0 JBC
↳1 JBCToGraph (⇒, 70 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 120 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 460 ms)
↳8 IDP
↳9 IDependencyGraphProof (⇔, 0 ms)
↳10 IDP
↳11 IDPNonInfProof (⇒, 90 ms)
↳12 IDP
↳13 IDependencyGraphProof (⇔, 0 ms)
↳14 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaB18 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
while (x > 0 && y > 0) {
if (x > y) {
while (x > 0) {
x--;
}
} else {
while (y > 0) {
y--;
}
}
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 32 rules for P and 0 rules for R.
P rules:
303_0_main_LE(EOS(STATIC_303), i51, i47, i51) → 308_0_main_LE(EOS(STATIC_308), i51, i47, i51)
308_0_main_LE(EOS(STATIC_308), i51, i47, i51) → 320_0_main_Load(EOS(STATIC_320), i51, i47) | >(i51, 0)
320_0_main_Load(EOS(STATIC_320), i51, i47) → 330_0_main_LE(EOS(STATIC_330), i51, i47, i47)
330_0_main_LE(EOS(STATIC_330), i51, i54, i54) → 333_0_main_LE(EOS(STATIC_333), i51, i54, i54)
333_0_main_LE(EOS(STATIC_333), i51, i54, i54) → 347_0_main_Load(EOS(STATIC_347), i51, i54) | >(i54, 0)
347_0_main_Load(EOS(STATIC_347), i51, i54) → 358_0_main_Load(EOS(STATIC_358), i51, i54, i51)
358_0_main_Load(EOS(STATIC_358), i51, i54, i51) → 367_0_main_LE(EOS(STATIC_367), i51, i54, i51, i54)
367_0_main_LE(EOS(STATIC_367), i51, i54, i51, i54) → 375_0_main_LE(EOS(STATIC_375), i51, i54, i51, i54)
367_0_main_LE(EOS(STATIC_367), i51, i54, i51, i54) → 376_0_main_LE(EOS(STATIC_376), i51, i54, i51, i54)
375_0_main_LE(EOS(STATIC_375), i51, i54, i51, i54) → 389_0_main_Load(EOS(STATIC_389), i51, i54) | <=(i51, i54)
389_0_main_Load(EOS(STATIC_389), i51, i54) → 439_0_main_Load(EOS(STATIC_439), i51, i54)
439_0_main_Load(EOS(STATIC_439), i51, i68) → 456_0_main_LE(EOS(STATIC_456), i51, i68, i68)
456_0_main_LE(EOS(STATIC_456), i51, matching1, matching2) → 464_0_main_LE(EOS(STATIC_464), i51, 0, 0) | &&(=(matching1, 0), =(matching2, 0))
456_0_main_LE(EOS(STATIC_456), i51, i79, i79) → 465_0_main_LE(EOS(STATIC_465), i51, i79, i79)
464_0_main_LE(EOS(STATIC_464), i51, matching1, matching2) → 477_0_main_Load(EOS(STATIC_477), i51, 0) | &&(&&(<=(0, 0), =(matching1, 0)), =(matching2, 0))
477_0_main_Load(EOS(STATIC_477), i51, matching1) → 297_0_main_Load(EOS(STATIC_297), i51, 0) | =(matching1, 0)
297_0_main_Load(EOS(STATIC_297), i18, i47) → 303_0_main_LE(EOS(STATIC_303), i18, i47, i18)
465_0_main_LE(EOS(STATIC_465), i51, i79, i79) → 479_0_main_Inc(EOS(STATIC_479), i51, i79) | >(i79, 0)
479_0_main_Inc(EOS(STATIC_479), i51, i79) → 491_0_main_JMP(EOS(STATIC_491), i51, +(i79, -1)) | >(i79, 0)
491_0_main_JMP(EOS(STATIC_491), i51, i88) → 499_0_main_Load(EOS(STATIC_499), i51, i88)
499_0_main_Load(EOS(STATIC_499), i51, i88) → 439_0_main_Load(EOS(STATIC_439), i51, i88)
376_0_main_LE(EOS(STATIC_376), i51, i54, i51, i54) → 391_0_main_Load(EOS(STATIC_391), i51, i54) | >(i51, i54)
391_0_main_Load(EOS(STATIC_391), i51, i54) → 450_0_main_Load(EOS(STATIC_450), i51, i54)
450_0_main_Load(EOS(STATIC_450), i72, i54) → 459_0_main_LE(EOS(STATIC_459), i72, i54, i72)
459_0_main_LE(EOS(STATIC_459), matching1, i54, matching2) → 467_0_main_LE(EOS(STATIC_467), 0, i54, 0) | &&(=(matching1, 0), =(matching2, 0))
459_0_main_LE(EOS(STATIC_459), i81, i54, i81) → 468_0_main_LE(EOS(STATIC_468), i81, i54, i81)
467_0_main_LE(EOS(STATIC_467), matching1, i54, matching2) → 484_0_main_Load(EOS(STATIC_484), 0, i54) | &&(&&(<=(0, 0), =(matching1, 0)), =(matching2, 0))
484_0_main_Load(EOS(STATIC_484), matching1, i54) → 297_0_main_Load(EOS(STATIC_297), 0, i54) | =(matching1, 0)
468_0_main_LE(EOS(STATIC_468), i81, i54, i81) → 486_0_main_Inc(EOS(STATIC_486), i81, i54) | >(i81, 0)
486_0_main_Inc(EOS(STATIC_486), i81, i54) → 494_0_main_JMP(EOS(STATIC_494), +(i81, -1), i54) | >(i81, 0)
494_0_main_JMP(EOS(STATIC_494), i89, i54) → 503_0_main_Load(EOS(STATIC_503), i89, i54)
503_0_main_Load(EOS(STATIC_503), i89, i54) → 450_0_main_Load(EOS(STATIC_450), i89, i54)
R rules:
Combined rules. Obtained 6 conditional rules for P and 0 conditional rules for R.
P rules:
303_0_main_LE(EOS(STATIC_303), x0, x1, x0) → 456_0_main_LE(EOS(STATIC_456), x0, x1, x1) | &&(&&(>=(x1, x0), >(x1, 0)), >(x0, 0))
456_0_main_LE(EOS(STATIC_456), x0, 0, 0) → 303_0_main_LE(EOS(STATIC_303), x0, 0, x0)
456_0_main_LE(EOS(STATIC_456), x0, x1, x1) → 456_0_main_LE(EOS(STATIC_456), x0, +(x1, -1), +(x1, -1)) | >(x1, 0)
303_0_main_LE(EOS(STATIC_303), x0, x1, x0) → 459_0_main_LE(EOS(STATIC_459), x0, x1, x0) | &&(&&(>(x1, 0), <(x1, x0)), >(x0, 0))
459_0_main_LE(EOS(STATIC_459), 0, x1, 0) → 303_0_main_LE(EOS(STATIC_303), 0, x1, 0)
459_0_main_LE(EOS(STATIC_459), x0, x1, x0) → 459_0_main_LE(EOS(STATIC_459), +(x0, -1), x1, +(x0, -1)) | >(x0, 0)
R rules:
Filtered ground terms:
459_0_main_LE(x1, x2, x3, x4) → 459_0_main_LE(x2, x3, x4)
Cond_459_0_main_LE(x1, x2, x3, x4, x5) → Cond_459_0_main_LE(x1, x3, x4, x5)
303_0_main_LE(x1, x2, x3, x4) → 303_0_main_LE(x2, x3, x4)
Cond_303_0_main_LE1(x1, x2, x3, x4, x5) → Cond_303_0_main_LE1(x1, x3, x4, x5)
456_0_main_LE(x1, x2, x3, x4) → 456_0_main_LE(x2, x3, x4)
Cond_456_0_main_LE(x1, x2, x3, x4, x5) → Cond_456_0_main_LE(x1, x3, x4, x5)
Cond_303_0_main_LE(x1, x2, x3, x4, x5) → Cond_303_0_main_LE(x1, x3, x4, x5)
Filtered duplicate args:
303_0_main_LE(x1, x2, x3) → 303_0_main_LE(x2, x3)
Cond_303_0_main_LE(x1, x2, x3, x4) → Cond_303_0_main_LE(x1, x3, x4)
456_0_main_LE(x1, x2, x3) → 456_0_main_LE(x1, x3)
Cond_456_0_main_LE(x1, x2, x3, x4) → Cond_456_0_main_LE(x1, x2, x4)
Cond_303_0_main_LE1(x1, x2, x3, x4) → Cond_303_0_main_LE1(x1, x3, x4)
459_0_main_LE(x1, x2, x3) → 459_0_main_LE(x2, x3)
Cond_459_0_main_LE(x1, x2, x3, x4) → Cond_459_0_main_LE(x1, x3, x4)
Combined rules. Obtained 6 conditional rules for P and 0 conditional rules for R.
P rules:
303_0_main_LE(x1, x0) → 456_0_main_LE(x0, x1) | &&(&&(>=(x1, x0), >(x1, 0)), >(x0, 0))
456_0_main_LE(x0, 0) → 303_0_main_LE(0, x0)
456_0_main_LE(x0, x1) → 456_0_main_LE(x0, +(x1, -1)) | >(x1, 0)
303_0_main_LE(x1, x0) → 459_0_main_LE(x1, x0) | &&(&&(>(x1, 0), <(x1, x0)), >(x0, 0))
459_0_main_LE(x1, 0) → 303_0_main_LE(x1, 0)
459_0_main_LE(x1, x0) → 459_0_main_LE(x1, +(x0, -1)) | >(x0, 0)
R rules:
Performed bisimulation on rules. Used the following equivalence classes: {[456_0_main_LE_2, 459_0_main_LE_2]=456_0_main_LE_2, [Cond_456_0_main_LE_3, Cond_459_0_main_LE_3]=Cond_456_0_main_LE_3}
Finished conversion. Obtained 8 rules for P and 0 rules for R. System has predefined symbols.
P rules:
303_0_MAIN_LE(x1, x0) → COND_303_0_MAIN_LE(&&(&&(>=(x1, x0), >(x1, 0)), >(x0, 0)), x1, x0)
COND_303_0_MAIN_LE(TRUE, x1, x0) → 456_0_MAIN_LE(x0, x1)
456_0_MAIN_LE(x0, 0) → 303_0_MAIN_LE(0, x0)
456_0_MAIN_LE(x0, x1) → COND_456_0_MAIN_LE(>(x1, 0), x0, x1)
COND_456_0_MAIN_LE(TRUE, x0, x1) → 456_0_MAIN_LE(x0, +(x1, -1))
303_0_MAIN_LE(x1, x0) → COND_303_0_MAIN_LE1(&&(&&(>(x1, 0), <(x1, x0)), >(x0, 0)), x1, x0)
COND_303_0_MAIN_LE1(TRUE, x1, x0) → 456_0_MAIN_LE(x1, x0)
456_0_MAIN_LE(x1, 0) → 303_0_MAIN_LE(x1, 0)
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if (x1[0] >= x0[0] && x1[0] > 0 && x0[0] > 0 ∧x1[0] →* x1[1]∧x0[0] →* x0[1])
(1) -> (2), if (x0[1] →* x0[2]∧x1[1] →* 0)
(1) -> (3), if (x0[1] →* x0[3]∧x1[1] →* x1[3])
(1) -> (7), if (x0[1] →* x1[7]∧x1[1] →* 0)
(2) -> (0), if (0 →* x1[0]∧x0[2] →* x0[0])
(2) -> (5), if (0 →* x1[5]∧x0[2] →* x0[5])
(3) -> (4), if (x1[3] > 0 ∧x0[3] →* x0[4]∧x1[3] →* x1[4])
(4) -> (2), if (x0[4] →* x0[2]∧x1[4] + -1 →* 0)
(4) -> (3), if (x0[4] →* x0[3]∧x1[4] + -1 →* x1[3])
(4) -> (7), if (x0[4] →* x1[7]∧x1[4] + -1 →* 0)
(5) -> (6), if (x1[5] > 0 && x1[5] < x0[5] && x0[5] > 0 ∧x1[5] →* x1[6]∧x0[5] →* x0[6])
(6) -> (2), if (x1[6] →* x0[2]∧x0[6] →* 0)
(6) -> (3), if (x1[6] →* x0[3]∧x0[6] →* x1[3])
(6) -> (7), if (x1[6] →* x1[7]∧x0[6] →* 0)
(7) -> (0), if (x1[7] →* x1[0]∧0 →* x0[0])
(7) -> (5), if (x1[7] →* x1[5]∧0 →* x0[5])
(1) (&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0))=TRUE∧x1[0]=x1[1]∧x0[0]=x0[1] ⇒ 303_0_MAIN_LE(x1[0], x0[0])≥NonInfC∧303_0_MAIN_LE(x1[0], x0[0])≥COND_303_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])∧(UIncreasing(COND_303_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])), ≥))
(2) (>(x0[0], 0)=TRUE∧>=(x1[0], x0[0])=TRUE∧>(x1[0], 0)=TRUE ⇒ 303_0_MAIN_LE(x1[0], x0[0])≥NonInfC∧303_0_MAIN_LE(x1[0], x0[0])≥COND_303_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])∧(UIncreasing(COND_303_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])), ≥))
(3) (x0[0] + [-1] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_303_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)bni_25 + (-1)Bound*bni_25] + [bni_25]x0[0] + [bni_25]x1[0] ≥ 0∧[(-1)bso_26] + x1[0] ≥ 0)
(4) (x0[0] + [-1] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_303_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)bni_25 + (-1)Bound*bni_25] + [bni_25]x0[0] + [bni_25]x1[0] ≥ 0∧[(-1)bso_26] + x1[0] ≥ 0)
(5) (x0[0] + [-1] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_303_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)bni_25 + (-1)Bound*bni_25] + [bni_25]x0[0] + [bni_25]x1[0] ≥ 0∧[(-1)bso_26] + x1[0] ≥ 0)
(6) (x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_303_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)Bound*bni_25] + [bni_25]x0[0] + [bni_25]x1[0] ≥ 0∧[(-1)bso_26] + x1[0] ≥ 0)
(7) (x0[0] ≥ 0∧x1[0] ≥ 0∧x0[0] + x1[0] ≥ 0 ⇒ (UIncreasing(COND_303_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)Bound*bni_25 + bni_25] + [(2)bni_25]x0[0] + [bni_25]x1[0] ≥ 0∧[1 + (-1)bso_26] + x0[0] + x1[0] ≥ 0)
(8) (x0[1]=x0[2]∧x1[1]=0 ⇒ COND_303_0_MAIN_LE(TRUE, x1[1], x0[1])≥NonInfC∧COND_303_0_MAIN_LE(TRUE, x1[1], x0[1])≥456_0_MAIN_LE(x0[1], x1[1])∧(UIncreasing(456_0_MAIN_LE(x0[1], x1[1])), ≥))
(9) (COND_303_0_MAIN_LE(TRUE, 0, x0[1])≥NonInfC∧COND_303_0_MAIN_LE(TRUE, 0, x0[1])≥456_0_MAIN_LE(x0[1], 0)∧(UIncreasing(456_0_MAIN_LE(x0[1], x1[1])), ≥))
(10) ((UIncreasing(456_0_MAIN_LE(x0[1], x1[1])), ≥)∧[bni_27] = 0∧[(-1)bso_28] ≥ 0)
(11) ((UIncreasing(456_0_MAIN_LE(x0[1], x1[1])), ≥)∧[bni_27] = 0∧[(-1)bso_28] ≥ 0)
(12) ((UIncreasing(456_0_MAIN_LE(x0[1], x1[1])), ≥)∧[bni_27] = 0∧[(-1)bso_28] ≥ 0)
(13) ((UIncreasing(456_0_MAIN_LE(x0[1], x1[1])), ≥)∧[bni_27] = 0∧0 = 0∧[(-1)bso_28] ≥ 0)
(14) (x0[1]=x0[3]∧x1[1]=x1[3] ⇒ COND_303_0_MAIN_LE(TRUE, x1[1], x0[1])≥NonInfC∧COND_303_0_MAIN_LE(TRUE, x1[1], x0[1])≥456_0_MAIN_LE(x0[1], x1[1])∧(UIncreasing(456_0_MAIN_LE(x0[1], x1[1])), ≥))
(15) (COND_303_0_MAIN_LE(TRUE, x1[1], x0[1])≥NonInfC∧COND_303_0_MAIN_LE(TRUE, x1[1], x0[1])≥456_0_MAIN_LE(x0[1], x1[1])∧(UIncreasing(456_0_MAIN_LE(x0[1], x1[1])), ≥))
(16) ((UIncreasing(456_0_MAIN_LE(x0[1], x1[1])), ≥)∧[bni_27] = 0∧[(-1)bso_28] ≥ 0)
(17) ((UIncreasing(456_0_MAIN_LE(x0[1], x1[1])), ≥)∧[bni_27] = 0∧[(-1)bso_28] ≥ 0)
(18) ((UIncreasing(456_0_MAIN_LE(x0[1], x1[1])), ≥)∧[bni_27] = 0∧[(-1)bso_28] ≥ 0)
(19) ((UIncreasing(456_0_MAIN_LE(x0[1], x1[1])), ≥)∧[bni_27] = 0∧0 = 0∧0 = 0∧[(-1)bso_28] ≥ 0)
(20) (x0[1]=x1[7]∧x1[1]=0 ⇒ COND_303_0_MAIN_LE(TRUE, x1[1], x0[1])≥NonInfC∧COND_303_0_MAIN_LE(TRUE, x1[1], x0[1])≥456_0_MAIN_LE(x0[1], x1[1])∧(UIncreasing(456_0_MAIN_LE(x0[1], x1[1])), ≥))
(21) (COND_303_0_MAIN_LE(TRUE, 0, x0[1])≥NonInfC∧COND_303_0_MAIN_LE(TRUE, 0, x0[1])≥456_0_MAIN_LE(x0[1], 0)∧(UIncreasing(456_0_MAIN_LE(x0[1], x1[1])), ≥))
(22) ((UIncreasing(456_0_MAIN_LE(x0[1], x1[1])), ≥)∧[bni_27] = 0∧[(-1)bso_28] ≥ 0)
(23) ((UIncreasing(456_0_MAIN_LE(x0[1], x1[1])), ≥)∧[bni_27] = 0∧[(-1)bso_28] ≥ 0)
(24) ((UIncreasing(456_0_MAIN_LE(x0[1], x1[1])), ≥)∧[bni_27] = 0∧[(-1)bso_28] ≥ 0)
(25) ((UIncreasing(456_0_MAIN_LE(x0[1], x1[1])), ≥)∧[bni_27] = 0∧0 = 0∧[(-1)bso_28] ≥ 0)
(26) (0=x1[0]∧x0[2]=x0[0] ⇒ 456_0_MAIN_LE(x0[2], 0)≥NonInfC∧456_0_MAIN_LE(x0[2], 0)≥303_0_MAIN_LE(0, x0[2])∧(UIncreasing(303_0_MAIN_LE(0, x0[2])), ≥))
(27) (456_0_MAIN_LE(x0[2], 0)≥NonInfC∧456_0_MAIN_LE(x0[2], 0)≥303_0_MAIN_LE(0, x0[2])∧(UIncreasing(303_0_MAIN_LE(0, x0[2])), ≥))
(28) ((UIncreasing(303_0_MAIN_LE(0, x0[2])), ≥)∧[bni_29] = 0∧[(-1)bso_30] ≥ 0)
(29) ((UIncreasing(303_0_MAIN_LE(0, x0[2])), ≥)∧[bni_29] = 0∧[(-1)bso_30] ≥ 0)
(30) ((UIncreasing(303_0_MAIN_LE(0, x0[2])), ≥)∧[bni_29] = 0∧[(-1)bso_30] ≥ 0)
(31) ((UIncreasing(303_0_MAIN_LE(0, x0[2])), ≥)∧[bni_29] = 0∧0 = 0∧[(-1)bso_30] ≥ 0)
(32) (0=x1[5]∧x0[2]=x0[5] ⇒ 456_0_MAIN_LE(x0[2], 0)≥NonInfC∧456_0_MAIN_LE(x0[2], 0)≥303_0_MAIN_LE(0, x0[2])∧(UIncreasing(303_0_MAIN_LE(0, x0[2])), ≥))
(33) (456_0_MAIN_LE(x0[2], 0)≥NonInfC∧456_0_MAIN_LE(x0[2], 0)≥303_0_MAIN_LE(0, x0[2])∧(UIncreasing(303_0_MAIN_LE(0, x0[2])), ≥))
(34) ((UIncreasing(303_0_MAIN_LE(0, x0[2])), ≥)∧[bni_29] = 0∧[(-1)bso_30] ≥ 0)
(35) ((UIncreasing(303_0_MAIN_LE(0, x0[2])), ≥)∧[bni_29] = 0∧[(-1)bso_30] ≥ 0)
(36) ((UIncreasing(303_0_MAIN_LE(0, x0[2])), ≥)∧[bni_29] = 0∧[(-1)bso_30] ≥ 0)
(37) ((UIncreasing(303_0_MAIN_LE(0, x0[2])), ≥)∧[bni_29] = 0∧0 = 0∧[(-1)bso_30] ≥ 0)
(38) (>(x1[3], 0)=TRUE∧x0[3]=x0[4]∧x1[3]=x1[4] ⇒ 456_0_MAIN_LE(x0[3], x1[3])≥NonInfC∧456_0_MAIN_LE(x0[3], x1[3])≥COND_456_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])∧(UIncreasing(COND_456_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥))
(39) (>(x1[3], 0)=TRUE ⇒ 456_0_MAIN_LE(x0[3], x1[3])≥NonInfC∧456_0_MAIN_LE(x0[3], x1[3])≥COND_456_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])∧(UIncreasing(COND_456_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥))
(40) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_456_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥)∧[(-1)bni_31 + (-1)Bound*bni_31] + [bni_31]x0[3] ≥ 0∧[(-1)bso_32] ≥ 0)
(41) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_456_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥)∧[(-1)bni_31 + (-1)Bound*bni_31] + [bni_31]x0[3] ≥ 0∧[(-1)bso_32] ≥ 0)
(42) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_456_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥)∧[(-1)bni_31 + (-1)Bound*bni_31] + [bni_31]x0[3] ≥ 0∧[(-1)bso_32] ≥ 0)
(43) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_456_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥)∧[bni_31] = 0∧[(-1)bni_31 + (-1)Bound*bni_31] ≥ 0∧0 = 0∧[(-1)bso_32] ≥ 0)
(44) (x1[3] ≥ 0 ⇒ (UIncreasing(COND_456_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥)∧[bni_31] = 0∧[(-1)bni_31 + (-1)Bound*bni_31] ≥ 0∧0 = 0∧[(-1)bso_32] ≥ 0)
(45) (>(x1[3], 0)=TRUE∧x0[3]=x0[4]∧x1[3]=x1[4]∧x0[4]=x0[2]∧+(x1[4], -1)=0 ⇒ COND_456_0_MAIN_LE(TRUE, x0[4], x1[4])≥NonInfC∧COND_456_0_MAIN_LE(TRUE, x0[4], x1[4])≥456_0_MAIN_LE(x0[4], +(x1[4], -1))∧(UIncreasing(456_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥))
(46) (>(x1[3], 0)=TRUE∧+(x1[3], -1)=0 ⇒ COND_456_0_MAIN_LE(TRUE, x0[3], x1[3])≥NonInfC∧COND_456_0_MAIN_LE(TRUE, x0[3], x1[3])≥456_0_MAIN_LE(x0[3], +(x1[3], -1))∧(UIncreasing(456_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥))
(47) (x1[3] + [-1] ≥ 0∧x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(456_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [bni_33]x0[3] ≥ 0∧[(-1)bso_34] ≥ 0)
(48) (x1[3] + [-1] ≥ 0∧x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(456_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [bni_33]x0[3] ≥ 0∧[(-1)bso_34] ≥ 0)
(49) (x1[3] + [-1] ≥ 0∧x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(456_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [bni_33]x0[3] ≥ 0∧[(-1)bso_34] ≥ 0)
(50) (x1[3] + [-1] ≥ 0∧x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(456_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[bni_33] = 0∧[(-1)bni_33 + (-1)Bound*bni_33] ≥ 0∧0 = 0∧[(-1)bso_34] ≥ 0)
(51) (x1[3] ≥ 0∧x1[3] ≥ 0 ⇒ (UIncreasing(456_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[bni_33] = 0∧[(-1)bni_33 + (-1)Bound*bni_33] ≥ 0∧0 = 0∧[(-1)bso_34] ≥ 0)
(52) (>(x1[3], 0)=TRUE∧x0[3]=x0[4]∧x1[3]=x1[4]∧x0[4]=x0[3]1∧+(x1[4], -1)=x1[3]1 ⇒ COND_456_0_MAIN_LE(TRUE, x0[4], x1[4])≥NonInfC∧COND_456_0_MAIN_LE(TRUE, x0[4], x1[4])≥456_0_MAIN_LE(x0[4], +(x1[4], -1))∧(UIncreasing(456_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥))
(53) (>(x1[3], 0)=TRUE ⇒ COND_456_0_MAIN_LE(TRUE, x0[3], x1[3])≥NonInfC∧COND_456_0_MAIN_LE(TRUE, x0[3], x1[3])≥456_0_MAIN_LE(x0[3], +(x1[3], -1))∧(UIncreasing(456_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥))
(54) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(456_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [bni_33]x0[3] ≥ 0∧[(-1)bso_34] ≥ 0)
(55) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(456_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [bni_33]x0[3] ≥ 0∧[(-1)bso_34] ≥ 0)
(56) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(456_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [bni_33]x0[3] ≥ 0∧[(-1)bso_34] ≥ 0)
(57) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(456_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[bni_33] = 0∧[(-1)bni_33 + (-1)Bound*bni_33] ≥ 0∧0 = 0∧[(-1)bso_34] ≥ 0)
(58) (x1[3] ≥ 0 ⇒ (UIncreasing(456_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[bni_33] = 0∧[(-1)bni_33 + (-1)Bound*bni_33] ≥ 0∧0 = 0∧[(-1)bso_34] ≥ 0)
(59) (>(x1[3], 0)=TRUE∧x0[3]=x0[4]∧x1[3]=x1[4]∧x0[4]=x1[7]∧+(x1[4], -1)=0 ⇒ COND_456_0_MAIN_LE(TRUE, x0[4], x1[4])≥NonInfC∧COND_456_0_MAIN_LE(TRUE, x0[4], x1[4])≥456_0_MAIN_LE(x0[4], +(x1[4], -1))∧(UIncreasing(456_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥))
(60) (>(x1[3], 0)=TRUE∧+(x1[3], -1)=0 ⇒ COND_456_0_MAIN_LE(TRUE, x0[3], x1[3])≥NonInfC∧COND_456_0_MAIN_LE(TRUE, x0[3], x1[3])≥456_0_MAIN_LE(x0[3], +(x1[3], -1))∧(UIncreasing(456_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥))
(61) (x1[3] + [-1] ≥ 0∧x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(456_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [bni_33]x0[3] ≥ 0∧[(-1)bso_34] ≥ 0)
(62) (x1[3] + [-1] ≥ 0∧x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(456_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [bni_33]x0[3] ≥ 0∧[(-1)bso_34] ≥ 0)
(63) (x1[3] + [-1] ≥ 0∧x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(456_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [bni_33]x0[3] ≥ 0∧[(-1)bso_34] ≥ 0)
(64) (x1[3] + [-1] ≥ 0∧x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(456_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[bni_33] = 0∧[(-1)bni_33 + (-1)Bound*bni_33] ≥ 0∧0 = 0∧[(-1)bso_34] ≥ 0)
(65) (x1[3] ≥ 0∧x1[3] ≥ 0 ⇒ (UIncreasing(456_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[bni_33] = 0∧[(-1)bni_33 + (-1)Bound*bni_33] ≥ 0∧0 = 0∧[(-1)bso_34] ≥ 0)
(66) (&&(&&(>(x1[5], 0), <(x1[5], x0[5])), >(x0[5], 0))=TRUE∧x1[5]=x1[6]∧x0[5]=x0[6] ⇒ 303_0_MAIN_LE(x1[5], x0[5])≥NonInfC∧303_0_MAIN_LE(x1[5], x0[5])≥COND_303_0_MAIN_LE1(&&(&&(>(x1[5], 0), <(x1[5], x0[5])), >(x0[5], 0)), x1[5], x0[5])∧(UIncreasing(COND_303_0_MAIN_LE1(&&(&&(>(x1[5], 0), <(x1[5], x0[5])), >(x0[5], 0)), x1[5], x0[5])), ≥))
(67) (>(x0[5], 0)=TRUE∧>(x1[5], 0)=TRUE∧<(x1[5], x0[5])=TRUE ⇒ 303_0_MAIN_LE(x1[5], x0[5])≥NonInfC∧303_0_MAIN_LE(x1[5], x0[5])≥COND_303_0_MAIN_LE1(&&(&&(>(x1[5], 0), <(x1[5], x0[5])), >(x0[5], 0)), x1[5], x0[5])∧(UIncreasing(COND_303_0_MAIN_LE1(&&(&&(>(x1[5], 0), <(x1[5], x0[5])), >(x0[5], 0)), x1[5], x0[5])), ≥))
(68) (x0[5] + [-1] ≥ 0∧x1[5] + [-1] ≥ 0∧x0[5] + [-1] + [-1]x1[5] ≥ 0 ⇒ (UIncreasing(COND_303_0_MAIN_LE1(&&(&&(>(x1[5], 0), <(x1[5], x0[5])), >(x0[5], 0)), x1[5], x0[5])), ≥)∧[(-1)bni_35 + (-1)Bound*bni_35] + [bni_35]x0[5] + [bni_35]x1[5] ≥ 0∧[(-1)bso_36] + x0[5] ≥ 0)
(69) (x0[5] + [-1] ≥ 0∧x1[5] + [-1] ≥ 0∧x0[5] + [-1] + [-1]x1[5] ≥ 0 ⇒ (UIncreasing(COND_303_0_MAIN_LE1(&&(&&(>(x1[5], 0), <(x1[5], x0[5])), >(x0[5], 0)), x1[5], x0[5])), ≥)∧[(-1)bni_35 + (-1)Bound*bni_35] + [bni_35]x0[5] + [bni_35]x1[5] ≥ 0∧[(-1)bso_36] + x0[5] ≥ 0)
(70) (x0[5] + [-1] ≥ 0∧x1[5] + [-1] ≥ 0∧x0[5] + [-1] + [-1]x1[5] ≥ 0 ⇒ (UIncreasing(COND_303_0_MAIN_LE1(&&(&&(>(x1[5], 0), <(x1[5], x0[5])), >(x0[5], 0)), x1[5], x0[5])), ≥)∧[(-1)bni_35 + (-1)Bound*bni_35] + [bni_35]x0[5] + [bni_35]x1[5] ≥ 0∧[(-1)bso_36] + x0[5] ≥ 0)
(71) (x0[5] ≥ 0∧x1[5] + [-1] ≥ 0∧x0[5] + [-1]x1[5] ≥ 0 ⇒ (UIncreasing(COND_303_0_MAIN_LE1(&&(&&(>(x1[5], 0), <(x1[5], x0[5])), >(x0[5], 0)), x1[5], x0[5])), ≥)∧[(-1)Bound*bni_35] + [bni_35]x0[5] + [bni_35]x1[5] ≥ 0∧[1 + (-1)bso_36] + x0[5] ≥ 0)
(72) (x1[5] + x0[5] ≥ 0∧x1[5] + [-1] ≥ 0∧x0[5] ≥ 0 ⇒ (UIncreasing(COND_303_0_MAIN_LE1(&&(&&(>(x1[5], 0), <(x1[5], x0[5])), >(x0[5], 0)), x1[5], x0[5])), ≥)∧[(-1)Bound*bni_35] + [(2)bni_35]x1[5] + [bni_35]x0[5] ≥ 0∧[1 + (-1)bso_36] + x1[5] + x0[5] ≥ 0)
(73) ([1] + x1[5] + x0[5] ≥ 0∧x1[5] ≥ 0∧x0[5] ≥ 0 ⇒ (UIncreasing(COND_303_0_MAIN_LE1(&&(&&(>(x1[5], 0), <(x1[5], x0[5])), >(x0[5], 0)), x1[5], x0[5])), ≥)∧[(2)bni_35 + (-1)Bound*bni_35] + [(2)bni_35]x1[5] + [bni_35]x0[5] ≥ 0∧[2 + (-1)bso_36] + x1[5] + x0[5] ≥ 0)
(74) (x1[6]=x0[2]∧x0[6]=0 ⇒ COND_303_0_MAIN_LE1(TRUE, x1[6], x0[6])≥NonInfC∧COND_303_0_MAIN_LE1(TRUE, x1[6], x0[6])≥456_0_MAIN_LE(x1[6], x0[6])∧(UIncreasing(456_0_MAIN_LE(x1[6], x0[6])), ≥))
(75) (COND_303_0_MAIN_LE1(TRUE, x1[6], 0)≥NonInfC∧COND_303_0_MAIN_LE1(TRUE, x1[6], 0)≥456_0_MAIN_LE(x1[6], 0)∧(UIncreasing(456_0_MAIN_LE(x1[6], x0[6])), ≥))
(76) ((UIncreasing(456_0_MAIN_LE(x1[6], x0[6])), ≥)∧[bni_37] = 0∧[(-1)bso_38] ≥ 0)
(77) ((UIncreasing(456_0_MAIN_LE(x1[6], x0[6])), ≥)∧[bni_37] = 0∧[(-1)bso_38] ≥ 0)
(78) ((UIncreasing(456_0_MAIN_LE(x1[6], x0[6])), ≥)∧[bni_37] = 0∧[(-1)bso_38] ≥ 0)
(79) ((UIncreasing(456_0_MAIN_LE(x1[6], x0[6])), ≥)∧[bni_37] = 0∧0 = 0∧[(-1)bso_38] ≥ 0)
(80) (x1[6]=x0[3]∧x0[6]=x1[3] ⇒ COND_303_0_MAIN_LE1(TRUE, x1[6], x0[6])≥NonInfC∧COND_303_0_MAIN_LE1(TRUE, x1[6], x0[6])≥456_0_MAIN_LE(x1[6], x0[6])∧(UIncreasing(456_0_MAIN_LE(x1[6], x0[6])), ≥))
(81) (COND_303_0_MAIN_LE1(TRUE, x1[6], x0[6])≥NonInfC∧COND_303_0_MAIN_LE1(TRUE, x1[6], x0[6])≥456_0_MAIN_LE(x1[6], x0[6])∧(UIncreasing(456_0_MAIN_LE(x1[6], x0[6])), ≥))
(82) ((UIncreasing(456_0_MAIN_LE(x1[6], x0[6])), ≥)∧[bni_37] = 0∧[(-1)bso_38] ≥ 0)
(83) ((UIncreasing(456_0_MAIN_LE(x1[6], x0[6])), ≥)∧[bni_37] = 0∧[(-1)bso_38] ≥ 0)
(84) ((UIncreasing(456_0_MAIN_LE(x1[6], x0[6])), ≥)∧[bni_37] = 0∧[(-1)bso_38] ≥ 0)
(85) ((UIncreasing(456_0_MAIN_LE(x1[6], x0[6])), ≥)∧[bni_37] = 0∧0 = 0∧0 = 0∧[(-1)bso_38] ≥ 0)
(86) (x1[6]=x1[7]∧x0[6]=0 ⇒ COND_303_0_MAIN_LE1(TRUE, x1[6], x0[6])≥NonInfC∧COND_303_0_MAIN_LE1(TRUE, x1[6], x0[6])≥456_0_MAIN_LE(x1[6], x0[6])∧(UIncreasing(456_0_MAIN_LE(x1[6], x0[6])), ≥))
(87) (COND_303_0_MAIN_LE1(TRUE, x1[6], 0)≥NonInfC∧COND_303_0_MAIN_LE1(TRUE, x1[6], 0)≥456_0_MAIN_LE(x1[6], 0)∧(UIncreasing(456_0_MAIN_LE(x1[6], x0[6])), ≥))
(88) ((UIncreasing(456_0_MAIN_LE(x1[6], x0[6])), ≥)∧[bni_37] = 0∧[(-1)bso_38] ≥ 0)
(89) ((UIncreasing(456_0_MAIN_LE(x1[6], x0[6])), ≥)∧[bni_37] = 0∧[(-1)bso_38] ≥ 0)
(90) ((UIncreasing(456_0_MAIN_LE(x1[6], x0[6])), ≥)∧[bni_37] = 0∧[(-1)bso_38] ≥ 0)
(91) ((UIncreasing(456_0_MAIN_LE(x1[6], x0[6])), ≥)∧[bni_37] = 0∧0 = 0∧[(-1)bso_38] ≥ 0)
(92) (x1[7]=x1[0]∧0=x0[0] ⇒ 456_0_MAIN_LE(x1[7], 0)≥NonInfC∧456_0_MAIN_LE(x1[7], 0)≥303_0_MAIN_LE(x1[7], 0)∧(UIncreasing(303_0_MAIN_LE(x1[7], 0)), ≥))
(93) (456_0_MAIN_LE(x1[7], 0)≥NonInfC∧456_0_MAIN_LE(x1[7], 0)≥303_0_MAIN_LE(x1[7], 0)∧(UIncreasing(303_0_MAIN_LE(x1[7], 0)), ≥))
(94) ((UIncreasing(303_0_MAIN_LE(x1[7], 0)), ≥)∧[bni_39] = 0∧[(-1)bso_40] ≥ 0)
(95) ((UIncreasing(303_0_MAIN_LE(x1[7], 0)), ≥)∧[bni_39] = 0∧[(-1)bso_40] ≥ 0)
(96) ((UIncreasing(303_0_MAIN_LE(x1[7], 0)), ≥)∧[bni_39] = 0∧[(-1)bso_40] ≥ 0)
(97) ((UIncreasing(303_0_MAIN_LE(x1[7], 0)), ≥)∧[bni_39] = 0∧0 = 0∧[(-1)bso_40] ≥ 0)
(98) (x1[7]=x1[5]∧0=x0[5] ⇒ 456_0_MAIN_LE(x1[7], 0)≥NonInfC∧456_0_MAIN_LE(x1[7], 0)≥303_0_MAIN_LE(x1[7], 0)∧(UIncreasing(303_0_MAIN_LE(x1[7], 0)), ≥))
(99) (456_0_MAIN_LE(x1[7], 0)≥NonInfC∧456_0_MAIN_LE(x1[7], 0)≥303_0_MAIN_LE(x1[7], 0)∧(UIncreasing(303_0_MAIN_LE(x1[7], 0)), ≥))
(100) ((UIncreasing(303_0_MAIN_LE(x1[7], 0)), ≥)∧[bni_39] = 0∧[(-1)bso_40] ≥ 0)
(101) ((UIncreasing(303_0_MAIN_LE(x1[7], 0)), ≥)∧[bni_39] = 0∧[(-1)bso_40] ≥ 0)
(102) ((UIncreasing(303_0_MAIN_LE(x1[7], 0)), ≥)∧[bni_39] = 0∧[(-1)bso_40] ≥ 0)
(103) ((UIncreasing(303_0_MAIN_LE(x1[7], 0)), ≥)∧[bni_39] = 0∧0 = 0∧[(-1)bso_40] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = [1]
POL(303_0_MAIN_LE(x1, x2)) = [-1] + x2 + x1
POL(COND_303_0_MAIN_LE(x1, x2, x3)) = [-1] + x3
POL(&&(x1, x2)) = 0
POL(>=(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(456_0_MAIN_LE(x1, x2)) = [-1] + x1
POL(COND_456_0_MAIN_LE(x1, x2, x3)) = [-1] + x2
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(COND_303_0_MAIN_LE1(x1, x2, x3)) = [-1] + x2 + [-1]x1
POL(<(x1, x2)) = [-1]
303_0_MAIN_LE(x1[0], x0[0]) → COND_303_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])
303_0_MAIN_LE(x1[5], x0[5]) → COND_303_0_MAIN_LE1(&&(&&(>(x1[5], 0), <(x1[5], x0[5])), >(x0[5], 0)), x1[5], x0[5])
303_0_MAIN_LE(x1[0], x0[0]) → COND_303_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])
303_0_MAIN_LE(x1[5], x0[5]) → COND_303_0_MAIN_LE1(&&(&&(>(x1[5], 0), <(x1[5], x0[5])), >(x0[5], 0)), x1[5], x0[5])
COND_303_0_MAIN_LE(TRUE, x1[1], x0[1]) → 456_0_MAIN_LE(x0[1], x1[1])
456_0_MAIN_LE(x0[2], 0) → 303_0_MAIN_LE(0, x0[2])
456_0_MAIN_LE(x0[3], x1[3]) → COND_456_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])
COND_456_0_MAIN_LE(TRUE, x0[4], x1[4]) → 456_0_MAIN_LE(x0[4], +(x1[4], -1))
COND_303_0_MAIN_LE1(TRUE, x1[6], x0[6]) → 456_0_MAIN_LE(x1[6], x0[6])
456_0_MAIN_LE(x1[7], 0) → 303_0_MAIN_LE(x1[7], 0)
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(1) -> (2), if (x0[1] →* x0[2]∧x1[1] →* 0)
(4) -> (2), if (x0[4] →* x0[2]∧x1[4] + -1 →* 0)
(6) -> (2), if (x1[6] →* x0[2]∧x0[6] →* 0)
(1) -> (3), if (x0[1] →* x0[3]∧x1[1] →* x1[3])
(4) -> (3), if (x0[4] →* x0[3]∧x1[4] + -1 →* x1[3])
(6) -> (3), if (x1[6] →* x0[3]∧x0[6] →* x1[3])
(3) -> (4), if (x1[3] > 0 ∧x0[3] →* x0[4]∧x1[3] →* x1[4])
(1) -> (7), if (x0[1] →* x1[7]∧x1[1] →* 0)
(4) -> (7), if (x0[4] →* x1[7]∧x1[4] + -1 →* 0)
(6) -> (7), if (x1[6] →* x1[7]∧x0[6] →* 0)
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(4) -> (3), if (x0[4] →* x0[3]∧x1[4] + -1 →* x1[3])
(3) -> (4), if (x1[3] > 0 ∧x0[3] →* x0[4]∧x1[3] →* x1[4])
(1) (>(x1[3], 0)=TRUE∧x0[3]=x0[4]∧x1[3]=x1[4]∧x0[4]=x0[3]1∧+(x1[4], -1)=x1[3]1 ⇒ COND_456_0_MAIN_LE(TRUE, x0[4], x1[4])≥NonInfC∧COND_456_0_MAIN_LE(TRUE, x0[4], x1[4])≥456_0_MAIN_LE(x0[4], +(x1[4], -1))∧(UIncreasing(456_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥))
(2) (>(x1[3], 0)=TRUE ⇒ COND_456_0_MAIN_LE(TRUE, x0[3], x1[3])≥NonInfC∧COND_456_0_MAIN_LE(TRUE, x0[3], x1[3])≥456_0_MAIN_LE(x0[3], +(x1[3], -1))∧(UIncreasing(456_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥))
(3) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(456_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x1[3] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(4) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(456_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x1[3] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(5) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(456_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x1[3] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(6) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(456_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧0 = 0∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x1[3] ≥ 0∧0 = 0∧[1 + (-1)bso_12] ≥ 0)
(7) (x1[3] ≥ 0 ⇒ (UIncreasing(456_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧0 = 0∧[(-1)Bound*bni_11] + [bni_11]x1[3] ≥ 0∧0 = 0∧[1 + (-1)bso_12] ≥ 0)
(8) (>(x1[3], 0)=TRUE∧x0[3]=x0[4]∧x1[3]=x1[4] ⇒ 456_0_MAIN_LE(x0[3], x1[3])≥NonInfC∧456_0_MAIN_LE(x0[3], x1[3])≥COND_456_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])∧(UIncreasing(COND_456_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥))
(9) (>(x1[3], 0)=TRUE ⇒ 456_0_MAIN_LE(x0[3], x1[3])≥NonInfC∧456_0_MAIN_LE(x0[3], x1[3])≥COND_456_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])∧(UIncreasing(COND_456_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥))
(10) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_456_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x1[3] ≥ 0∧[(-1)bso_14] ≥ 0)
(11) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_456_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x1[3] ≥ 0∧[(-1)bso_14] ≥ 0)
(12) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_456_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x1[3] ≥ 0∧[(-1)bso_14] ≥ 0)
(13) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_456_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥)∧0 = 0∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x1[3] ≥ 0∧0 = 0∧[(-1)bso_14] ≥ 0)
(14) (x1[3] ≥ 0 ⇒ (UIncreasing(COND_456_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥)∧0 = 0∧[(-1)Bound*bni_13] + [bni_13]x1[3] ≥ 0∧0 = 0∧[(-1)bso_14] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_456_0_MAIN_LE(x1, x2, x3)) = [-1] + x3
POL(456_0_MAIN_LE(x1, x2)) = [-1] + x2
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
COND_456_0_MAIN_LE(TRUE, x0[4], x1[4]) → 456_0_MAIN_LE(x0[4], +(x1[4], -1))
COND_456_0_MAIN_LE(TRUE, x0[4], x1[4]) → 456_0_MAIN_LE(x0[4], +(x1[4], -1))
456_0_MAIN_LE(x0[3], x1[3]) → COND_456_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])
456_0_MAIN_LE(x0[3], x1[3]) → COND_456_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer