0 JBC
↳1 JBCToGraph (⇒, 110 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 50 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 220 ms)
↳8 IDP
↳9 IDependencyGraphProof (⇔, 0 ms)
↳10 IDP
↳11 IDPNonInfProof (⇒, 40 ms)
↳12 IDP
↳13 IDependencyGraphProof (⇔, 0 ms)
↳14 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaB8 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
if (x > 0) {
while (x != 0) {
if (x % 2 == 0) {
x = x/2;
} else {
x--;
}
}
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 19 rules for P and 0 rules for R.
P rules:
246_0_main_EQ(EOS(STATIC_246), i34, i34) → 252_0_main_EQ(EOS(STATIC_252), i34, i34)
252_0_main_EQ(EOS(STATIC_252), i34, i34) → 258_0_main_Load(EOS(STATIC_258), i34) | >(i34, 0)
258_0_main_Load(EOS(STATIC_258), i34) → 266_0_main_ConstantStackPush(EOS(STATIC_266), i34, i34)
266_0_main_ConstantStackPush(EOS(STATIC_266), i34, i34) → 274_0_main_IntArithmetic(EOS(STATIC_274), i34, i34, 2)
274_0_main_IntArithmetic(EOS(STATIC_274), i34, i34, matching1) → 280_0_main_NE(EOS(STATIC_280), i34, %(i34, 2)) | =(matching1, 2)
280_0_main_NE(EOS(STATIC_280), i34, matching1) → 284_0_main_NE(EOS(STATIC_284), i34, 1) | =(matching1, 1)
280_0_main_NE(EOS(STATIC_280), i34, matching1) → 286_0_main_NE(EOS(STATIC_286), i34, 0) | =(matching1, 0)
284_0_main_NE(EOS(STATIC_284), i34, matching1) → 288_0_main_Inc(EOS(STATIC_288), i34) | &&(>(1, 0), =(matching1, 1))
288_0_main_Inc(EOS(STATIC_288), i34) → 292_0_main_JMP(EOS(STATIC_292), +(i34, -1)) | >(i34, 0)
292_0_main_JMP(EOS(STATIC_292), i41) → 298_0_main_Load(EOS(STATIC_298), i41)
298_0_main_Load(EOS(STATIC_298), i41) → 236_0_main_Load(EOS(STATIC_236), i41)
236_0_main_Load(EOS(STATIC_236), i29) → 246_0_main_EQ(EOS(STATIC_246), i29, i29)
286_0_main_NE(EOS(STATIC_286), i34, matching1) → 290_0_main_Load(EOS(STATIC_290), i34) | =(matching1, 0)
290_0_main_Load(EOS(STATIC_290), i34) → 294_0_main_ConstantStackPush(EOS(STATIC_294), i34)
294_0_main_ConstantStackPush(EOS(STATIC_294), i34) → 300_0_main_IntArithmetic(EOS(STATIC_300), i34, 2)
300_0_main_IntArithmetic(EOS(STATIC_300), i34, matching1) → 302_0_main_Store(EOS(STATIC_302), /(i34, 2)) | &&(>=(i34, 1), =(matching1, 2))
302_0_main_Store(EOS(STATIC_302), i44) → 304_0_main_JMP(EOS(STATIC_304), i44)
304_0_main_JMP(EOS(STATIC_304), i44) → 309_0_main_Load(EOS(STATIC_309), i44)
309_0_main_Load(EOS(STATIC_309), i44) → 236_0_main_Load(EOS(STATIC_236), i44)
R rules:
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
246_0_main_EQ(EOS(STATIC_246), x0, x0) → 246_0_main_EQ(EOS(STATIC_246), +(x0, -1), +(x0, -1)) | &&(>(x0, 0), =(1, %(x0, 2)))
246_0_main_EQ(EOS(STATIC_246), x0, x0) → 246_0_main_EQ(EOS(STATIC_246), /(x0, 2), /(x0, 2)) | &&(>(+(x0, 1), 1), =(0, %(x0, 2)))
R rules:
Filtered ground terms:
246_0_main_EQ(x1, x2, x3) → 246_0_main_EQ(x2, x3)
EOS(x1) → EOS
Cond_246_0_main_EQ1(x1, x2, x3, x4) → Cond_246_0_main_EQ1(x1, x3, x4)
Cond_246_0_main_EQ(x1, x2, x3, x4) → Cond_246_0_main_EQ(x1, x3, x4)
Filtered duplicate args:
246_0_main_EQ(x1, x2) → 246_0_main_EQ(x2)
Cond_246_0_main_EQ(x1, x2, x3) → Cond_246_0_main_EQ(x1, x3)
Cond_246_0_main_EQ1(x1, x2, x3) → Cond_246_0_main_EQ1(x1, x3)
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
246_0_main_EQ(x0) → 246_0_main_EQ(+(x0, -1)) | &&(>(x0, 0), =(1, %(x0, 2)))
246_0_main_EQ(x0) → 246_0_main_EQ(/(x0, 2)) | &&(>(x0, 0), =(0, %(x0, 2)))
R rules:
Finished conversion. Obtained 4 rules for P and 0 rules for R. System has predefined symbols.
P rules:
246_0_MAIN_EQ(x0) → COND_246_0_MAIN_EQ(&&(>(x0, 0), =(1, %(x0, 2))), x0)
COND_246_0_MAIN_EQ(TRUE, x0) → 246_0_MAIN_EQ(+(x0, -1))
246_0_MAIN_EQ(x0) → COND_246_0_MAIN_EQ1(&&(>(x0, 0), =(0, %(x0, 2))), x0)
COND_246_0_MAIN_EQ1(TRUE, x0) → 246_0_MAIN_EQ(/(x0, 2))
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if (x0[0] > 0 && 1 = x0[0] % 2 ∧x0[0] →* x0[1])
(1) -> (0), if (x0[1] + -1 →* x0[0])
(1) -> (2), if (x0[1] + -1 →* x0[2])
(2) -> (3), if (x0[2] > 0 && 0 = x0[2] % 2 ∧x0[2] →* x0[3])
(3) -> (0), if (x0[3] / 2 →* x0[0])
(3) -> (2), if (x0[3] / 2 →* x0[2])
(1) (&&(>(x0[0], 0), =(1, %(x0[0], 2)))=TRUE∧x0[0]=x0[1] ⇒ 246_0_MAIN_EQ(x0[0])≥NonInfC∧246_0_MAIN_EQ(x0[0])≥COND_246_0_MAIN_EQ(&&(>(x0[0], 0), =(1, %(x0[0], 2))), x0[0])∧(UIncreasing(COND_246_0_MAIN_EQ(&&(>(x0[0], 0), =(1, %(x0[0], 2))), x0[0])), ≥))
(2) (>(x0[0], 0)=TRUE∧>=(1, %(x0[0], 2))=TRUE∧<=(1, %(x0[0], 2))=TRUE ⇒ 246_0_MAIN_EQ(x0[0])≥NonInfC∧246_0_MAIN_EQ(x0[0])≥COND_246_0_MAIN_EQ(&&(>(x0[0], 0), =(1, %(x0[0], 2))), x0[0])∧(UIncreasing(COND_246_0_MAIN_EQ(&&(>(x0[0], 0), =(1, %(x0[0], 2))), x0[0])), ≥))
(3) (x0[0] + [-1] ≥ 0∧[1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(COND_246_0_MAIN_EQ(&&(>(x0[0], 0), =(1, %(x0[0], 2))), x0[0])), ≥)∧[(-1)Bound*bni_14] + [bni_14]x0[0] ≥ 0∧[(-1)bso_15] ≥ 0)
(4) (x0[0] + [-1] ≥ 0∧[1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(COND_246_0_MAIN_EQ(&&(>(x0[0], 0), =(1, %(x0[0], 2))), x0[0])), ≥)∧[(-1)Bound*bni_14] + [bni_14]x0[0] ≥ 0∧[(-1)bso_15] ≥ 0)
(5) (x0[0] + [-1] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_246_0_MAIN_EQ(&&(>(x0[0], 0), =(1, %(x0[0], 2))), x0[0])), ≥)∧[(-1)Bound*bni_14] + [bni_14]x0[0] ≥ 0∧[(-1)bso_15] ≥ 0)
(6) (x0[0] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_246_0_MAIN_EQ(&&(>(x0[0], 0), =(1, %(x0[0], 2))), x0[0])), ≥)∧[(-1)Bound*bni_14 + bni_14] + [bni_14]x0[0] ≥ 0∧[(-1)bso_15] ≥ 0)
(7) (x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_246_0_MAIN_EQ(&&(>(x0[0], 0), =(1, %(x0[0], 2))), x0[0])), ≥)∧[(-1)Bound*bni_14 + bni_14] + [bni_14]x0[0] ≥ 0∧[(-1)bso_15] ≥ 0)
(8) (&&(>(x0[0], 0), =(1, %(x0[0], 2)))=TRUE∧x0[0]=x0[1]∧+(x0[1], -1)=x0[0]1 ⇒ COND_246_0_MAIN_EQ(TRUE, x0[1])≥NonInfC∧COND_246_0_MAIN_EQ(TRUE, x0[1])≥246_0_MAIN_EQ(+(x0[1], -1))∧(UIncreasing(246_0_MAIN_EQ(+(x0[1], -1))), ≥))
(9) (>(x0[0], 0)=TRUE∧>=(1, %(x0[0], 2))=TRUE∧<=(1, %(x0[0], 2))=TRUE ⇒ COND_246_0_MAIN_EQ(TRUE, x0[0])≥NonInfC∧COND_246_0_MAIN_EQ(TRUE, x0[0])≥246_0_MAIN_EQ(+(x0[0], -1))∧(UIncreasing(246_0_MAIN_EQ(+(x0[1], -1))), ≥))
(10) (x0[0] + [-1] ≥ 0∧[1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(246_0_MAIN_EQ(+(x0[1], -1))), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(11) (x0[0] + [-1] ≥ 0∧[1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(246_0_MAIN_EQ(+(x0[1], -1))), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(12) (x0[0] + [-1] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(246_0_MAIN_EQ(+(x0[1], -1))), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(13) (x0[0] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(246_0_MAIN_EQ(+(x0[1], -1))), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(14) (x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(246_0_MAIN_EQ(+(x0[1], -1))), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(15) (&&(>(x0[0], 0), =(1, %(x0[0], 2)))=TRUE∧x0[0]=x0[1]∧+(x0[1], -1)=x0[2] ⇒ COND_246_0_MAIN_EQ(TRUE, x0[1])≥NonInfC∧COND_246_0_MAIN_EQ(TRUE, x0[1])≥246_0_MAIN_EQ(+(x0[1], -1))∧(UIncreasing(246_0_MAIN_EQ(+(x0[1], -1))), ≥))
(16) (>(x0[0], 0)=TRUE∧>=(1, %(x0[0], 2))=TRUE∧<=(1, %(x0[0], 2))=TRUE ⇒ COND_246_0_MAIN_EQ(TRUE, x0[0])≥NonInfC∧COND_246_0_MAIN_EQ(TRUE, x0[0])≥246_0_MAIN_EQ(+(x0[0], -1))∧(UIncreasing(246_0_MAIN_EQ(+(x0[1], -1))), ≥))
(17) (x0[0] + [-1] ≥ 0∧[1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(246_0_MAIN_EQ(+(x0[1], -1))), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(18) (x0[0] + [-1] ≥ 0∧[1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(246_0_MAIN_EQ(+(x0[1], -1))), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(19) (x0[0] + [-1] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(246_0_MAIN_EQ(+(x0[1], -1))), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(20) (x0[0] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(246_0_MAIN_EQ(+(x0[1], -1))), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(21) (x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(246_0_MAIN_EQ(+(x0[1], -1))), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(22) (&&(>(x0[2], 0), =(0, %(x0[2], 2)))=TRUE∧x0[2]=x0[3] ⇒ 246_0_MAIN_EQ(x0[2])≥NonInfC∧246_0_MAIN_EQ(x0[2])≥COND_246_0_MAIN_EQ1(&&(>(x0[2], 0), =(0, %(x0[2], 2))), x0[2])∧(UIncreasing(COND_246_0_MAIN_EQ1(&&(>(x0[2], 0), =(0, %(x0[2], 2))), x0[2])), ≥))
(23) (>(x0[2], 0)=TRUE∧>=(0, %(x0[2], 2))=TRUE∧<=(0, %(x0[2], 2))=TRUE ⇒ 246_0_MAIN_EQ(x0[2])≥NonInfC∧246_0_MAIN_EQ(x0[2])≥COND_246_0_MAIN_EQ1(&&(>(x0[2], 0), =(0, %(x0[2], 2))), x0[2])∧(UIncreasing(COND_246_0_MAIN_EQ1(&&(>(x0[2], 0), =(0, %(x0[2], 2))), x0[2])), ≥))
(24) (x0[2] + [-1] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0 ⇒ (UIncreasing(COND_246_0_MAIN_EQ1(&&(>(x0[2], 0), =(0, %(x0[2], 2))), x0[2])), ≥)∧[(-1)Bound*bni_18] + [bni_18]x0[2] ≥ 0∧[1 + (-1)bso_19] ≥ 0)
(25) (x0[2] + [-1] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0 ⇒ (UIncreasing(COND_246_0_MAIN_EQ1(&&(>(x0[2], 0), =(0, %(x0[2], 2))), x0[2])), ≥)∧[(-1)Bound*bni_18] + [bni_18]x0[2] ≥ 0∧[1 + (-1)bso_19] ≥ 0)
(26) (x0[2] + [-1] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_246_0_MAIN_EQ1(&&(>(x0[2], 0), =(0, %(x0[2], 2))), x0[2])), ≥)∧[(-1)Bound*bni_18] + [bni_18]x0[2] ≥ 0∧[1 + (-1)bso_19] ≥ 0)
(27) (x0[2] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_246_0_MAIN_EQ1(&&(>(x0[2], 0), =(0, %(x0[2], 2))), x0[2])), ≥)∧[(-1)Bound*bni_18 + bni_18] + [bni_18]x0[2] ≥ 0∧[1 + (-1)bso_19] ≥ 0)
(28) (x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_246_0_MAIN_EQ1(&&(>(x0[2], 0), =(0, %(x0[2], 2))), x0[2])), ≥)∧[(-1)Bound*bni_18 + bni_18] + [bni_18]x0[2] ≥ 0∧[1 + (-1)bso_19] ≥ 0)
(29) (&&(>(x0[2], 0), =(0, %(x0[2], 2)))=TRUE∧x0[2]=x0[3] ⇒ COND_246_0_MAIN_EQ1(TRUE, x0[3])≥NonInfC∧COND_246_0_MAIN_EQ1(TRUE, x0[3])≥246_0_MAIN_EQ(/(x0[3], 2))∧(UIncreasing(246_0_MAIN_EQ(/(x0[3], 2))), ≥))
(30) (>(x0[2], 0)=TRUE∧>=(0, %(x0[2], 2))=TRUE∧<=(0, %(x0[2], 2))=TRUE ⇒ COND_246_0_MAIN_EQ1(TRUE, x0[2])≥NonInfC∧COND_246_0_MAIN_EQ1(TRUE, x0[2])≥246_0_MAIN_EQ(/(x0[2], 2))∧(UIncreasing(246_0_MAIN_EQ(/(x0[3], 2))), ≥))
(31) (x0[2] + [-1] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0 ⇒ (UIncreasing(246_0_MAIN_EQ(/(x0[3], 2))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[2] ≥ 0∧[(-1)bso_24] + x0[2] + [-1]max{x0[2], [-1]x0[2]} ≥ 0)
(32) (x0[2] + [-1] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0 ⇒ (UIncreasing(246_0_MAIN_EQ(/(x0[3], 2))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[2] ≥ 0∧[(-1)bso_24] + x0[2] + [-1]max{x0[2], [-1]x0[2]} ≥ 0)
(33) (x0[2] + [-1] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[2]x0[2] ≥ 0 ⇒ (UIncreasing(246_0_MAIN_EQ(/(x0[3], 2))), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(34) (x0[2] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[2] + [2]x0[2] ≥ 0 ⇒ (UIncreasing(246_0_MAIN_EQ(/(x0[3], 2))), ≥)∧[(-1)Bound*bni_20] + [bni_20]x0[2] ≥ 0∧[(-1)bso_24] ≥ 0)
(35) (x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] + x0[2] ≥ 0 ⇒ (UIncreasing(246_0_MAIN_EQ(/(x0[3], 2))), ≥)∧[(-1)Bound*bni_20] + [bni_20]x0[2] ≥ 0∧[(-1)bso_24] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = [1]
POL(246_0_MAIN_EQ(x1)) = x1
POL(COND_246_0_MAIN_EQ(x1, x2)) = [-1] + x2 + [-1]x1
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(=(x1, x2)) = [-1]
POL(1) = [1]
POL(2) = [2]
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(COND_246_0_MAIN_EQ1(x1, x2)) = [-1] + x2
Polynomial Interpretations with Context Sensitive Arithemetic Replacement
POL(TermCSAR-Mode @ Context)
POL(%(x1, 2)-1 @ {}) = min{x2, [-1]x2}
POL(%(x1, 2)1 @ {}) = max{x2, [-1]x2}
POL(/(x1, 2)1 @ {246_0_MAIN_EQ_1/0}) = max{x1, [-1]x1} + [-1]
246_0_MAIN_EQ(x0[2]) → COND_246_0_MAIN_EQ1(&&(>(x0[2], 0), =(0, %(x0[2], 2))), x0[2])
246_0_MAIN_EQ(x0[0]) → COND_246_0_MAIN_EQ(&&(>(x0[0], 0), =(1, %(x0[0], 2))), x0[0])
COND_246_0_MAIN_EQ(TRUE, x0[1]) → 246_0_MAIN_EQ(+(x0[1], -1))
246_0_MAIN_EQ(x0[2]) → COND_246_0_MAIN_EQ1(&&(>(x0[2], 0), =(0, %(x0[2], 2))), x0[2])
COND_246_0_MAIN_EQ1(TRUE, x0[3]) → 246_0_MAIN_EQ(/(x0[3], 2))
246_0_MAIN_EQ(x0[0]) → COND_246_0_MAIN_EQ(&&(>(x0[0], 0), =(1, %(x0[0], 2))), x0[0])
COND_246_0_MAIN_EQ(TRUE, x0[1]) → 246_0_MAIN_EQ(+(x0[1], -1))
COND_246_0_MAIN_EQ1(TRUE, x0[3]) → 246_0_MAIN_EQ(/(x0[3], 2))
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
/1 →
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(1) -> (0), if (x0[1] + -1 →* x0[0])
(3) -> (0), if (x0[3] / 2 →* x0[0])
(0) -> (1), if (x0[0] > 0 && 1 = x0[0] % 2 ∧x0[0] →* x0[1])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer, Boolean
(1) -> (0), if (x0[1] + -1 →* x0[0])
(0) -> (1), if (x0[0] > 0 && 1 = x0[0] % 2 ∧x0[0] →* x0[1])
(1) (&&(>(x0[0], 0), =(1, %(x0[0], 2)))=TRUE∧x0[0]=x0[1]∧+(x0[1], -1)=x0[0]1 ⇒ COND_246_0_MAIN_EQ(TRUE, x0[1])≥NonInfC∧COND_246_0_MAIN_EQ(TRUE, x0[1])≥246_0_MAIN_EQ(+(x0[1], -1))∧(UIncreasing(246_0_MAIN_EQ(+(x0[1], -1))), ≥))
(2) (>(x0[0], 0)=TRUE∧>=(1, %(x0[0], 2))=TRUE∧<=(1, %(x0[0], 2))=TRUE ⇒ COND_246_0_MAIN_EQ(TRUE, x0[0])≥NonInfC∧COND_246_0_MAIN_EQ(TRUE, x0[0])≥246_0_MAIN_EQ(+(x0[0], -1))∧(UIncreasing(246_0_MAIN_EQ(+(x0[1], -1))), ≥))
(3) (x0[0] + [-1] ≥ 0∧[1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(246_0_MAIN_EQ(+(x0[1], -1))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(4) (x0[0] + [-1] ≥ 0∧[1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(246_0_MAIN_EQ(+(x0[1], -1))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(5) (x0[0] + [-1] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(246_0_MAIN_EQ(+(x0[1], -1))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(6) (x0[0] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(246_0_MAIN_EQ(+(x0[1], -1))), ≥)∧[(-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(7) (x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(246_0_MAIN_EQ(+(x0[1], -1))), ≥)∧[(-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(8) (&&(>(x0[0], 0), =(1, %(x0[0], 2)))=TRUE∧x0[0]=x0[1] ⇒ 246_0_MAIN_EQ(x0[0])≥NonInfC∧246_0_MAIN_EQ(x0[0])≥COND_246_0_MAIN_EQ(&&(>(x0[0], 0), =(1, %(x0[0], 2))), x0[0])∧(UIncreasing(COND_246_0_MAIN_EQ(&&(>(x0[0], 0), =(1, %(x0[0], 2))), x0[0])), ≥))
(9) (>(x0[0], 0)=TRUE∧>=(1, %(x0[0], 2))=TRUE∧<=(1, %(x0[0], 2))=TRUE ⇒ 246_0_MAIN_EQ(x0[0])≥NonInfC∧246_0_MAIN_EQ(x0[0])≥COND_246_0_MAIN_EQ(&&(>(x0[0], 0), =(1, %(x0[0], 2))), x0[0])∧(UIncreasing(COND_246_0_MAIN_EQ(&&(>(x0[0], 0), =(1, %(x0[0], 2))), x0[0])), ≥))
(10) (x0[0] + [-1] ≥ 0∧[1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(COND_246_0_MAIN_EQ(&&(>(x0[0], 0), =(1, %(x0[0], 2))), x0[0])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] ≥ 0∧[(-1)bso_14] ≥ 0)
(11) (x0[0] + [-1] ≥ 0∧[1] + [-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(COND_246_0_MAIN_EQ(&&(>(x0[0], 0), =(1, %(x0[0], 2))), x0[0])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] ≥ 0∧[(-1)bso_14] ≥ 0)
(12) (x0[0] + [-1] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_246_0_MAIN_EQ(&&(>(x0[0], 0), =(1, %(x0[0], 2))), x0[0])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] ≥ 0∧[(-1)bso_14] ≥ 0)
(13) (x0[0] ≥ 0∧[4] ≥ 0∧[3] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_246_0_MAIN_EQ(&&(>(x0[0], 0), =(1, %(x0[0], 2))), x0[0])), ≥)∧[(-1)Bound*bni_13] + [bni_13]x0[0] ≥ 0∧[(-1)bso_14] ≥ 0)
(14) (x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_246_0_MAIN_EQ(&&(>(x0[0], 0), =(1, %(x0[0], 2))), x0[0])), ≥)∧[(-1)Bound*bni_13] + [bni_13]x0[0] ≥ 0∧[(-1)bso_14] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_246_0_MAIN_EQ(x1, x2)) = [-1] + x2 + [-1]x1
POL(246_0_MAIN_EQ(x1)) = [-1] + x1
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(&&(x1, x2)) = 0
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(=(x1, x2)) = [-1]
POL(1) = [1]
POL(2) = [2]
Polynomial Interpretations with Context Sensitive Arithemetic Replacement
POL(TermCSAR-Mode @ Context)
POL(%(x1, 2)-1 @ {}) = min{x2, [-1]x2}
POL(%(x1, 2)1 @ {}) = max{x2, [-1]x2}
COND_246_0_MAIN_EQ(TRUE, x0[1]) → 246_0_MAIN_EQ(+(x0[1], -1))
COND_246_0_MAIN_EQ(TRUE, x0[1]) → 246_0_MAIN_EQ(+(x0[1], -1))
246_0_MAIN_EQ(x0[0]) → COND_246_0_MAIN_EQ(&&(>(x0[0], 0), =(1, %(x0[0], 2))), x0[0])
246_0_MAIN_EQ(x0[0]) → COND_246_0_MAIN_EQ(&&(>(x0[0], 0), =(1, %(x0[0], 2))), x0[0])
&&(TRUE, TRUE)1 ↔ TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(FALSE, FALSE)1 ↔ FALSE1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer