0 JBC
↳1 JBCToGraph (⇒, 70 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 30 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 100 ms)
↳8 IDP
↳9 IDependencyGraphProof (⇔, 0 ms)
↳10 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaB4 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
while (x > y) {
int t = x;
x = y;
y = t;
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 12 rules for P and 0 rules for R.
P rules:
303_0_main_Load(EOS(STATIC_303), i18, i46, i18) → 309_0_main_LE(EOS(STATIC_309), i18, i46, i18, i46)
309_0_main_LE(EOS(STATIC_309), i18, i46, i18, i46) → 323_0_main_LE(EOS(STATIC_323), i18, i46, i18, i46)
323_0_main_LE(EOS(STATIC_323), i18, i46, i18, i46) → 333_0_main_Load(EOS(STATIC_333), i18, i46) | >(i18, i46)
333_0_main_Load(EOS(STATIC_333), i18, i46) → 341_0_main_Store(EOS(STATIC_341), i46, i18)
341_0_main_Store(EOS(STATIC_341), i46, i18) → 349_0_main_Load(EOS(STATIC_349), i46, i18)
349_0_main_Load(EOS(STATIC_349), i46, i18) → 359_0_main_Store(EOS(STATIC_359), i18, i46)
359_0_main_Store(EOS(STATIC_359), i18, i46) → 368_0_main_Load(EOS(STATIC_368), i46, i18)
368_0_main_Load(EOS(STATIC_368), i46, i18) → 376_0_main_Store(EOS(STATIC_376), i46, i18)
376_0_main_Store(EOS(STATIC_376), i46, i18) → 389_0_main_JMP(EOS(STATIC_389), i46, i18)
389_0_main_JMP(EOS(STATIC_389), i46, i18) → 404_0_main_Load(EOS(STATIC_404), i46, i18)
404_0_main_Load(EOS(STATIC_404), i46, i18) → 298_0_main_Load(EOS(STATIC_298), i46, i18)
298_0_main_Load(EOS(STATIC_298), i18, i46) → 303_0_main_Load(EOS(STATIC_303), i18, i46, i18)
R rules:
Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.
P rules:
303_0_main_Load(EOS(STATIC_303), x0, x1, x0) → 303_0_main_Load(EOS(STATIC_303), x1, x0, x1) | <(x1, x0)
R rules:
Filtered ground terms:
303_0_main_Load(x1, x2, x3, x4) → 303_0_main_Load(x2, x3, x4)
EOS(x1) → EOS
Cond_303_0_main_Load(x1, x2, x3, x4, x5) → Cond_303_0_main_Load(x1, x3, x4, x5)
Filtered duplicate args:
303_0_main_Load(x1, x2, x3) → 303_0_main_Load(x2, x3)
Cond_303_0_main_Load(x1, x2, x3, x4) → Cond_303_0_main_Load(x1, x3, x4)
Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.
P rules:
303_0_main_Load(x1, x0) → 303_0_main_Load(x0, x1) | <(x1, x0)
R rules:
Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.
P rules:
303_0_MAIN_LOAD(x1, x0) → COND_303_0_MAIN_LOAD(<(x1, x0), x1, x0)
COND_303_0_MAIN_LOAD(TRUE, x1, x0) → 303_0_MAIN_LOAD(x0, x1)
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if (x1[0] < x0[0] ∧x1[0] →* x1[1]∧x0[0] →* x0[1])
(1) -> (0), if (x0[1] →* x1[0]∧x1[1] →* x0[0])
(1) (x0[1]=x1[0]∧x1[1]=x0[0]∧<(x1[0], x0[0])=TRUE∧x1[0]=x1[1]1∧x0[0]=x0[1]1 ⇒ 303_0_MAIN_LOAD(x1[0], x0[0])≥NonInfC∧303_0_MAIN_LOAD(x1[0], x0[0])≥COND_303_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])∧(UIncreasing(COND_303_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])), ≥))
(2) (<(x1[0], x0[0])=TRUE ⇒ 303_0_MAIN_LOAD(x1[0], x0[0])≥NonInfC∧303_0_MAIN_LOAD(x1[0], x0[0])≥COND_303_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])∧(UIncreasing(COND_303_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])), ≥))
(3) (x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_303_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[0] + [(-1)bni_11]x1[0] ≥ 0∧[-1 + (-1)bso_12] + [2]x0[0] + [-2]x1[0] ≥ 0)
(4) (x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_303_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[0] + [(-1)bni_11]x1[0] ≥ 0∧[-1 + (-1)bso_12] + [2]x0[0] + [-2]x1[0] ≥ 0)
(5) (x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_303_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[0] + [(-1)bni_11]x1[0] ≥ 0∧[-1 + (-1)bso_12] + [2]x0[0] + [-2]x1[0] ≥ 0)
(6) (x0[0] ≥ 0 ⇒ (UIncreasing(COND_303_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])), ≥)∧[(-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[1 + (-1)bso_12] + [2]x0[0] ≥ 0)
(7) (x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_303_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])), ≥)∧[(-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[1 + (-1)bso_12] + [2]x0[0] ≥ 0)
(8) (x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_303_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])), ≥)∧[(-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[1 + (-1)bso_12] + [2]x0[0] ≥ 0)
(9) (<(x1[0], x0[0])=TRUE∧x1[0]=x1[1]∧x0[0]=x0[1]∧x0[1]=x1[0]1∧x1[1]=x0[0]1 ⇒ COND_303_0_MAIN_LOAD(TRUE, x1[1], x0[1])≥NonInfC∧COND_303_0_MAIN_LOAD(TRUE, x1[1], x0[1])≥303_0_MAIN_LOAD(x0[1], x1[1])∧(UIncreasing(303_0_MAIN_LOAD(x0[1], x1[1])), ≥))
(10) (<(x1[0], x0[0])=TRUE ⇒ COND_303_0_MAIN_LOAD(TRUE, x1[0], x0[0])≥NonInfC∧COND_303_0_MAIN_LOAD(TRUE, x1[0], x0[0])≥303_0_MAIN_LOAD(x0[0], x1[0])∧(UIncreasing(303_0_MAIN_LOAD(x0[1], x1[1])), ≥))
(11) (x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(303_0_MAIN_LOAD(x0[1], x1[1])), ≥)∧[(-1)Bound*bni_13] + [(-1)bni_13]x0[0] + [bni_13]x1[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(12) (x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(303_0_MAIN_LOAD(x0[1], x1[1])), ≥)∧[(-1)Bound*bni_13] + [(-1)bni_13]x0[0] + [bni_13]x1[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(13) (x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(303_0_MAIN_LOAD(x0[1], x1[1])), ≥)∧[(-1)Bound*bni_13] + [(-1)bni_13]x0[0] + [bni_13]x1[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(14) (x0[0] ≥ 0 ⇒ (UIncreasing(303_0_MAIN_LOAD(x0[1], x1[1])), ≥)∧[(-1)Bound*bni_13 + (-1)bni_13] + [(-1)bni_13]x0[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(15) (x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(303_0_MAIN_LOAD(x0[1], x1[1])), ≥)∧[(-1)Bound*bni_13 + (-1)bni_13] + [(-1)bni_13]x0[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
(16) (x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(303_0_MAIN_LOAD(x0[1], x1[1])), ≥)∧[(-1)Bound*bni_13 + (-1)bni_13] + [(-1)bni_13]x0[0] ≥ 0∧[1 + (-1)bso_14] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(303_0_MAIN_LOAD(x1, x2)) = [-1] + x2 + [-1]x1
POL(COND_303_0_MAIN_LOAD(x1, x2, x3)) = [-1]x3 + x2
POL(<(x1, x2)) = [1]
303_0_MAIN_LOAD(x1[0], x0[0]) → COND_303_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])
COND_303_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 303_0_MAIN_LOAD(x0[1], x1[1])
303_0_MAIN_LOAD(x1[0], x0[0]) → COND_303_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |