0 JBC
↳1 JBCToGraph (⇒, 270 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 60 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 150 ms)
↳8 AND
↳9 IDP
↳10 IDependencyGraphProof (⇔, 0 ms)
↳11 TRUE
↳12 IDP
↳13 IDependencyGraphProof (⇔, 0 ms)
↳14 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaB2 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
while (x > y) {
x--;
y++;
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 8 rules for P and 0 rules for R.
P rules:
492_0_main_Load(EOS(STATIC_492), i90, i91, i90) → 495_0_main_LE(EOS(STATIC_495), i90, i91, i90, i91)
495_0_main_LE(EOS(STATIC_495), i90, i91, i90, i91) → 498_0_main_LE(EOS(STATIC_498), i90, i91, i90, i91)
498_0_main_LE(EOS(STATIC_498), i90, i91, i90, i91) → 502_0_main_Inc(EOS(STATIC_502), i90, i91) | >(i90, i91)
502_0_main_Inc(EOS(STATIC_502), i90, i91) → 507_0_main_Inc(EOS(STATIC_507), +(i90, -1), i91)
507_0_main_Inc(EOS(STATIC_507), i96, i91) → 509_0_main_JMP(EOS(STATIC_509), i96, +(i91, 1))
509_0_main_JMP(EOS(STATIC_509), i96, i97) → 524_0_main_Load(EOS(STATIC_524), i96, i97)
524_0_main_Load(EOS(STATIC_524), i96, i97) → 489_0_main_Load(EOS(STATIC_489), i96, i97)
489_0_main_Load(EOS(STATIC_489), i90, i91) → 492_0_main_Load(EOS(STATIC_492), i90, i91, i90)
R rules:
Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.
P rules:
492_0_main_Load(EOS(STATIC_492), x0, x1, x0) → 492_0_main_Load(EOS(STATIC_492), +(x0, -1), +(x1, 1), +(x0, -1)) | <(x1, x0)
R rules:
Filtered ground terms:
492_0_main_Load(x1, x2, x3, x4) → 492_0_main_Load(x2, x3, x4)
EOS(x1) → EOS
Cond_492_0_main_Load(x1, x2, x3, x4, x5) → Cond_492_0_main_Load(x1, x3, x4, x5)
Filtered duplicate args:
492_0_main_Load(x1, x2, x3) → 492_0_main_Load(x2, x3)
Cond_492_0_main_Load(x1, x2, x3, x4) → Cond_492_0_main_Load(x1, x3, x4)
Combined rules. Obtained 1 conditional rules for P and 0 conditional rules for R.
P rules:
492_0_main_Load(x1, x0) → 492_0_main_Load(+(x1, 1), +(x0, -1)) | <(x1, x0)
R rules:
Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.
P rules:
492_0_MAIN_LOAD(x1, x0) → COND_492_0_MAIN_LOAD(<(x1, x0), x1, x0)
COND_492_0_MAIN_LOAD(TRUE, x1, x0) → 492_0_MAIN_LOAD(+(x1, 1), +(x0, -1))
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if (x1[0] < x0[0] ∧x1[0] →* x1[1]∧x0[0] →* x0[1])
(1) -> (0), if (x1[1] + 1 →* x1[0]∧x0[1] + -1 →* x0[0])
(1) (<(x1[0], x0[0])=TRUE∧x1[0]=x1[1]∧x0[0]=x0[1] ⇒ 492_0_MAIN_LOAD(x1[0], x0[0])≥NonInfC∧492_0_MAIN_LOAD(x1[0], x0[0])≥COND_492_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])∧(UIncreasing(COND_492_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])), ≥))
(2) (<(x1[0], x0[0])=TRUE ⇒ 492_0_MAIN_LOAD(x1[0], x0[0])≥NonInfC∧492_0_MAIN_LOAD(x1[0], x0[0])≥COND_492_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])∧(UIncreasing(COND_492_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])), ≥))
(3) (x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_492_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])), ≥)∧[bni_8 + (-1)Bound*bni_8] + [bni_8]x0[0] + [(-1)bni_8]x1[0] ≥ 0∧[(-1)bso_9] ≥ 0)
(4) (x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_492_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])), ≥)∧[bni_8 + (-1)Bound*bni_8] + [bni_8]x0[0] + [(-1)bni_8]x1[0] ≥ 0∧[(-1)bso_9] ≥ 0)
(5) (x0[0] + [-1] + [-1]x1[0] ≥ 0 ⇒ (UIncreasing(COND_492_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])), ≥)∧[bni_8 + (-1)Bound*bni_8] + [bni_8]x0[0] + [(-1)bni_8]x1[0] ≥ 0∧[(-1)bso_9] ≥ 0)
(6) (x0[0] ≥ 0 ⇒ (UIncreasing(COND_492_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])), ≥)∧[(2)bni_8 + (-1)Bound*bni_8] + [bni_8]x0[0] ≥ 0∧[(-1)bso_9] ≥ 0)
(7) (x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_492_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])), ≥)∧[(2)bni_8 + (-1)Bound*bni_8] + [bni_8]x0[0] ≥ 0∧[(-1)bso_9] ≥ 0)
(8) (x0[0] ≥ 0∧x1[0] ≥ 0 ⇒ (UIncreasing(COND_492_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])), ≥)∧[(2)bni_8 + (-1)Bound*bni_8] + [bni_8]x0[0] ≥ 0∧[(-1)bso_9] ≥ 0)
(9) (COND_492_0_MAIN_LOAD(TRUE, x1[1], x0[1])≥NonInfC∧COND_492_0_MAIN_LOAD(TRUE, x1[1], x0[1])≥492_0_MAIN_LOAD(+(x1[1], 1), +(x0[1], -1))∧(UIncreasing(492_0_MAIN_LOAD(+(x1[1], 1), +(x0[1], -1))), ≥))
(10) ((UIncreasing(492_0_MAIN_LOAD(+(x1[1], 1), +(x0[1], -1))), ≥)∧[bni_10] = 0∧[2 + (-1)bso_11] ≥ 0)
(11) ((UIncreasing(492_0_MAIN_LOAD(+(x1[1], 1), +(x0[1], -1))), ≥)∧[bni_10] = 0∧[2 + (-1)bso_11] ≥ 0)
(12) ((UIncreasing(492_0_MAIN_LOAD(+(x1[1], 1), +(x0[1], -1))), ≥)∧[bni_10] = 0∧[2 + (-1)bso_11] ≥ 0)
(13) ((UIncreasing(492_0_MAIN_LOAD(+(x1[1], 1), +(x0[1], -1))), ≥)∧[bni_10] = 0∧0 = 0∧0 = 0∧[2 + (-1)bso_11] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(492_0_MAIN_LOAD(x1, x2)) = [1] + x2 + [-1]x1
POL(COND_492_0_MAIN_LOAD(x1, x2, x3)) = [1] + x3 + [-1]x2
POL(<(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
POL(1) = [1]
POL(-1) = [-1]
COND_492_0_MAIN_LOAD(TRUE, x1[1], x0[1]) → 492_0_MAIN_LOAD(+(x1[1], 1), +(x0[1], -1))
492_0_MAIN_LOAD(x1[0], x0[0]) → COND_492_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])
492_0_MAIN_LOAD(x1[0], x0[0]) → COND_492_0_MAIN_LOAD(<(x1[0], x0[0]), x1[0], x0[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer