0 JBC
↳1 JBCToGraph (⇒, 380 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 40 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 240 ms)
↳8 AND
↳9 IDP
↳10 IDependencyGraphProof (⇔, 0 ms)
↳11 TRUE
↳12 IDP
↳13 IDependencyGraphProof (⇔, 0 ms)
↳14 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaB7 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
int z = Random.random();
while (x > z && y > z) {
x--;
y--;
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 12 rules for P and 0 rules for R.
P rules:
769_0_main_Load(EOS(STATIC_769), i133, i134, i87, i133) → 772_0_main_LE(EOS(STATIC_772), i133, i134, i87, i133, i87)
772_0_main_LE(EOS(STATIC_772), i133, i134, i87, i133, i87) → 775_0_main_LE(EOS(STATIC_775), i133, i134, i87, i133, i87)
775_0_main_LE(EOS(STATIC_775), i133, i134, i87, i133, i87) → 779_0_main_Load(EOS(STATIC_779), i133, i134, i87) | >(i133, i87)
779_0_main_Load(EOS(STATIC_779), i133, i134, i87) → 783_0_main_Load(EOS(STATIC_783), i133, i134, i87, i134)
783_0_main_Load(EOS(STATIC_783), i133, i134, i87, i134) → 785_0_main_LE(EOS(STATIC_785), i133, i134, i87, i134, i87)
785_0_main_LE(EOS(STATIC_785), i133, i134, i87, i134, i87) → 789_0_main_LE(EOS(STATIC_789), i133, i134, i87, i134, i87)
789_0_main_LE(EOS(STATIC_789), i133, i134, i87, i134, i87) → 795_0_main_Inc(EOS(STATIC_795), i133, i134, i87) | >(i134, i87)
795_0_main_Inc(EOS(STATIC_795), i133, i134, i87) → 800_0_main_Inc(EOS(STATIC_800), +(i133, -1), i134, i87)
800_0_main_Inc(EOS(STATIC_800), i139, i134, i87) → 802_0_main_JMP(EOS(STATIC_802), i139, +(i134, -1), i87)
802_0_main_JMP(EOS(STATIC_802), i139, i140, i87) → 820_0_main_Load(EOS(STATIC_820), i139, i140, i87)
820_0_main_Load(EOS(STATIC_820), i139, i140, i87) → 766_0_main_Load(EOS(STATIC_766), i139, i140, i87)
766_0_main_Load(EOS(STATIC_766), i133, i134, i87) → 769_0_main_Load(EOS(STATIC_769), i133, i134, i87, i133)
R rules:
Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.
P rules:
769_0_main_Load(EOS(STATIC_769), x0, x1, x2, x0) → 769_0_main_Load(EOS(STATIC_769), +(x0, -1), +(x1, -1), x2, +(x0, -1)) | &&(<(x2, x1), <(x2, x0))
R rules:
Filtered ground terms:
769_0_main_Load(x1, x2, x3, x4, x5) → 769_0_main_Load(x2, x3, x4, x5)
EOS(x1) → EOS
Cond_769_0_main_Load(x1, x2, x3, x4, x5, x6) → Cond_769_0_main_Load(x1, x3, x4, x5, x6)
Filtered duplicate args:
769_0_main_Load(x1, x2, x3, x4) → 769_0_main_Load(x2, x3, x4)
Cond_769_0_main_Load(x1, x2, x3, x4, x5) → Cond_769_0_main_Load(x1, x3, x4, x5)
Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.
P rules:
769_0_main_Load(x1, x2, x0) → 769_0_main_Load(+(x1, -1), x2, +(x0, -1)) | &&(<(x2, x1), <(x2, x0))
R rules:
Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.
P rules:
769_0_MAIN_LOAD(x1, x2, x0) → COND_769_0_MAIN_LOAD(&&(<(x2, x1), <(x2, x0)), x1, x2, x0)
COND_769_0_MAIN_LOAD(TRUE, x1, x2, x0) → 769_0_MAIN_LOAD(+(x1, -1), x2, +(x0, -1))
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if (x2[0] < x1[0] && x2[0] < x0[0] ∧x1[0] →* x1[1]∧x2[0] →* x2[1]∧x0[0] →* x0[1])
(1) -> (0), if (x1[1] + -1 →* x1[0]∧x2[1] →* x2[0]∧x0[1] + -1 →* x0[0])
(1) (&&(<(x2[0], x1[0]), <(x2[0], x0[0]))=TRUE∧x1[0]=x1[1]∧x2[0]=x2[1]∧x0[0]=x0[1] ⇒ 769_0_MAIN_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧769_0_MAIN_LOAD(x1[0], x2[0], x0[0])≥COND_769_0_MAIN_LOAD(&&(<(x2[0], x1[0]), <(x2[0], x0[0])), x1[0], x2[0], x0[0])∧(UIncreasing(COND_769_0_MAIN_LOAD(&&(<(x2[0], x1[0]), <(x2[0], x0[0])), x1[0], x2[0], x0[0])), ≥))
(2) (<(x2[0], x1[0])=TRUE∧<(x2[0], x0[0])=TRUE ⇒ 769_0_MAIN_LOAD(x1[0], x2[0], x0[0])≥NonInfC∧769_0_MAIN_LOAD(x1[0], x2[0], x0[0])≥COND_769_0_MAIN_LOAD(&&(<(x2[0], x1[0]), <(x2[0], x0[0])), x1[0], x2[0], x0[0])∧(UIncreasing(COND_769_0_MAIN_LOAD(&&(<(x2[0], x1[0]), <(x2[0], x0[0])), x1[0], x2[0], x0[0])), ≥))
(3) (x1[0] + [-1] + [-1]x2[0] ≥ 0∧x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_769_0_MAIN_LOAD(&&(<(x2[0], x1[0]), <(x2[0], x0[0])), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] + [bni_10]x0[0] + [(-1)bni_10]x2[0] ≥ 0∧[(-1)bso_11] ≥ 0)
(4) (x1[0] + [-1] + [-1]x2[0] ≥ 0∧x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_769_0_MAIN_LOAD(&&(<(x2[0], x1[0]), <(x2[0], x0[0])), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] + [bni_10]x0[0] + [(-1)bni_10]x2[0] ≥ 0∧[(-1)bso_11] ≥ 0)
(5) (x1[0] + [-1] + [-1]x2[0] ≥ 0∧x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_769_0_MAIN_LOAD(&&(<(x2[0], x1[0]), <(x2[0], x0[0])), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] + [bni_10]x0[0] + [(-1)bni_10]x2[0] ≥ 0∧[(-1)bso_11] ≥ 0)
(6) (x1[0] ≥ 0∧x0[0] + [-1] + [-1]x2[0] ≥ 0 ⇒ (UIncreasing(COND_769_0_MAIN_LOAD(&&(<(x2[0], x1[0]), <(x2[0], x0[0])), x1[0], x2[0], x0[0])), ≥)∧[(-1)bni_10 + (-1)Bound*bni_10] + [bni_10]x0[0] + [(-1)bni_10]x2[0] ≥ 0∧[(-1)bso_11] ≥ 0)
(7) (x1[0] ≥ 0∧x2[0] ≥ 0 ⇒ (UIncreasing(COND_769_0_MAIN_LOAD(&&(<(x2[0], x1[0]), <(x2[0], x0[0])), x1[0], x2[0], x0[0])), ≥)∧[(-1)Bound*bni_10] + [bni_10]x2[0] ≥ 0∧[(-1)bso_11] ≥ 0)
(8) (x1[0] ≥ 0∧x2[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_769_0_MAIN_LOAD(&&(<(x2[0], x1[0]), <(x2[0], x0[0])), x1[0], x2[0], x0[0])), ≥)∧[(-1)Bound*bni_10] + [bni_10]x2[0] ≥ 0∧[(-1)bso_11] ≥ 0)
(9) (x1[0] ≥ 0∧x2[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_769_0_MAIN_LOAD(&&(<(x2[0], x1[0]), <(x2[0], x0[0])), x1[0], x2[0], x0[0])), ≥)∧[(-1)Bound*bni_10] + [bni_10]x2[0] ≥ 0∧[(-1)bso_11] ≥ 0)
(10) (COND_769_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥NonInfC∧COND_769_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1])≥769_0_MAIN_LOAD(+(x1[1], -1), x2[1], +(x0[1], -1))∧(UIncreasing(769_0_MAIN_LOAD(+(x1[1], -1), x2[1], +(x0[1], -1))), ≥))
(11) ((UIncreasing(769_0_MAIN_LOAD(+(x1[1], -1), x2[1], +(x0[1], -1))), ≥)∧[bni_12] = 0∧[1 + (-1)bso_13] ≥ 0)
(12) ((UIncreasing(769_0_MAIN_LOAD(+(x1[1], -1), x2[1], +(x0[1], -1))), ≥)∧[bni_12] = 0∧[1 + (-1)bso_13] ≥ 0)
(13) ((UIncreasing(769_0_MAIN_LOAD(+(x1[1], -1), x2[1], +(x0[1], -1))), ≥)∧[bni_12] = 0∧[1 + (-1)bso_13] ≥ 0)
(14) ((UIncreasing(769_0_MAIN_LOAD(+(x1[1], -1), x2[1], +(x0[1], -1))), ≥)∧[bni_12] = 0∧0 = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_13] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(769_0_MAIN_LOAD(x1, x2, x3)) = [-1] + x3 + [-1]x2
POL(COND_769_0_MAIN_LOAD(x1, x2, x3, x4)) = [-1] + x4 + [-1]x3
POL(&&(x1, x2)) = [-1]
POL(<(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
COND_769_0_MAIN_LOAD(TRUE, x1[1], x2[1], x0[1]) → 769_0_MAIN_LOAD(+(x1[1], -1), x2[1], +(x0[1], -1))
769_0_MAIN_LOAD(x1[0], x2[0], x0[0]) → COND_769_0_MAIN_LOAD(&&(<(x2[0], x1[0]), <(x2[0], x0[0])), x1[0], x2[0], x0[0])
769_0_MAIN_LOAD(x1[0], x2[0], x0[0]) → COND_769_0_MAIN_LOAD(&&(<(x2[0], x1[0]), <(x2[0], x0[0])), x1[0], x2[0], x0[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer