0 JBC
↳1 JBCToGraph (⇒, 260 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 60 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 190 ms)
↳8 IDP
↳9 IDependencyGraphProof (⇔, 0 ms)
↳10 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaB3 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
if (x > 0) {
while (x > y) {
y = x+y;
}
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 10 rules for P and 0 rules for R.
P rules:
332_0_main_Load(EOS(STATIC_332), i51, i47, i51) → 339_0_main_LE(EOS(STATIC_339), i51, i47, i51, i47)
339_0_main_LE(EOS(STATIC_339), i51, i47, i51, i47) → 348_0_main_LE(EOS(STATIC_348), i51, i47, i51, i47)
348_0_main_LE(EOS(STATIC_348), i51, i47, i51, i47) → 367_0_main_Load(EOS(STATIC_367), i51, i47) | >(i51, i47)
367_0_main_Load(EOS(STATIC_367), i51, i47) → 378_0_main_Load(EOS(STATIC_378), i51, i47, i51)
378_0_main_Load(EOS(STATIC_378), i51, i47, i51) → 386_0_main_IntArithmetic(EOS(STATIC_386), i51, i51, i47)
386_0_main_IntArithmetic(EOS(STATIC_386), i51, i51, i47) → 399_0_main_Store(EOS(STATIC_399), i51, +(i51, i47)) | &&(>(i51, 0), >=(i47, 0))
399_0_main_Store(EOS(STATIC_399), i51, i56) → 409_0_main_JMP(EOS(STATIC_409), i51, i56)
409_0_main_JMP(EOS(STATIC_409), i51, i56) → 435_0_main_Load(EOS(STATIC_435), i51, i56)
435_0_main_Load(EOS(STATIC_435), i51, i56) → 322_0_main_Load(EOS(STATIC_322), i51, i56)
322_0_main_Load(EOS(STATIC_322), i51, i47) → 332_0_main_Load(EOS(STATIC_332), i51, i47, i51)
R rules:
Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.
P rules:
332_0_main_Load(EOS(STATIC_332), x0, x1, x0) → 332_0_main_Load(EOS(STATIC_332), x0, +(x0, x1), x0) | &&(&&(>(+(x1, 1), 0), <(x1, x0)), >(x0, 0))
R rules:
Filtered ground terms:
332_0_main_Load(x1, x2, x3, x4) → 332_0_main_Load(x2, x3, x4)
EOS(x1) → EOS
Cond_332_0_main_Load(x1, x2, x3, x4, x5) → Cond_332_0_main_Load(x1, x3, x4, x5)
Filtered duplicate args:
332_0_main_Load(x1, x2, x3) → 332_0_main_Load(x2, x3)
Cond_332_0_main_Load(x1, x2, x3, x4) → Cond_332_0_main_Load(x1, x3, x4)
Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.
P rules:
332_0_main_Load(x1, x0) → 332_0_main_Load(+(x0, x1), x0) | &&(&&(>(x1, -1), <(x1, x0)), >(x0, 0))
R rules:
Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.
P rules:
332_0_MAIN_LOAD(x1, x0) → COND_332_0_MAIN_LOAD(&&(&&(>(x1, -1), <(x1, x0)), >(x0, 0)), x1, x0)
COND_332_0_MAIN_LOAD(TRUE, x1, x0) → 332_0_MAIN_LOAD(+(x0, x1), x0)
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if (x1[0] > -1 && x1[0] < x0[0] && x0[0] > 0 ∧x1[0] →* x1[1]∧x0[0] →* x0[1])
(1) -> (0), if (x0[1] + x1[1] →* x1[0]∧x0[1] →* x0[0])
(1) (&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], 0))=TRUE∧x1[0]=x1[1]∧x0[0]=x0[1] ⇒ 332_0_MAIN_LOAD(x1[0], x0[0])≥NonInfC∧332_0_MAIN_LOAD(x1[0], x0[0])≥COND_332_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], 0)), x1[0], x0[0])∧(UIncreasing(COND_332_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], 0)), x1[0], x0[0])), ≥))
(2) (>(x0[0], 0)=TRUE∧>(x1[0], -1)=TRUE∧<(x1[0], x0[0])=TRUE ⇒ 332_0_MAIN_LOAD(x1[0], x0[0])≥NonInfC∧332_0_MAIN_LOAD(x1[0], x0[0])≥COND_332_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], 0)), x1[0], x0[0])∧(UIncreasing(COND_332_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], 0)), x1[0], x0[0])), ≥))
(3) (x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_332_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] + [(-1)bni_13]x1[0] ≥ 0∧[(-1)bso_14] + x0[0] ≥ 0)
(4) (x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_332_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] + [(-1)bni_13]x1[0] ≥ 0∧[(-1)bso_14] + x0[0] ≥ 0)
(5) (x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_332_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x0[0] + [(-1)bni_13]x1[0] ≥ 0∧[(-1)bso_14] + x0[0] ≥ 0)
(6) (x0[0] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_332_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)Bound*bni_13] + [bni_13]x0[0] + [(-1)bni_13]x1[0] ≥ 0∧[1 + (-1)bso_14] + x0[0] ≥ 0)
(7) (x1[0] + x0[0] ≥ 0∧x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(COND_332_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)Bound*bni_13] + [bni_13]x0[0] ≥ 0∧[1 + (-1)bso_14] + x1[0] + x0[0] ≥ 0)
(8) (&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], 0))=TRUE∧x1[0]=x1[1]∧x0[0]=x0[1]∧+(x0[1], x1[1])=x1[0]1∧x0[1]=x0[0]1 ⇒ COND_332_0_MAIN_LOAD(TRUE, x1[1], x0[1])≥NonInfC∧COND_332_0_MAIN_LOAD(TRUE, x1[1], x0[1])≥332_0_MAIN_LOAD(+(x0[1], x1[1]), x0[1])∧(UIncreasing(332_0_MAIN_LOAD(+(x0[1], x1[1]), x0[1])), ≥))
(9) (>(x0[0], 0)=TRUE∧>(x1[0], -1)=TRUE∧<(x1[0], x0[0])=TRUE ⇒ COND_332_0_MAIN_LOAD(TRUE, x1[0], x0[0])≥NonInfC∧COND_332_0_MAIN_LOAD(TRUE, x1[0], x0[0])≥332_0_MAIN_LOAD(+(x0[0], x1[0]), x0[0])∧(UIncreasing(332_0_MAIN_LOAD(+(x0[1], x1[1]), x0[1])), ≥))
(10) (x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(332_0_MAIN_LOAD(+(x0[1], x1[1]), x0[1])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]x1[0] ≥ 0∧[(-1)bso_16] ≥ 0)
(11) (x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(332_0_MAIN_LOAD(+(x0[1], x1[1]), x0[1])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]x1[0] ≥ 0∧[(-1)bso_16] ≥ 0)
(12) (x0[0] + [-1] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(332_0_MAIN_LOAD(+(x0[1], x1[1]), x0[1])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]x1[0] ≥ 0∧[(-1)bso_16] ≥ 0)
(13) (x0[0] ≥ 0∧x1[0] ≥ 0∧x0[0] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(332_0_MAIN_LOAD(+(x0[1], x1[1]), x0[1])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]x1[0] ≥ 0∧[(-1)bso_16] ≥ 0)
(14) (x1[0] + x0[0] ≥ 0∧x1[0] ≥ 0∧x0[0] ≥ 0 ⇒ (UIncreasing(332_0_MAIN_LOAD(+(x0[1], x1[1]), x0[1])), ≥)∧[(-1)bni_15 + (-1)Bound*bni_15] + [(-1)bni_15]x1[0] ≥ 0∧[(-1)bso_16] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(332_0_MAIN_LOAD(x1, x2)) = [-1] + x2 + [-1]x1
POL(COND_332_0_MAIN_LOAD(x1, x2, x3)) = [-1] + [-1]x2 + [-1]x1
POL(&&(x1, x2)) = 0
POL(>(x1, x2)) = [-1]
POL(-1) = [-1]
POL(<(x1, x2)) = [-1]
POL(0) = 0
POL(+(x1, x2)) = x1 + x2
332_0_MAIN_LOAD(x1[0], x0[0]) → COND_332_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], 0)), x1[0], x0[0])
332_0_MAIN_LOAD(x1[0], x0[0]) → COND_332_0_MAIN_LOAD(&&(&&(>(x1[0], -1), <(x1[0], x0[0])), >(x0[0], 0)), x1[0], x0[0])
COND_332_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 332_0_MAIN_LOAD(+(x0[1], x1[1]), x0[1])
&&(TRUE, TRUE)1 ↔ TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(FALSE, FALSE)1 ↔ FALSE1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer