0 JBC
↳1 JBCToGraph (⇒, 250 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 80 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 80 ms)
↳8 IDP
↳9 IDependencyGraphProof (⇔, 0 ms)
↳10 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaB4 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
while (x > y) {
int t = x;
x = y;
y = t;
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 12 rules for P and 0 rules for R.
P rules:
292_0_main_Load(EOS(STATIC_292), i18, i46, i18) → 300_0_main_LE(EOS(STATIC_300), i18, i46, i18, i46)
300_0_main_LE(EOS(STATIC_300), i18, i46, i18, i46) → 314_0_main_LE(EOS(STATIC_314), i18, i46, i18, i46)
314_0_main_LE(EOS(STATIC_314), i18, i46, i18, i46) → 327_0_main_Load(EOS(STATIC_327), i18, i46) | >(i18, i46)
327_0_main_Load(EOS(STATIC_327), i18, i46) → 337_0_main_Store(EOS(STATIC_337), i46, i18)
337_0_main_Store(EOS(STATIC_337), i46, i18) → 345_0_main_Load(EOS(STATIC_345), i46, i18)
345_0_main_Load(EOS(STATIC_345), i46, i18) → 352_0_main_Store(EOS(STATIC_352), i18, i46)
352_0_main_Store(EOS(STATIC_352), i18, i46) → 359_0_main_Load(EOS(STATIC_359), i46, i18)
359_0_main_Load(EOS(STATIC_359), i46, i18) → 366_0_main_Store(EOS(STATIC_366), i46, i18)
366_0_main_Store(EOS(STATIC_366), i46, i18) → 375_0_main_JMP(EOS(STATIC_375), i46, i18)
375_0_main_JMP(EOS(STATIC_375), i46, i18) → 397_0_main_Load(EOS(STATIC_397), i46, i18)
397_0_main_Load(EOS(STATIC_397), i46, i18) → 286_0_main_Load(EOS(STATIC_286), i46, i18)
286_0_main_Load(EOS(STATIC_286), i18, i46) → 292_0_main_Load(EOS(STATIC_292), i18, i46, i18)
R rules:
Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.
P rules:
292_0_main_Load(EOS(STATIC_292), x0, x1, x0) → 292_0_main_Load(EOS(STATIC_292), x1, x0, x1) | <(x1, x0)
R rules:
Filtered ground terms:
292_0_main_Load(x1, x2, x3, x4) → 292_0_main_Load(x2, x3, x4)
EOS(x1) → EOS
Cond_292_0_main_Load(x1, x2, x3, x4, x5) → Cond_292_0_main_Load(x1, x3, x4, x5)
Filtered duplicate args:
292_0_main_Load(x1, x2, x3) → 292_0_main_Load(x2, x3)
Cond_292_0_main_Load(x1, x2, x3, x4) → Cond_292_0_main_Load(x1, x3, x4)
Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.
P rules:
292_0_main_Load(x1, x0) → 292_0_main_Load(x0, x1) | <(x1, x0)
R rules:
Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.
P rules:
292_0_MAIN_LOAD(x1, x0) → COND_292_0_MAIN_LOAD(<(x1, x0), x1, x0)
COND_292_0_MAIN_LOAD(TRUE, x1, x0) → 292_0_MAIN_LOAD(x0, x1)
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if (x1[0] < x0[0] ∧x1[0] →* x1[1]∧x0[0] →* x0[1])
(1) -> (0), if (x0[1] →* x1[0]∧x1[1] →* x0[0])
(1) (x0[1]=x1[0]∧x1[1]=x0[0]∧<(x1[0], x0[0])=TRUE∧x1[0]=x1[1]1∧x0[0]=x0[1]1 ⇒ 292_0_MAIN_LOAD(x1[0], x0[0])≥NonInfC∧292_0_MAIN_LOAD(x1[0], x0[0])≥COND_292_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])∧(UIncreasing(COND_292_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])), ≥))
(2) (<(x1[0], x0[0])=TRUE ⇒ 292_0_MAIN_LOAD(x1[0], x0[0])≥NonInfC∧292_0_MAIN_LOAD(x1[0], x0[0])≥COND_292_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])∧(UIncreasing(COND_292_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])), ≥))
(3) (x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_292_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[0] + [(-1)bni_11]x1[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(4) (x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_292_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[0] + [(-1)bni_11]x1[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(5) (x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_292_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x0[0] + [(-1)bni_11]x1[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(6) (x0[0] ≥ 0 ⇒ (UIncreasing(COND_292_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])), ≥)∧[(-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(7) (x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_292_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])), ≥)∧[(-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(8) (x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_292_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])), ≥)∧[(-1)Bound*bni_11] + [bni_11]x0[0] ≥ 0∧[(-1)bso_12] ≥ 0)
(9) (<(x1[0], x0[0])=TRUE∧x1[0]=x1[1]∧x0[0]=x0[1]∧x0[1]=x1[0]1∧x1[1]=x0[0]1 ⇒ COND_292_0_MAIN_LOAD(TRUE, x1[1], x0[1])≥NonInfC∧COND_292_0_MAIN_LOAD(TRUE, x1[1], x0[1])≥292_0_MAIN_LOAD(x0[1], x1[1])∧(UIncreasing(292_0_MAIN_LOAD(x0[1], x1[1])), ≥))
(10) (<(x1[0], x0[0])=TRUE ⇒ COND_292_0_MAIN_LOAD(TRUE, x1[0], x0[0])≥NonInfC∧COND_292_0_MAIN_LOAD(TRUE, x1[0], x0[0])≥292_0_MAIN_LOAD(x0[0], x1[0])∧(UIncreasing(292_0_MAIN_LOAD(x0[1], x1[1])), ≥))
(11) (x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(292_0_MAIN_LOAD(x0[1], x1[1])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] + [(-1)bni_13]x1[0] ≥ 0∧[(-1)bso_14] + [2]x0[0] + [-2]x1[0] ≥ 0)
(12) (x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(292_0_MAIN_LOAD(x0[1], x1[1])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] + [(-1)bni_13]x1[0] ≥ 0∧[(-1)bso_14] + [2]x0[0] + [-2]x1[0] ≥ 0)
(13) (x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(292_0_MAIN_LOAD(x0[1], x1[1])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] + [(-1)bni_13]x1[0] ≥ 0∧[(-1)bso_14] + [2]x0[0] + [-2]x1[0] ≥ 0)
(14) (x0[0] ≥ 0 ⇒ (UIncreasing(292_0_MAIN_LOAD(x0[1], x1[1])), ≥)∧[(-1)Bound*bni_13] + [bni_13]x0[0] ≥ 0∧[2 + (-1)bso_14] + [2]x0[0] ≥ 0)
(15) (x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(292_0_MAIN_LOAD(x0[1], x1[1])), ≥)∧[(-1)Bound*bni_13] + [bni_13]x0[0] ≥ 0∧[2 + (-1)bso_14] + [2]x0[0] ≥ 0)
(16) (x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(292_0_MAIN_LOAD(x0[1], x1[1])), ≥)∧[(-1)Bound*bni_13] + [bni_13]x0[0] ≥ 0∧[2 + (-1)bso_14] + [2]x0[0] ≥ 0)
POL(TRUE) = [1]
POL(FALSE) = 0
POL(292_0_MAIN_LOAD(x1, x2)) = [-1] + x2 + [-1]x1
POL(COND_292_0_MAIN_LOAD(x1, x2, x3)) = [-1] + x3 + [-1]x2
POL(<(x1, x2)) = [-1]
COND_292_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 292_0_MAIN_LOAD(x0[1], x1[1])
292_0_MAIN_LOAD(x1[0], x0[0]) → COND_292_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])
COND_292_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 292_0_MAIN_LOAD(x0[1], x1[1])
292_0_MAIN_LOAD(x1[0], x0[0]) → COND_292_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer