0 JBC
↳1 JBCToGraph (⇒, 120 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 130 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 290 ms)
↳8 IDP
↳9 IDependencyGraphProof (⇔, 0 ms)
↳10 IDP
↳11 IDPNonInfProof (⇒, 70 ms)
↳12 IDP
↳13 IDependencyGraphProof (⇔, 0 ms)
↳14 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaC1 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
while (x >= 0) {
int y = 1;
while (x > y) {
y = 2*y;
}
x--;
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 24 rules for P and 0 rules for R.
P rules:
227_0_main_LT(EOS(STATIC_227), i32, i32) → 237_0_main_LT(EOS(STATIC_237), i32, i32)
237_0_main_LT(EOS(STATIC_237), i32, i32) → 246_0_main_ConstantStackPush(EOS(STATIC_246), i32) | >=(i32, 0)
246_0_main_ConstantStackPush(EOS(STATIC_246), i32) → 252_0_main_Store(EOS(STATIC_252), i32, 1)
252_0_main_Store(EOS(STATIC_252), i32, matching1) → 257_0_main_Load(EOS(STATIC_257), i32, 1) | =(matching1, 1)
257_0_main_Load(EOS(STATIC_257), i32, matching1) → 307_0_main_Load(EOS(STATIC_307), i32, 1) | =(matching1, 1)
307_0_main_Load(EOS(STATIC_307), i42, i43) → 348_0_main_Load(EOS(STATIC_348), i42, i43)
348_0_main_Load(EOS(STATIC_348), i42, i53) → 385_0_main_Load(EOS(STATIC_385), i42, i53)
385_0_main_Load(EOS(STATIC_385), i42, i60) → 422_0_main_Load(EOS(STATIC_422), i42, i60)
422_0_main_Load(EOS(STATIC_422), i42, i66) → 426_0_main_Load(EOS(STATIC_426), i42, i66, i42)
426_0_main_Load(EOS(STATIC_426), i42, i66, i42) → 428_0_main_LE(EOS(STATIC_428), i42, i66, i42, i66)
428_0_main_LE(EOS(STATIC_428), i42, i66, i42, i66) → 430_0_main_LE(EOS(STATIC_430), i42, i66, i42, i66)
428_0_main_LE(EOS(STATIC_428), i42, i66, i42, i66) → 431_0_main_LE(EOS(STATIC_431), i42, i66, i42, i66)
430_0_main_LE(EOS(STATIC_430), i42, i66, i42, i66) → 432_0_main_Inc(EOS(STATIC_432), i42) | <=(i42, i66)
432_0_main_Inc(EOS(STATIC_432), i42) → 436_0_main_JMP(EOS(STATIC_436), +(i42, -1)) | >=(i42, 0)
436_0_main_JMP(EOS(STATIC_436), i68) → 441_0_main_Load(EOS(STATIC_441), i68)
441_0_main_Load(EOS(STATIC_441), i68) → 218_0_main_Load(EOS(STATIC_218), i68)
218_0_main_Load(EOS(STATIC_218), i28) → 227_0_main_LT(EOS(STATIC_227), i28, i28)
431_0_main_LE(EOS(STATIC_431), i42, i66, i42, i66) → 434_0_main_ConstantStackPush(EOS(STATIC_434), i42, i66) | >(i42, i66)
434_0_main_ConstantStackPush(EOS(STATIC_434), i42, i66) → 438_0_main_Load(EOS(STATIC_438), i42, i66, 2)
438_0_main_Load(EOS(STATIC_438), i42, i66, matching1) → 443_0_main_IntArithmetic(EOS(STATIC_443), i42, 2, i66) | =(matching1, 2)
443_0_main_IntArithmetic(EOS(STATIC_443), i42, matching1, i66) → 445_0_main_Store(EOS(STATIC_445), i42, *(2, i66)) | &&(>=(i66, 1), =(matching1, 2))
445_0_main_Store(EOS(STATIC_445), i42, i70) → 447_0_main_JMP(EOS(STATIC_447), i42, i70)
447_0_main_JMP(EOS(STATIC_447), i42, i70) → 450_0_main_Load(EOS(STATIC_450), i42, i70)
450_0_main_Load(EOS(STATIC_450), i42, i70) → 422_0_main_Load(EOS(STATIC_422), i42, i70)
R rules:
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
428_0_main_LE(EOS(STATIC_428), x0, x1, x0, x1) → 428_0_main_LE(EOS(STATIC_428), +(x0, -1), 1, +(x0, -1), 1) | &&(>=(x1, x0), >(+(x0, 1), 1))
428_0_main_LE(EOS(STATIC_428), x0, x1, x0, x1) → 428_0_main_LE(EOS(STATIC_428), x0, *(2, x1), x0, *(2, x1)) | &&(>(+(x1, 1), 1), <(x1, x0))
R rules:
Filtered ground terms:
428_0_main_LE(x1, x2, x3, x4, x5) → 428_0_main_LE(x2, x3, x4, x5)
EOS(x1) → EOS
Cond_428_0_main_LE1(x1, x2, x3, x4, x5, x6) → Cond_428_0_main_LE1(x1, x3, x4, x5, x6)
Cond_428_0_main_LE(x1, x2, x3, x4, x5, x6) → Cond_428_0_main_LE(x1, x3, x4, x5, x6)
Filtered duplicate args:
428_0_main_LE(x1, x2, x3, x4) → 428_0_main_LE(x3, x4)
Cond_428_0_main_LE(x1, x2, x3, x4, x5) → Cond_428_0_main_LE(x1, x4, x5)
Cond_428_0_main_LE1(x1, x2, x3, x4, x5) → Cond_428_0_main_LE1(x1, x4, x5)
Filtered unneeded arguments:
Cond_428_0_main_LE(x1, x2, x3) → Cond_428_0_main_LE(x1, x2)
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
428_0_main_LE(x0, x1) → 428_0_main_LE(+(x0, -1), 1) | &&(>=(x1, x0), >(x0, 0))
428_0_main_LE(x0, x1) → 428_0_main_LE(x0, *(2, x1)) | &&(>(x1, 0), <(x1, x0))
R rules:
Finished conversion. Obtained 4 rules for P and 0 rules for R. System has predefined symbols.
P rules:
428_0_MAIN_LE(x0, x1) → COND_428_0_MAIN_LE(&&(>=(x1, x0), >(x0, 0)), x0, x1)
COND_428_0_MAIN_LE(TRUE, x0, x1) → 428_0_MAIN_LE(+(x0, -1), 1)
428_0_MAIN_LE(x0, x1) → COND_428_0_MAIN_LE1(&&(>(x1, 0), <(x1, x0)), x0, x1)
COND_428_0_MAIN_LE1(TRUE, x0, x1) → 428_0_MAIN_LE(x0, *(2, x1))
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if (x1[0] >= x0[0] && x0[0] > 0 ∧x0[0] →* x0[1]∧x1[0] →* x1[1])
(1) -> (0), if (x0[1] + -1 →* x0[0]∧1 →* x1[0])
(1) -> (2), if (x0[1] + -1 →* x0[2]∧1 →* x1[2])
(2) -> (3), if (x1[2] > 0 && x1[2] < x0[2] ∧x0[2] →* x0[3]∧x1[2] →* x1[3])
(3) -> (0), if (x0[3] →* x0[0]∧2 * x1[3] →* x1[0])
(3) -> (2), if (x0[3] →* x0[2]∧2 * x1[3] →* x1[2])
(1) (&&(>=(x1[0], x0[0]), >(x0[0], 0))=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1] ⇒ 428_0_MAIN_LE(x0[0], x1[0])≥NonInfC∧428_0_MAIN_LE(x0[0], x1[0])≥COND_428_0_MAIN_LE(&&(>=(x1[0], x0[0]), >(x0[0], 0)), x0[0], x1[0])∧(UIncreasing(COND_428_0_MAIN_LE(&&(>=(x1[0], x0[0]), >(x0[0], 0)), x0[0], x1[0])), ≥))
(2) (>=(x1[0], x0[0])=TRUE∧>(x0[0], 0)=TRUE ⇒ 428_0_MAIN_LE(x0[0], x1[0])≥NonInfC∧428_0_MAIN_LE(x0[0], x1[0])≥COND_428_0_MAIN_LE(&&(>=(x1[0], x0[0]), >(x0[0], 0)), x0[0], x1[0])∧(UIncreasing(COND_428_0_MAIN_LE(&&(>=(x1[0], x0[0]), >(x0[0], 0)), x0[0], x1[0])), ≥))
(3) (x1[0] + [-1]x0[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_428_0_MAIN_LE(&&(>=(x1[0], x0[0]), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[(-1)bso_19] ≥ 0)
(4) (x1[0] + [-1]x0[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_428_0_MAIN_LE(&&(>=(x1[0], x0[0]), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[(-1)bso_19] ≥ 0)
(5) (x1[0] + [-1]x0[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_428_0_MAIN_LE(&&(>=(x1[0], x0[0]), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[(-1)bso_19] ≥ 0)
(6) (x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_428_0_MAIN_LE(&&(>=(x1[0], x0[0]), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[(-1)bso_19] ≥ 0)
(7) (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_428_0_MAIN_LE(&&(>=(x1[0], x0[0]), >(x0[0], 0)), x0[0], x1[0])), ≥)∧[(-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[(-1)bso_19] ≥ 0)
(8) (&&(>=(x1[0], x0[0]), >(x0[0], 0))=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1]∧+(x0[1], -1)=x0[0]1∧1=x1[0]1 ⇒ COND_428_0_MAIN_LE(TRUE, x0[1], x1[1])≥NonInfC∧COND_428_0_MAIN_LE(TRUE, x0[1], x1[1])≥428_0_MAIN_LE(+(x0[1], -1), 1)∧(UIncreasing(428_0_MAIN_LE(+(x0[1], -1), 1)), ≥))
(9) (>=(x1[0], x0[0])=TRUE∧>(x0[0], 0)=TRUE ⇒ COND_428_0_MAIN_LE(TRUE, x0[0], x1[0])≥NonInfC∧COND_428_0_MAIN_LE(TRUE, x0[0], x1[0])≥428_0_MAIN_LE(+(x0[0], -1), 1)∧(UIncreasing(428_0_MAIN_LE(+(x0[1], -1), 1)), ≥))
(10) (x1[0] + [-1]x0[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(428_0_MAIN_LE(+(x0[1], -1), 1)), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[0] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(11) (x1[0] + [-1]x0[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(428_0_MAIN_LE(+(x0[1], -1), 1)), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[0] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(12) (x1[0] + [-1]x0[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(428_0_MAIN_LE(+(x0[1], -1), 1)), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[0] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(13) (x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(428_0_MAIN_LE(+(x0[1], -1), 1)), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[0] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(14) (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(428_0_MAIN_LE(+(x0[1], -1), 1)), ≥)∧[(-1)Bound*bni_20] + [bni_20]x0[0] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(15) (&&(>=(x1[0], x0[0]), >(x0[0], 0))=TRUE∧x0[0]=x0[1]∧x1[0]=x1[1]∧+(x0[1], -1)=x0[2]∧1=x1[2] ⇒ COND_428_0_MAIN_LE(TRUE, x0[1], x1[1])≥NonInfC∧COND_428_0_MAIN_LE(TRUE, x0[1], x1[1])≥428_0_MAIN_LE(+(x0[1], -1), 1)∧(UIncreasing(428_0_MAIN_LE(+(x0[1], -1), 1)), ≥))
(16) (>=(x1[0], x0[0])=TRUE∧>(x0[0], 0)=TRUE ⇒ COND_428_0_MAIN_LE(TRUE, x0[0], x1[0])≥NonInfC∧COND_428_0_MAIN_LE(TRUE, x0[0], x1[0])≥428_0_MAIN_LE(+(x0[0], -1), 1)∧(UIncreasing(428_0_MAIN_LE(+(x0[1], -1), 1)), ≥))
(17) (x1[0] + [-1]x0[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(428_0_MAIN_LE(+(x0[1], -1), 1)), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[0] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(18) (x1[0] + [-1]x0[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(428_0_MAIN_LE(+(x0[1], -1), 1)), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[0] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(19) (x1[0] + [-1]x0[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(428_0_MAIN_LE(+(x0[1], -1), 1)), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[0] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(20) (x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(428_0_MAIN_LE(+(x0[1], -1), 1)), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[0] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(21) (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(428_0_MAIN_LE(+(x0[1], -1), 1)), ≥)∧[(-1)Bound*bni_20] + [bni_20]x0[0] ≥ 0∧[1 + (-1)bso_21] ≥ 0)
(22) (&&(>(x1[2], 0), <(x1[2], x0[2]))=TRUE∧x0[2]=x0[3]∧x1[2]=x1[3] ⇒ 428_0_MAIN_LE(x0[2], x1[2])≥NonInfC∧428_0_MAIN_LE(x0[2], x1[2])≥COND_428_0_MAIN_LE1(&&(>(x1[2], 0), <(x1[2], x0[2])), x0[2], x1[2])∧(UIncreasing(COND_428_0_MAIN_LE1(&&(>(x1[2], 0), <(x1[2], x0[2])), x0[2], x1[2])), ≥))
(23) (>(x1[2], 0)=TRUE∧<(x1[2], x0[2])=TRUE ⇒ 428_0_MAIN_LE(x0[2], x1[2])≥NonInfC∧428_0_MAIN_LE(x0[2], x1[2])≥COND_428_0_MAIN_LE1(&&(>(x1[2], 0), <(x1[2], x0[2])), x0[2], x1[2])∧(UIncreasing(COND_428_0_MAIN_LE1(&&(>(x1[2], 0), <(x1[2], x0[2])), x0[2], x1[2])), ≥))
(24) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_428_0_MAIN_LE1(&&(>(x1[2], 0), <(x1[2], x0[2])), x0[2], x1[2])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x0[2] ≥ 0∧[(-1)bso_23] ≥ 0)
(25) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_428_0_MAIN_LE1(&&(>(x1[2], 0), <(x1[2], x0[2])), x0[2], x1[2])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x0[2] ≥ 0∧[(-1)bso_23] ≥ 0)
(26) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_428_0_MAIN_LE1(&&(>(x1[2], 0), <(x1[2], x0[2])), x0[2], x1[2])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x0[2] ≥ 0∧[(-1)bso_23] ≥ 0)
(27) (x1[2] ≥ 0∧x0[2] + [-2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_428_0_MAIN_LE1(&&(>(x1[2], 0), <(x1[2], x0[2])), x0[2], x1[2])), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x0[2] ≥ 0∧[(-1)bso_23] ≥ 0)
(28) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_428_0_MAIN_LE1(&&(>(x1[2], 0), <(x1[2], x0[2])), x0[2], x1[2])), ≥)∧[bni_22 + (-1)Bound*bni_22] + [bni_22]x1[2] + [bni_22]x0[2] ≥ 0∧[(-1)bso_23] ≥ 0)
(29) (&&(>(x1[2], 0), <(x1[2], x0[2]))=TRUE∧x0[2]=x0[3]∧x1[2]=x1[3]∧x0[3]=x0[0]∧*(2, x1[3])=x1[0] ⇒ COND_428_0_MAIN_LE1(TRUE, x0[3], x1[3])≥NonInfC∧COND_428_0_MAIN_LE1(TRUE, x0[3], x1[3])≥428_0_MAIN_LE(x0[3], *(2, x1[3]))∧(UIncreasing(428_0_MAIN_LE(x0[3], *(2, x1[3]))), ≥))
(30) (>(x1[2], 0)=TRUE∧<(x1[2], x0[2])=TRUE ⇒ COND_428_0_MAIN_LE1(TRUE, x0[2], x1[2])≥NonInfC∧COND_428_0_MAIN_LE1(TRUE, x0[2], x1[2])≥428_0_MAIN_LE(x0[2], *(2, x1[2]))∧(UIncreasing(428_0_MAIN_LE(x0[3], *(2, x1[3]))), ≥))
(31) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(428_0_MAIN_LE(x0[3], *(2, x1[3]))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(32) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(428_0_MAIN_LE(x0[3], *(2, x1[3]))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(33) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(428_0_MAIN_LE(x0[3], *(2, x1[3]))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(34) (x1[2] ≥ 0∧x0[2] + [-2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(428_0_MAIN_LE(x0[3], *(2, x1[3]))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(35) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(428_0_MAIN_LE(x0[3], *(2, x1[3]))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[2] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(36) (&&(>(x1[2], 0), <(x1[2], x0[2]))=TRUE∧x0[2]=x0[3]∧x1[2]=x1[3]∧x0[3]=x0[2]1∧*(2, x1[3])=x1[2]1 ⇒ COND_428_0_MAIN_LE1(TRUE, x0[3], x1[3])≥NonInfC∧COND_428_0_MAIN_LE1(TRUE, x0[3], x1[3])≥428_0_MAIN_LE(x0[3], *(2, x1[3]))∧(UIncreasing(428_0_MAIN_LE(x0[3], *(2, x1[3]))), ≥))
(37) (>(x1[2], 0)=TRUE∧<(x1[2], x0[2])=TRUE ⇒ COND_428_0_MAIN_LE1(TRUE, x0[2], x1[2])≥NonInfC∧COND_428_0_MAIN_LE1(TRUE, x0[2], x1[2])≥428_0_MAIN_LE(x0[2], *(2, x1[2]))∧(UIncreasing(428_0_MAIN_LE(x0[3], *(2, x1[3]))), ≥))
(38) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(428_0_MAIN_LE(x0[3], *(2, x1[3]))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(39) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(428_0_MAIN_LE(x0[3], *(2, x1[3]))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(40) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(428_0_MAIN_LE(x0[3], *(2, x1[3]))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(41) (x1[2] ≥ 0∧x0[2] + [-2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(428_0_MAIN_LE(x0[3], *(2, x1[3]))), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)
(42) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(428_0_MAIN_LE(x0[3], *(2, x1[3]))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [bni_24]x1[2] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = [1]
POL(428_0_MAIN_LE(x1, x2)) = [-1] + x1
POL(COND_428_0_MAIN_LE(x1, x2, x3)) = [-1] + x2
POL(&&(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(1) = [1]
POL(COND_428_0_MAIN_LE1(x1, x2, x3)) = [-1] + x2
POL(<(x1, x2)) = [-1]
POL(*(x1, x2)) = x1·x2
POL(2) = [2]
COND_428_0_MAIN_LE(TRUE, x0[1], x1[1]) → 428_0_MAIN_LE(+(x0[1], -1), 1)
428_0_MAIN_LE(x0[0], x1[0]) → COND_428_0_MAIN_LE(&&(>=(x1[0], x0[0]), >(x0[0], 0)), x0[0], x1[0])
COND_428_0_MAIN_LE(TRUE, x0[1], x1[1]) → 428_0_MAIN_LE(+(x0[1], -1), 1)
428_0_MAIN_LE(x0[2], x1[2]) → COND_428_0_MAIN_LE1(&&(>(x1[2], 0), <(x1[2], x0[2])), x0[2], x1[2])
COND_428_0_MAIN_LE1(TRUE, x0[3], x1[3]) → 428_0_MAIN_LE(x0[3], *(2, x1[3]))
428_0_MAIN_LE(x0[0], x1[0]) → COND_428_0_MAIN_LE(&&(>=(x1[0], x0[0]), >(x0[0], 0)), x0[0], x1[0])
428_0_MAIN_LE(x0[2], x1[2]) → COND_428_0_MAIN_LE1(&&(>(x1[2], 0), <(x1[2], x0[2])), x0[2], x1[2])
COND_428_0_MAIN_LE1(TRUE, x0[3], x1[3]) → 428_0_MAIN_LE(x0[3], *(2, x1[3]))
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(3) -> (0), if (x0[3] →* x0[0]∧2 * x1[3] →* x1[0])
(3) -> (2), if (x0[3] →* x0[2]∧2 * x1[3] →* x1[2])
(2) -> (3), if (x1[2] > 0 && x1[2] < x0[2] ∧x0[2] →* x0[3]∧x1[2] →* x1[3])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(3) -> (2), if (x0[3] →* x0[2]∧2 * x1[3] →* x1[2])
(2) -> (3), if (x1[2] > 0 && x1[2] < x0[2] ∧x0[2] →* x0[3]∧x1[2] →* x1[3])
(1) (&&(>(x1[2], 0), <(x1[2], x0[2]))=TRUE∧x0[2]=x0[3]∧x1[2]=x1[3]∧x0[3]=x0[2]1∧*(2, x1[3])=x1[2]1 ⇒ COND_428_0_MAIN_LE1(TRUE, x0[3], x1[3])≥NonInfC∧COND_428_0_MAIN_LE1(TRUE, x0[3], x1[3])≥428_0_MAIN_LE(x0[3], *(2, x1[3]))∧(UIncreasing(428_0_MAIN_LE(x0[3], *(2, x1[3]))), ≥))
(2) (>(x1[2], 0)=TRUE∧<(x1[2], x0[2])=TRUE ⇒ COND_428_0_MAIN_LE1(TRUE, x0[2], x1[2])≥NonInfC∧COND_428_0_MAIN_LE1(TRUE, x0[2], x1[2])≥428_0_MAIN_LE(x0[2], *(2, x1[2]))∧(UIncreasing(428_0_MAIN_LE(x0[3], *(2, x1[3]))), ≥))
(3) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(428_0_MAIN_LE(x0[3], *(2, x1[3]))), ≥)∧[(2)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x1[2] + [bni_13]x0[2] ≥ 0∧[(-1)bso_14] + x1[2] ≥ 0)
(4) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(428_0_MAIN_LE(x0[3], *(2, x1[3]))), ≥)∧[(2)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x1[2] + [bni_13]x0[2] ≥ 0∧[(-1)bso_14] + x1[2] ≥ 0)
(5) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(428_0_MAIN_LE(x0[3], *(2, x1[3]))), ≥)∧[(2)bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x1[2] + [bni_13]x0[2] ≥ 0∧[(-1)bso_14] + x1[2] ≥ 0)
(6) (x1[2] ≥ 0∧x0[2] + [-2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(428_0_MAIN_LE(x0[3], *(2, x1[3]))), ≥)∧[bni_13 + (-1)Bound*bni_13] + [(-1)bni_13]x1[2] + [bni_13]x0[2] ≥ 0∧[1 + (-1)bso_14] + x1[2] ≥ 0)
(7) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(428_0_MAIN_LE(x0[3], *(2, x1[3]))), ≥)∧[(3)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[2] ≥ 0∧[1 + (-1)bso_14] + x1[2] ≥ 0)
(8) (&&(>(x1[2], 0), <(x1[2], x0[2]))=TRUE∧x0[2]=x0[3]∧x1[2]=x1[3] ⇒ 428_0_MAIN_LE(x0[2], x1[2])≥NonInfC∧428_0_MAIN_LE(x0[2], x1[2])≥COND_428_0_MAIN_LE1(&&(>(x1[2], 0), <(x1[2], x0[2])), x0[2], x1[2])∧(UIncreasing(COND_428_0_MAIN_LE1(&&(>(x1[2], 0), <(x1[2], x0[2])), x0[2], x1[2])), ≥))
(9) (>(x1[2], 0)=TRUE∧<(x1[2], x0[2])=TRUE ⇒ 428_0_MAIN_LE(x0[2], x1[2])≥NonInfC∧428_0_MAIN_LE(x0[2], x1[2])≥COND_428_0_MAIN_LE1(&&(>(x1[2], 0), <(x1[2], x0[2])), x0[2], x1[2])∧(UIncreasing(COND_428_0_MAIN_LE1(&&(>(x1[2], 0), <(x1[2], x0[2])), x0[2], x1[2])), ≥))
(10) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_428_0_MAIN_LE1(&&(>(x1[2], 0), <(x1[2], x0[2])), x0[2], x1[2])), ≥)∧[(2)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]x1[2] + [bni_15]x0[2] ≥ 0∧[(-1)bso_16] ≥ 0)
(11) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_428_0_MAIN_LE1(&&(>(x1[2], 0), <(x1[2], x0[2])), x0[2], x1[2])), ≥)∧[(2)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]x1[2] + [bni_15]x0[2] ≥ 0∧[(-1)bso_16] ≥ 0)
(12) (x1[2] + [-1] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_428_0_MAIN_LE1(&&(>(x1[2], 0), <(x1[2], x0[2])), x0[2], x1[2])), ≥)∧[(2)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]x1[2] + [bni_15]x0[2] ≥ 0∧[(-1)bso_16] ≥ 0)
(13) (x1[2] ≥ 0∧x0[2] + [-2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_428_0_MAIN_LE1(&&(>(x1[2], 0), <(x1[2], x0[2])), x0[2], x1[2])), ≥)∧[bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]x1[2] + [bni_15]x0[2] ≥ 0∧[(-1)bso_16] ≥ 0)
(14) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_428_0_MAIN_LE1(&&(>(x1[2], 0), <(x1[2], x0[2])), x0[2], x1[2])), ≥)∧[(3)bni_15 + (-1)Bound*bni_15] + [bni_15]x0[2] ≥ 0∧[(-1)bso_16] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_428_0_MAIN_LE1(x1, x2, x3)) = [2] + [-1]x3 + x2 + [-1]x1
POL(428_0_MAIN_LE(x1, x2)) = [2] + [-1]x2 + x1
POL(*(x1, x2)) = x1·x2
POL(2) = [2]
POL(&&(x1, x2)) = 0
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(<(x1, x2)) = [-1]
COND_428_0_MAIN_LE1(TRUE, x0[3], x1[3]) → 428_0_MAIN_LE(x0[3], *(2, x1[3]))
COND_428_0_MAIN_LE1(TRUE, x0[3], x1[3]) → 428_0_MAIN_LE(x0[3], *(2, x1[3]))
428_0_MAIN_LE(x0[2], x1[2]) → COND_428_0_MAIN_LE1(&&(>(x1[2], 0), <(x1[2], x0[2])), x0[2], x1[2])
428_0_MAIN_LE(x0[2], x1[2]) → COND_428_0_MAIN_LE1(&&(>(x1[2], 0), <(x1[2], x0[2])), x0[2], x1[2])
&&(TRUE, TRUE)1 ↔ TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(FALSE, FALSE)1 ↔ FALSE1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer