT(x1, x2, x3, x4, x5) → Cond_1462_0_main_LT(x1, x4)

Filtered duplicate args:



1462_0_main_LT(x1, x2, x3) → 1462_0_main_LT(x2, x3)
Cond_1462_0_main_LT1(x1, x2, x3, x4, x5) → Cond_1462_0_main_LT1(x1, x3, x4, x5)

Filtered unneeded arguments:



Cond_1462_0_main_LT1(x1, x2, x3, x4) → Cond_1462_0_main_LT1(x1, x3, x4)

Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.


P rules:
1462_0_main_LT(x1, -1) → 1462_0_main_LT(+(x1, -1), -1) | >(x1, -1)
1462_0_main_LT(x1, x0) → 1462_0_main_LT(x2, +(x0, -1)) | &&(>(x2, -1), >(x0, -1))
R rules:

Finished conversion. Obtained 4 rules for P and 0 rules for R. System has predefined symbols.


P rules:
1462_0_MAIN_LT(x1, -1) → COND_1462_0_MAIN_LT(>(x1, -1), x1, -1)
COND_1462_0_MAIN_LT(TRUE, x1, -1) → 1462_0_MAIN_LT(+(x1, -1), -1)
1462_0_MAIN_LT(x1, x0) → COND_1462_0_MAIN_LT1(&&(>(x2, -1), >(x0, -1)), x1, x0, x2)
COND_1462_0_MAIN_LT1(TRUE, x1, x0, x2) → 1462_0_MAIN_LT(x2, +(x0, -1))
R rules:

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


R is empty.

The integer pair graph contains the following rules and edges:
(0): 1462_0_MAIN_LT(x1[0], -1) → COND_1462_0_MAIN_LT(x1[0] > -1, x1[0], -1)
(1): COND_1462_0_MAIN_LT(TRUE, x1[1], -1) → 1462_0_MAIN_LT(x1[1] + -1, -1)
(2): 1462_0_MAIN_LT(x1[2], x0[2]) → COND_1462_0_MAIN_LT1(x2[2] > -1 && x0[2] > -1, x1[2], x0[2], x2[2])
(3): COND_1462_0_MAIN_LT1(TRUE, x1[3], x0[3], x2[3]) → 1462_0_MAIN_LT(x2[3], x0[3] + -1)

(0) -> (1), if (x1[0] > -1x1[0]* x1[1])


(1) -> (0), if x1[1] + -1* x1[0]


(1) -> (2), if (x1[1] + -1* x1[2]-1* x0[2])


(2) -> (3), if (x2[2] > -1 && x0[2] > -1x1[2]* x1[3]x0[2]* x0[3]x2[2]* x2[3])


(3) -> (0), if (x2[3]* x1[0]x0[3] + -1* -1)


(3) -> (2), if (x2[3]* x1[2]x0[3] + -1* x0[2])



The set Q is empty.

(7) IDPNonInfProof (SOUND transformation)

Used the following options for this NonInfProof:
IDPGPoloSolver: Range: [(-1,2)] IsNat: false Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpDefaultShapeHeuristic@21ee921c Constraint Generator: NonInfConstraintGenerator: PathGenerator: MetricPathGenerator: Max Left Steps: 1 Max Right Steps: 1

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 1462_0_MAIN_LT(x1, -1) → COND_1462_0_MAIN_LT(>(x1, -1), x1, -1) the following chains were created:
  • We consider the chain 1462_0_MAIN_LT(x1[0], -1) → COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1), COND_1462_0_MAIN_LT(TRUE, x1[1], -1) → 1462_0_MAIN_LT(+(x1[1], -1), -1) which results in the following constraint:

    (1)    (>(x1[0], -1)=TRUEx1[0]=x1[1]1462_0_MAIN_LT(x1[0], -1)≥NonInfC∧1462_0_MAIN_LT(x1[0], -1)≥COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1)∧(UIncreasing(COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1)), ≥))



    We simplified constraint (1) using rule (IV) which results in the following new constraint:

    (2)    (>(x1[0], -1)=TRUE1462_0_MAIN_LT(x1[0], -1)≥NonInfC∧1462_0_MAIN_LT(x1[0], -1)≥COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1)∧(UIncreasing(COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1)), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x1[0] ≥ 0 ⇒ (UIncreasing(COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1)), ≥)∧[(-2)bni_17 + (-1)Bound*bni_17] ≥ 0∧[(-1)bso_18] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x1[0] ≥ 0 ⇒ (UIncreasing(COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1)), ≥)∧[(-2)bni_17 + (-1)Bound*bni_17] ≥ 0∧[(-1)bso_18] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x1[0] ≥ 0 ⇒ (UIncreasing(COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1)), ≥)∧[(-2)bni_17 + (-1)Bound*bni_17] ≥ 0∧[(-1)bso_18] ≥ 0)







For Pair COND_1462_0_MAIN_LT(TRUE, x1, -1) → 1462_0_MAIN_LT(+(x1, -1), -1) the following chains were created:
  • We consider the chain 1462_0_MAIN_LT(x1[0], -1) → COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1), COND_1462_0_MAIN_LT(TRUE, x1[1], -1) → 1462_0_MAIN_LT(+(x1[1], -1), -1), 1462_0_MAIN_LT(x1[0], -1) → COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1) which results in the following constraint:

    (6)    (>(x1[0], -1)=TRUEx1[0]=x1[1]+(x1[1], -1)=x1[0]1COND_1462_0_MAIN_LT(TRUE, x1[1], -1)≥NonInfC∧COND_1462_0_MAIN_LT(TRUE, x1[1], -1)≥1462_0_MAIN_LT(+(x1[1], -1), -1)∧(UIncreasing(1462_0_MAIN_LT(+(x1[1], -1), -1)), ≥))



    We simplified constraint (6) using rules (III), (IV) which results in the following new constraint:

    (7)    (>(x1[0], -1)=TRUECOND_1462_0_MAIN_LT(TRUE, x1[0], -1)≥NonInfC∧COND_1462_0_MAIN_LT(TRUE, x1[0], -1)≥1462_0_MAIN_LT(+(x1[0], -1), -1)∧(UIncreasing(1462_0_MAIN_LT(+(x1[1], -1), -1)), ≥))



    We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (8)    (x1[0] ≥ 0 ⇒ (UIncreasing(1462_0_MAIN_LT(+(x1[1], -1), -1)), ≥)∧[(-2)bni_19 + (-1)Bound*bni_19] ≥ 0∧[(-1)bso_20] ≥ 0)



    We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (9)    (x1[0] ≥ 0 ⇒ (UIncreasing(1462_0_MAIN_LT(+(x1[1], -1), -1)), ≥)∧[(-2)bni_19 + (-1)Bound*bni_19] ≥ 0∧[(-1)bso_20] ≥ 0)



    We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (10)    (x1[0] ≥ 0 ⇒ (UIncreasing(1462_0_MAIN_LT(+(x1[1], -1), -1)), ≥)∧[(-2)bni_19 + (-1)Bound*bni_19] ≥ 0∧[(-1)bso_20] ≥ 0)



  • We consider the chain 1462_0_MAIN_LT(x1[0], -1) → COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1), COND_1462_0_MAIN_LT(TRUE, x1[1], -1) → 1462_0_MAIN_LT(+(x1[1], -1), -1), 1462_0_MAIN_LT(x1[2], x0[2]) → COND_1462_0_MAIN_LT1(&&(>(x2[2], -1), >(x0[2], -1)), x1[2], x0[2], x2[2]) which results in the following constraint:

    (11)    (>(x1[0], -1)=TRUEx1[0]=x1[1]+(x1[1], -1)=x1[2]-1=x0[2]COND_1462_0_MAIN_LT(TRUE, x1[1], -1)≥NonInfC∧COND_1462_0_MAIN_LT(TRUE, x1[1], -1)≥1462_0_MAIN_LT(+(x1[1], -1), -1)∧(UIncreasing(1462_0_MAIN_LT(+(x1[1], -1), -1)), ≥))



    We simplified constraint (11) using rules (III), (IV) which results in the following new constraint:

    (12)    (>(x1[0], -1)=TRUECOND_1462_0_MAIN_LT(TRUE, x1[0], -1)≥NonInfC∧COND_1462_0_MAIN_LT(TRUE, x1[0], -1)≥1462_0_MAIN_LT(+(x1[0], -1), -1)∧(UIncreasing(1462_0_MAIN_LT(+(x1[1], -1), -1)), ≥))



    We simplified constraint (12) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (13)    (x1[0] ≥ 0 ⇒ (UIncreasing(1462_0_MAIN_LT(+(x1[1], -1), -1)), ≥)∧[(-2)bni_19 + (-1)Bound*bni_19] ≥ 0∧[(-1)bso_20] ≥ 0)



    We simplified constraint (13) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (14)    (x1[0] ≥ 0 ⇒ (UIncreasing(1462_0_MAIN_LT(+(x1[1], -1), -1)), ≥)∧[(-2)bni_19 + (-1)Bound*bni_19] ≥ 0∧[(-1)bso_20] ≥ 0)



    We simplified constraint (14) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (15)    (x1[0] ≥ 0 ⇒ (UIncreasing(1462_0_MAIN_LT(+(x1[1], -1), -1)), ≥)∧[(-2)bni_19 + (-1)Bound*bni_19] ≥ 0∧[(-1)bso_20] ≥ 0)







For Pair 1462_0_MAIN_LT(x1, x0) → COND_1462_0_MAIN_LT1(&&(>(x2, -1), >(x0, -1)), x1, x0, x2) the following chains were created:
  • We consider the chain COND_1462_0_MAIN_LT(TRUE, x1[1], -1) → 1462_0_MAIN_LT(+(x1[1], -1), -1), 1462_0_MAIN_LT(x1[2], x0[2]) → COND_1462_0_MAIN_LT1(&&(>(x2[2], -1), >(x0[2], -1)), x1[2], x0[2], x2[2]), COND_1462_0_MAIN_LT1(TRUE, x1[3], x0[3], x2[3]) → 1462_0_MAIN_LT(x2[3], +(x0[3], -1)) which results in the following constraint:

    (16)    (+(x1[1], -1)=x1[2]-1=x0[2]&&(>(x2[2], -1), >(x0[2], -1))=TRUEx1[2]=x1[3]x0[2]=x0[3]x2[2]=x2[3]1462_0_MAIN_LT(x1[2], x0[2])≥NonInfC∧1462_0_MAIN_LT(x1[2], x0[2])≥COND_1462_0_MAIN_LT1(&&(>(x2[2], -1), >(x0[2], -1)), x1[2], x0[2], x2[2])∧(UIncreasing(COND_1462_0_MAIN_LT1(&&(>(x2[2], -1), >(x0[2], -1)), x1[2], x0[2], x2[2])), ≥))



    We solved constraint (16) using rules (I), (II), (III), (IV), (IDP_CONSTANT_FOLD), (IDP_BOOLEAN).
  • We consider the chain COND_1462_0_MAIN_LT1(TRUE, x1[3], x0[3], x2[3]) → 1462_0_MAIN_LT(x2[3], +(x0[3], -1)), 1462_0_MAIN_LT(x1[2], x0[2]) → COND_1462_0_MAIN_LT1(&&(>(x2[2], -1), >(x0[2], -1)), x1[2], x0[2], x2[2]), COND_1462_0_MAIN_LT1(TRUE, x1[3], x0[3], x2[3]) → 1462_0_MAIN_LT(x2[3], +(x0[3], -1)) which results in the following constraint:

    (17)    (x2[3]=x1[2]+(x0[3], -1)=x0[2]&&(>(x2[2], -1), >(x0[2], -1))=TRUEx1[2]=x1[3]1x0[2]=x0[3]1x2[2]=x2[3]11462_0_MAIN_LT(x1[2], x0[2])≥NonInfC∧1462_0_MAIN_LT(x1[2], x0[2])≥COND_1462_0_MAIN_LT1(&&(>(x2[2], -1), >(x0[2], -1)), x1[2], x0[2], x2[2])∧(UIncreasing(COND_1462_0_MAIN_LT1(&&(>(x2[2], -1), >(x0[2], -1)), x1[2], x0[2], x2[2])), ≥))



    We simplified constraint (17) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (18)    (>(x2[2], -1)=TRUE>(+(x0[3], -1), -1)=TRUE1462_0_MAIN_LT(x2[3], +(x0[3], -1))≥NonInfC∧1462_0_MAIN_LT(x2[3], +(x0[3], -1))≥COND_1462_0_MAIN_LT1(&&(>(x2[2], -1), >(+(x0[3], -1), -1)), x2[3], +(x0[3], -1), x2[2])∧(UIncreasing(COND_1462_0_MAIN_LT1(&&(>(x2[2], -1), >(x0[2], -1)), x1[2], x0[2], x2[2])), ≥))



    We simplified constraint (18) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (19)    (x2[2] ≥ 0∧x0[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1462_0_MAIN_LT1(&&(>(x2[2], -1), >(x0[2], -1)), x1[2], x0[2], x2[2])), ≥)∧[(-2)bni_21 + (-1)Bound*bni_21] + [bni_21]x0[3] ≥ 0∧[(-1)bso_22] ≥ 0)



    We simplified constraint (19) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (20)    (x2[2] ≥ 0∧x0[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1462_0_MAIN_LT1(&&(>(x2[2], -1), >(x0[2], -1)), x1[2], x0[2], x2[2])), ≥)∧[(-2)bni_21 + (-1)Bound*bni_21] + [bni_21]x0[3] ≥ 0∧[(-1)bso_22] ≥ 0)



    We simplified constraint (20) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (21)    (x2[2] ≥ 0∧x0[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1462_0_MAIN_LT1(&&(>(x2[2], -1), >(x0[2], -1)), x1[2], x0[2], x2[2])), ≥)∧[(-2)bni_21 + (-1)Bound*bni_21] + [bni_21]x0[3] ≥ 0∧[(-1)bso_22] ≥ 0)



    We simplified constraint (21) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (22)    (x2[2] ≥ 0∧x0[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1462_0_MAIN_LT1(&&(>(x2[2], -1), >(x0[2], -1)), x1[2], x0[2], x2[2])), ≥)∧0 = 0∧[(-2)bni_21 + (-1)Bound*bni_21] + [bni_21]x0[3] ≥ 0∧0 = 0∧[(-1)bso_22] ≥ 0)



    We simplified constraint (22) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (23)    (x2[2] ≥ 0∧x0[3] ≥ 0 ⇒ (UIncreasing(COND_1462_0_MAIN_LT1(&&(>(x2[2], -1), >(x0[2], -1)), x1[2], x0[2], x2[2])), ≥)∧0 = 0∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]x0[3] ≥ 0∧0 = 0∧[(-1)bso_22] ≥ 0)







For Pair COND_1462_0_MAIN_LT1(TRUE, x1, x0, x2) → 1462_0_MAIN_LT(x2, +(x0, -1)) the following chains were created:
  • We consider the chain 1462_0_MAIN_LT(x1[2], x0[2]) → COND_1462_0_MAIN_LT1(&&(>(x2[2], -1), >(x0[2], -1)), x1[2], x0[2], x2[2]), COND_1462_0_MAIN_LT1(TRUE, x1[3], x0[3], x2[3]) → 1462_0_MAIN_LT(x2[3], +(x0[3], -1)), 1462_0_MAIN_LT(x1[0], -1) → COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1) which results in the following constraint:

    (24)    (&&(>(x2[2], -1), >(x0[2], -1))=TRUEx1[2]=x1[3]x0[2]=x0[3]x2[2]=x2[3]x2[3]=x1[0]+(x0[3], -1)=-1COND_1462_0_MAIN_LT1(TRUE, x1[3], x0[3], x2[3])≥NonInfC∧COND_1462_0_MAIN_LT1(TRUE, x1[3], x0[3], x2[3])≥1462_0_MAIN_LT(x2[3], +(x0[3], -1))∧(UIncreasing(1462_0_MAIN_LT(x2[3], +(x0[3], -1))), ≥))



    We simplified constraint (24) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (25)    (+(x0[2], -1)=-1>(x2[2], -1)=TRUE>(x0[2], -1)=TRUECOND_1462_0_MAIN_LT1(TRUE, x1[2], x0[2], x2[2])≥NonInfC∧COND_1462_0_MAIN_LT1(TRUE, x1[2], x0[2], x2[2])≥1462_0_MAIN_LT(x2[2], +(x0[2], -1))∧(UIncreasing(1462_0_MAIN_LT(x2[3], +(x0[3], -1))), ≥))



    We simplified constraint (25) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (26)    (x0[2] ≥ 0∧x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(1462_0_MAIN_LT(x2[3], +(x0[3], -1))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (26) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (27)    (x0[2] ≥ 0∧x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(1462_0_MAIN_LT(x2[3], +(x0[3], -1))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (27) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (28)    (x0[2] ≥ 0∧x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(1462_0_MAIN_LT(x2[3], +(x0[3], -1))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (28) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (29)    (x0[2] ≥ 0∧x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(1462_0_MAIN_LT(x2[3], +(x0[3], -1))), ≥)∧0 = 0∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] ≥ 0∧0 = 0∧[1 + (-1)bso_24] ≥ 0)



  • We consider the chain 1462_0_MAIN_LT(x1[2], x0[2]) → COND_1462_0_MAIN_LT1(&&(>(x2[2], -1), >(x0[2], -1)), x1[2], x0[2], x2[2]), COND_1462_0_MAIN_LT1(TRUE, x1[3], x0[3], x2[3]) → 1462_0_MAIN_LT(x2[3], +(x0[3], -1)), 1462_0_MAIN_LT(x1[2], x0[2]) → COND_1462_0_MAIN_LT1(&&(>(x2[2], -1), >(x0[2], -1)), x1[2], x0[2], x2[2]) which results in the following constraint:

    (30)    (&&(>(x2[2], -1), >(x0[2], -1))=TRUEx1[2]=x1[3]x0[2]=x0[3]x2[2]=x2[3]x2[3]=x1[2]1+(x0[3], -1)=x0[2]1COND_1462_0_MAIN_LT1(TRUE, x1[3], x0[3], x2[3])≥NonInfC∧COND_1462_0_MAIN_LT1(TRUE, x1[3], x0[3], x2[3])≥1462_0_MAIN_LT(x2[3], +(x0[3], -1))∧(UIncreasing(1462_0_MAIN_LT(x2[3], +(x0[3], -1))), ≥))



    We simplified constraint (30) using rules (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (31)    (>(x2[2], -1)=TRUE>(x0[2], -1)=TRUECOND_1462_0_MAIN_LT1(TRUE, x1[2], x0[2], x2[2])≥NonInfC∧COND_1462_0_MAIN_LT1(TRUE, x1[2], x0[2], x2[2])≥1462_0_MAIN_LT(x2[2], +(x0[2], -1))∧(UIncreasing(1462_0_MAIN_LT(x2[3], +(x0[3], -1))), ≥))



    We simplified constraint (31) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (32)    (x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(1462_0_MAIN_LT(x2[3], +(x0[3], -1))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (32) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (33)    (x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(1462_0_MAIN_LT(x2[3], +(x0[3], -1))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (33) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (34)    (x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(1462_0_MAIN_LT(x2[3], +(x0[3], -1))), ≥)∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] ≥ 0∧[1 + (-1)bso_24] ≥ 0)



    We simplified constraint (34) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:

    (35)    (x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(1462_0_MAIN_LT(x2[3], +(x0[3], -1))), ≥)∧0 = 0∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] ≥ 0∧0 = 0∧[1 + (-1)bso_24] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 1462_0_MAIN_LT(x1, -1) → COND_1462_0_MAIN_LT(>(x1, -1), x1, -1)
    • (x1[0] ≥ 0 ⇒ (UIncreasing(COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1)), ≥)∧[(-2)bni_17 + (-1)Bound*bni_17] ≥ 0∧[(-1)bso_18] ≥ 0)

  • COND_1462_0_MAIN_LT(TRUE, x1, -1) → 1462_0_MAIN_LT(+(x1, -1), -1)
    • (x1[0] ≥ 0 ⇒ (UIncreasing(1462_0_MAIN_LT(+(x1[1], -1), -1)), ≥)∧[(-2)bni_19 + (-1)Bound*bni_19] ≥ 0∧[(-1)bso_20] ≥ 0)
    • (x1[0] ≥ 0 ⇒ (UIncreasing(1462_0_MAIN_LT(+(x1[1], -1), -1)), ≥)∧[(-2)bni_19 + (-1)Bound*bni_19] ≥ 0∧[(-1)bso_20] ≥ 0)

  • 1462_0_MAIN_LT(x1, x0) → COND_1462_0_MAIN_LT1(&&(>(x2, -1), >(x0, -1)), x1, x0, x2)
    • (x2[2] ≥ 0∧x0[3] ≥ 0 ⇒ (UIncreasing(COND_1462_0_MAIN_LT1(&&(>(x2[2], -1), >(x0[2], -1)), x1[2], x0[2], x2[2])), ≥)∧0 = 0∧[(-1)bni_21 + (-1)Bound*bni_21] + [bni_21]x0[3] ≥ 0∧0 = 0∧[(-1)bso_22] ≥ 0)

  • COND_1462_0_MAIN_LT1(TRUE, x1, x0, x2) → 1462_0_MAIN_LT(x2, +(x0, -1))
    • (x0[2] ≥ 0∧x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(1462_0_MAIN_LT(x2[3], +(x0[3], -1))), ≥)∧0 = 0∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] ≥ 0∧0 = 0∧[1 + (-1)bso_24] ≥ 0)
    • (x2[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(1462_0_MAIN_LT(x2[3], +(x0[3], -1))), ≥)∧0 = 0∧[(-1)bni_23 + (-1)Bound*bni_23] + [bni_23]x0[2] ≥ 0∧0 = 0∧[1 + (-1)bso_24] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(1462_0_MAIN_LT(x1, x2)) = [-1] + x2   
POL(-1) = [-1]   
POL(COND_1462_0_MAIN_LT(x1, x2, x3)) = [-1] + x3   
POL(>(x1, x2)) = [-1]   
POL(+(x1, x2)) = x1 + x2   
POL(COND_1462_0_MAIN_LT1(x1, x2, x3, x4)) = [-1] + x3 + [-1]x1   
POL(&&(x1, x2)) = 0   

The following pairs are in P>:

COND_1462_0_MAIN_LT1(TRUE, x1[3], x0[3], x2[3]) → 1462_0_MAIN_LT(x2[3], +(x0[3], -1))

The following pairs are in Pbound:

1462_0_MAIN_LT(x1[0], -1) → COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1)
COND_1462_0_MAIN_LT(TRUE, x1[1], -1) → 1462_0_MAIN_LT(+(x1[1], -1), -1)
1462_0_MAIN_LT(x1[2], x0[2]) → COND_1462_0_MAIN_LT1(&&(>(x2[2], -1), >(x0[2], -1)), x1[2], x0[2], x2[2])
COND_1462_0_MAIN_LT1(TRUE, x1[3], x0[3], x2[3]) → 1462_0_MAIN_LT(x2[3], +(x0[3], -1))

The following pairs are in P:

1462_0_MAIN_LT(x1[0], -1) → COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1)
COND_1462_0_MAIN_LT(TRUE, x1[1], -1) → 1462_0_MAIN_LT(+(x1[1], -1), -1)
1462_0_MAIN_LT(x1[2], x0[2]) → COND_1462_0_MAIN_LT1(&&(>(x2[2], -1), >(x0[2], -1)), x1[2], x0[2], x2[2])

At least the following rules have been oriented under context sensitive arithmetic replacement:

&&(TRUE, TRUE)1TRUE1
&&(TRUE, FALSE)1FALSE1
&&(FALSE, TRUE)1FALSE1
&&(FALSE, FALSE)1FALSE1

(8) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer, Boolean


R is empty.

The integer pair graph contains the following rules and edges:
(0): 1462_0_MAIN_LT(x1[0], -1) → COND_1462_0_MAIN_LT(x1[0] > -1, x1[0], -1)
(1): COND_1462_0_MAIN_LT(TRUE, x1[1], -1) → 1462_0_MAIN_LT(x1[1] + -1, -1)
(2): 1462_0_MAIN_LT(x1[2], x0[2]) → COND_1462_0_MAIN_LT1(x2[2] > -1 && x0[2] > -1, x1[2], x0[2], x2[2])

(1) -> (0), if x1[1] + -1* x1[0]


(0) -> (1), if (x1[0] > -1x1[0]* x1[1])


(1) -> (2), if (x1[1] + -1* x1[2]-1* x0[2])



The set Q is empty.

(9) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(10) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(1): COND_1462_0_MAIN_LT(TRUE, x1[1], -1) → 1462_0_MAIN_LT(x1[1] + -1, -1)
(0): 1462_0_MAIN_LT(x1[0], -1) → COND_1462_0_MAIN_LT(x1[0] > -1, x1[0], -1)

(1) -> (0), if x1[1] + -1* x1[0]


(0) -> (1), if (x1[0] > -1x1[0]* x1[1])



The set Q is empty.

(11) IDPNonInfProof (SOUND transformation)

Used the following options for this NonInfProof:
IDPGPoloSolver: Range: [(-1,2)] IsNat: false Interpretation Shape Heuristic: aprove.DPFramework.IDPProblem.Processors.nonInf.poly.IdpDefaultShapeHeuristic@21ee921c Constraint Generator: NonInfConstraintGenerator: PathGenerator: MetricPathGenerator: Max Left Steps: 1 Max Right Steps: 1

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair COND_1462_0_MAIN_LT(TRUE, x1[1], -1) → 1462_0_MAIN_LT(+(x1[1], -1), -1) the following chains were created:
  • We consider the chain 1462_0_MAIN_LT(x1[0], -1) → COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1), COND_1462_0_MAIN_LT(TRUE, x1[1], -1) → 1462_0_MAIN_LT(+(x1[1], -1), -1), 1462_0_MAIN_LT(x1[0], -1) → COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1) which results in the following constraint:

    (1)    (>(x1[0], -1)=TRUEx1[0]=x1[1]+(x1[1], -1)=x1[0]1COND_1462_0_MAIN_LT(TRUE, x1[1], -1)≥NonInfC∧COND_1462_0_MAIN_LT(TRUE, x1[1], -1)≥1462_0_MAIN_LT(+(x1[1], -1), -1)∧(UIncreasing(1462_0_MAIN_LT(+(x1[1], -1), -1)), ≥))



    We simplified constraint (1) using rules (III), (IV) which results in the following new constraint:

    (2)    (>(x1[0], -1)=TRUECOND_1462_0_MAIN_LT(TRUE, x1[0], -1)≥NonInfC∧COND_1462_0_MAIN_LT(TRUE, x1[0], -1)≥1462_0_MAIN_LT(+(x1[0], -1), -1)∧(UIncreasing(1462_0_MAIN_LT(+(x1[1], -1), -1)), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x1[0] ≥ 0 ⇒ (UIncreasing(1462_0_MAIN_LT(+(x1[1], -1), -1)), ≥)∧[(-1)Bound*bni_11] + [bni_11]x1[0] ≥ 0∧[1 + (-1)bso_12] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x1[0] ≥ 0 ⇒ (UIncreasing(1462_0_MAIN_LT(+(x1[1], -1), -1)), ≥)∧[(-1)Bound*bni_11] + [bni_11]x1[0] ≥ 0∧[1 + (-1)bso_12] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x1[0] ≥ 0 ⇒ (UIncreasing(1462_0_MAIN_LT(+(x1[1], -1), -1)), ≥)∧[(-1)Bound*bni_11] + [bni_11]x1[0] ≥ 0∧[1 + (-1)bso_12] ≥ 0)







For Pair 1462_0_MAIN_LT(x1[0], -1) → COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1) the following chains were created:
  • We consider the chain 1462_0_MAIN_LT(x1[0], -1) → COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1), COND_1462_0_MAIN_LT(TRUE, x1[1], -1) → 1462_0_MAIN_LT(+(x1[1], -1), -1) which results in the following constraint:

    (6)    (>(x1[0], -1)=TRUEx1[0]=x1[1]1462_0_MAIN_LT(x1[0], -1)≥NonInfC∧1462_0_MAIN_LT(x1[0], -1)≥COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1)∧(UIncreasing(COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1)), ≥))



    We simplified constraint (6) using rule (IV) which results in the following new constraint:

    (7)    (>(x1[0], -1)=TRUE1462_0_MAIN_LT(x1[0], -1)≥NonInfC∧1462_0_MAIN_LT(x1[0], -1)≥COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1)∧(UIncreasing(COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1)), ≥))



    We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (8)    (x1[0] ≥ 0 ⇒ (UIncreasing(COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1)), ≥)∧[(-1)Bound*bni_13] + [bni_13]x1[0] ≥ 0∧[(-1)bso_14] ≥ 0)



    We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (9)    (x1[0] ≥ 0 ⇒ (UIncreasing(COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1)), ≥)∧[(-1)Bound*bni_13] + [bni_13]x1[0] ≥ 0∧[(-1)bso_14] ≥ 0)



    We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (10)    (x1[0] ≥ 0 ⇒ (UIncreasing(COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1)), ≥)∧[(-1)Bound*bni_13] + [bni_13]x1[0] ≥ 0∧[(-1)bso_14] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • COND_1462_0_MAIN_LT(TRUE, x1[1], -1) → 1462_0_MAIN_LT(+(x1[1], -1), -1)
    • (x1[0] ≥ 0 ⇒ (UIncreasing(1462_0_MAIN_LT(+(x1[1], -1), -1)), ≥)∧[(-1)Bound*bni_11] + [bni_11]x1[0] ≥ 0∧[1 + (-1)bso_12] ≥ 0)

  • 1462_0_MAIN_LT(x1[0], -1) → COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1)
    • (x1[0] ≥ 0 ⇒ (UIncreasing(COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1)), ≥)∧[(-1)Bound*bni_13] + [bni_13]x1[0] ≥ 0∧[(-1)bso_14] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = 0   
POL(COND_1462_0_MAIN_LT(x1, x2, x3)) = [-1] + [-1]x3 + x2   
POL(-1) = [-1]   
POL(1462_0_MAIN_LT(x1, x2)) = [-1] + [-1]x2 + x1   
POL(+(x1, x2)) = x1 + x2   
POL(>(x1, x2)) = [-1]   

The following pairs are in P>:

COND_1462_0_MAIN_LT(TRUE, x1[1], -1) → 1462_0_MAIN_LT(+(x1[1], -1), -1)

The following pairs are in Pbound:

COND_1462_0_MAIN_LT(TRUE, x1[1], -1) → 1462_0_MAIN_LT(+(x1[1], -1), -1)
1462_0_MAIN_LT(x1[0], -1) → COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1)

The following pairs are in P:

1462_0_MAIN_LT(x1[0], -1) → COND_1462_0_MAIN_LT(>(x1[0], -1), x1[0], -1)

There are no usable rules.

(12) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 1462_0_MAIN_LT(x1[0], -1) → COND_1462_0_MAIN_LT(x1[0] > -1, x1[0], -1)


The set Q is empty.

(13) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(14) TRUE