0 JBC
↳1 JBCToGraph (⇒, 230 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 60 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 160 ms)
↳8 AND
↳9 IDP
↳10 IDependencyGraphProof (⇔, 0 ms)
↳11 TRUE
↳12 IDP
↳13 IDependencyGraphProof (⇔, 0 ms)
↳14 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaB6 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
while (x > 0 && y > 0) {
x--;
y--;
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 10 rules for P and 0 rules for R.
P rules:
345_0_main_LE(EOS(STATIC_345), i61, i51, i61) → 352_0_main_LE(EOS(STATIC_352), i61, i51, i61)
352_0_main_LE(EOS(STATIC_352), i61, i51, i61) → 369_0_main_Load(EOS(STATIC_369), i61, i51) | >(i61, 0)
369_0_main_Load(EOS(STATIC_369), i61, i51) → 379_0_main_LE(EOS(STATIC_379), i61, i51, i51)
379_0_main_LE(EOS(STATIC_379), i61, i69, i69) → 387_0_main_LE(EOS(STATIC_387), i61, i69, i69)
387_0_main_LE(EOS(STATIC_387), i61, i69, i69) → 405_0_main_Inc(EOS(STATIC_405), i61, i69) | >(i69, 0)
405_0_main_Inc(EOS(STATIC_405), i61, i69) → 416_0_main_Inc(EOS(STATIC_416), +(i61, -1), i69) | >(i61, 0)
416_0_main_Inc(EOS(STATIC_416), i76, i69) → 424_0_main_JMP(EOS(STATIC_424), i76, +(i69, -1)) | >(i69, 0)
424_0_main_JMP(EOS(STATIC_424), i76, i78) → 448_0_main_Load(EOS(STATIC_448), i76, i78)
448_0_main_Load(EOS(STATIC_448), i76, i78) → 336_0_main_Load(EOS(STATIC_336), i76, i78)
336_0_main_Load(EOS(STATIC_336), i18, i51) → 345_0_main_LE(EOS(STATIC_345), i18, i51, i18)
R rules:
Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.
P rules:
345_0_main_LE(EOS(STATIC_345), x0, x1, x0) → 345_0_main_LE(EOS(STATIC_345), +(x0, -1), +(x1, -1), +(x0, -1)) | &&(>(x1, 0), >(x0, 0))
R rules:
Filtered ground terms:
345_0_main_LE(x1, x2, x3, x4) → 345_0_main_LE(x2, x3, x4)
EOS(x1) → EOS
Cond_345_0_main_LE(x1, x2, x3, x4, x5) → Cond_345_0_main_LE(x1, x3, x4, x5)
Filtered duplicate args:
345_0_main_LE(x1, x2, x3) → 345_0_main_LE(x2, x3)
Cond_345_0_main_LE(x1, x2, x3, x4) → Cond_345_0_main_LE(x1, x3, x4)
Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.
P rules:
345_0_main_LE(x1, x0) → 345_0_main_LE(+(x1, -1), +(x0, -1)) | &&(>(x1, 0), >(x0, 0))
R rules:
Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.
P rules:
345_0_MAIN_LE(x1, x0) → COND_345_0_MAIN_LE(&&(>(x1, 0), >(x0, 0)), x1, x0)
COND_345_0_MAIN_LE(TRUE, x1, x0) → 345_0_MAIN_LE(+(x1, -1), +(x0, -1))
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if (x1[0] > 0 && x0[0] > 0 ∧x1[0] →* x1[1]∧x0[0] →* x0[1])
(1) -> (0), if (x1[1] + -1 →* x1[0]∧x0[1] + -1 →* x0[0])
(1) (&&(>(x1[0], 0), >(x0[0], 0))=TRUE∧x1[0]=x1[1]∧x0[0]=x0[1] ⇒ 345_0_MAIN_LE(x1[0], x0[0])≥NonInfC∧345_0_MAIN_LE(x1[0], x0[0])≥COND_345_0_MAIN_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])∧(UIncreasing(COND_345_0_MAIN_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥))
(2) (>(x1[0], 0)=TRUE∧>(x0[0], 0)=TRUE ⇒ 345_0_MAIN_LE(x1[0], x0[0])≥NonInfC∧345_0_MAIN_LE(x1[0], x0[0])≥COND_345_0_MAIN_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])∧(UIncreasing(COND_345_0_MAIN_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥))
(3) (x1[0] + [-1] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_345_0_MAIN_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[bni_9 + (-1)Bound*bni_9] + [(2)bni_9]x0[0] + [(2)bni_9]x1[0] ≥ 0∧[(-1)bso_10] ≥ 0)
(4) (x1[0] + [-1] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_345_0_MAIN_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[bni_9 + (-1)Bound*bni_9] + [(2)bni_9]x0[0] + [(2)bni_9]x1[0] ≥ 0∧[(-1)bso_10] ≥ 0)
(5) (x1[0] + [-1] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_345_0_MAIN_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[bni_9 + (-1)Bound*bni_9] + [(2)bni_9]x0[0] + [(2)bni_9]x1[0] ≥ 0∧[(-1)bso_10] ≥ 0)
(6) (x1[0] ≥ 0∧x0[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_345_0_MAIN_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(3)bni_9 + (-1)Bound*bni_9] + [(2)bni_9]x0[0] + [(2)bni_9]x1[0] ≥ 0∧[(-1)bso_10] ≥ 0)
(7) (x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_345_0_MAIN_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(5)bni_9 + (-1)Bound*bni_9] + [(2)bni_9]x0[0] + [(2)bni_9]x1[0] ≥ 0∧[(-1)bso_10] ≥ 0)
(8) (COND_345_0_MAIN_LE(TRUE, x1[1], x0[1])≥NonInfC∧COND_345_0_MAIN_LE(TRUE, x1[1], x0[1])≥345_0_MAIN_LE(+(x1[1], -1), +(x0[1], -1))∧(UIncreasing(345_0_MAIN_LE(+(x1[1], -1), +(x0[1], -1))), ≥))
(9) ((UIncreasing(345_0_MAIN_LE(+(x1[1], -1), +(x0[1], -1))), ≥)∧[bni_11] = 0∧[4 + (-1)bso_12] ≥ 0)
(10) ((UIncreasing(345_0_MAIN_LE(+(x1[1], -1), +(x0[1], -1))), ≥)∧[bni_11] = 0∧[4 + (-1)bso_12] ≥ 0)
(11) ((UIncreasing(345_0_MAIN_LE(+(x1[1], -1), +(x0[1], -1))), ≥)∧[bni_11] = 0∧[4 + (-1)bso_12] ≥ 0)
(12) ((UIncreasing(345_0_MAIN_LE(+(x1[1], -1), +(x0[1], -1))), ≥)∧[bni_11] = 0∧0 = 0∧0 = 0∧[4 + (-1)bso_12] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(345_0_MAIN_LE(x1, x2)) = [1] + [2]x2 + [2]x1
POL(COND_345_0_MAIN_LE(x1, x2, x3)) = [1] + [2]x3 + [2]x2
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
COND_345_0_MAIN_LE(TRUE, x1[1], x0[1]) → 345_0_MAIN_LE(+(x1[1], -1), +(x0[1], -1))
345_0_MAIN_LE(x1[0], x0[0]) → COND_345_0_MAIN_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])
345_0_MAIN_LE(x1[0], x0[0]) → COND_345_0_MAIN_LE(&&(>(x1[0], 0), >(x0[0], 0)), x1[0], x0[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer