0 JBC
↳1 JBCToGraph (⇒, 620 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 170 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 570 ms)
↳8 AND
↳9 IDP
↳10 IDPNonInfProof (⇒, 310 ms)
↳11 AND
↳12 IDP
↳13 IDependencyGraphProof (⇔, 0 ms)
↳14 IDP
↳15 IDPNonInfProof (⇒, 20 ms)
↳16 IDP
↳17 IDependencyGraphProof (⇔, 0 ms)
↳18 TRUE
↳19 IDP
↳20 IDependencyGraphProof (⇔, 0 ms)
↳21 IDP
↳22 IDPNonInfProof (⇒, 20 ms)
↳23 IDP
↳24 IDependencyGraphProof (⇔, 0 ms)
↳25 TRUE
↳26 IDP
↳27 IDependencyGraphProof (⇔, 0 ms)
↳28 IDP
↳29 IDPNonInfProof (⇒, 40 ms)
↳30 IDP
↳31 IDependencyGraphProof (⇔, 0 ms)
↳32 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaB18 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
while (x > 0 && y > 0) {
if (x > y) {
while (x > 0) {
x--;
}
} else {
while (y > 0) {
y--;
}
}
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 32 rules for P and 0 rules for R.
P rules:
305_0_main_LE(EOS(STATIC_305), i51, i47, i51) → 310_0_main_LE(EOS(STATIC_310), i51, i47, i51)
310_0_main_LE(EOS(STATIC_310), i51, i47, i51) → 325_0_main_Load(EOS(STATIC_325), i51, i47) | >(i51, 0)
325_0_main_Load(EOS(STATIC_325), i51, i47) → 330_0_main_LE(EOS(STATIC_330), i51, i47, i47)
330_0_main_LE(EOS(STATIC_330), i51, i55, i55) → 336_0_main_LE(EOS(STATIC_336), i51, i55, i55)
336_0_main_LE(EOS(STATIC_336), i51, i55, i55) → 354_0_main_Load(EOS(STATIC_354), i51, i55) | >(i55, 0)
354_0_main_Load(EOS(STATIC_354), i51, i55) → 365_0_main_Load(EOS(STATIC_365), i51, i55, i51)
365_0_main_Load(EOS(STATIC_365), i51, i55, i51) → 374_0_main_LE(EOS(STATIC_374), i51, i55, i51, i55)
374_0_main_LE(EOS(STATIC_374), i51, i55, i51, i55) → 382_0_main_LE(EOS(STATIC_382), i51, i55, i51, i55)
374_0_main_LE(EOS(STATIC_374), i51, i55, i51, i55) → 384_0_main_LE(EOS(STATIC_384), i51, i55, i51, i55)
382_0_main_LE(EOS(STATIC_382), i51, i55, i51, i55) → 397_0_main_Load(EOS(STATIC_397), i51, i55) | <=(i51, i55)
397_0_main_Load(EOS(STATIC_397), i51, i55) → 449_0_main_Load(EOS(STATIC_449), i51, i55)
449_0_main_Load(EOS(STATIC_449), i51, i70) → 466_0_main_LE(EOS(STATIC_466), i51, i70, i70)
466_0_main_LE(EOS(STATIC_466), i51, matching1, matching2) → 473_0_main_LE(EOS(STATIC_473), i51, 0, 0) | &&(=(matching1, 0), =(matching2, 0))
466_0_main_LE(EOS(STATIC_466), i51, i80, i80) → 474_0_main_LE(EOS(STATIC_474), i51, i80, i80)
473_0_main_LE(EOS(STATIC_473), i51, matching1, matching2) → 502_0_main_Load(EOS(STATIC_502), i51, 0) | &&(&&(<=(0, 0), =(matching1, 0)), =(matching2, 0))
502_0_main_Load(EOS(STATIC_502), i51, matching1) → 300_0_main_Load(EOS(STATIC_300), i51, 0) | =(matching1, 0)
300_0_main_Load(EOS(STATIC_300), i18, i47) → 305_0_main_LE(EOS(STATIC_305), i18, i47, i18)
474_0_main_LE(EOS(STATIC_474), i51, i80, i80) → 504_0_main_Inc(EOS(STATIC_504), i51, i80) | >(i80, 0)
504_0_main_Inc(EOS(STATIC_504), i51, i80) → 900_0_main_JMP(EOS(STATIC_900), i51, +(i80, -1)) | >(i80, 0)
900_0_main_JMP(EOS(STATIC_900), i51, i186) → 1063_0_main_Load(EOS(STATIC_1063), i51, i186)
1063_0_main_Load(EOS(STATIC_1063), i51, i186) → 449_0_main_Load(EOS(STATIC_449), i51, i186)
384_0_main_LE(EOS(STATIC_384), i51, i55, i51, i55) → 399_0_main_Load(EOS(STATIC_399), i51, i55) | >(i51, i55)
399_0_main_Load(EOS(STATIC_399), i51, i55) → 459_0_main_Load(EOS(STATIC_459), i51, i55)
459_0_main_Load(EOS(STATIC_459), i74, i55) → 469_0_main_LE(EOS(STATIC_469), i74, i55, i74)
469_0_main_LE(EOS(STATIC_469), matching1, i55, matching2) → 477_0_main_LE(EOS(STATIC_477), 0, i55, 0) | &&(=(matching1, 0), =(matching2, 0))
469_0_main_LE(EOS(STATIC_469), i82, i55, i82) → 478_0_main_LE(EOS(STATIC_478), i82, i55, i82)
477_0_main_LE(EOS(STATIC_477), matching1, i55, matching2) → 509_0_main_Load(EOS(STATIC_509), 0, i55) | &&(&&(<=(0, 0), =(matching1, 0)), =(matching2, 0))
509_0_main_Load(EOS(STATIC_509), matching1, i55) → 300_0_main_Load(EOS(STATIC_300), 0, i55) | =(matching1, 0)
478_0_main_LE(EOS(STATIC_478), i82, i55, i82) → 512_0_main_Inc(EOS(STATIC_512), i82, i55) | >(i82, 0)
512_0_main_Inc(EOS(STATIC_512), i82, i55) → 1058_0_main_JMP(EOS(STATIC_1058), +(i82, -1), i55) | >(i82, 0)
1058_0_main_JMP(EOS(STATIC_1058), i240, i55) → 1065_0_main_Load(EOS(STATIC_1065), i240, i55)
1065_0_main_Load(EOS(STATIC_1065), i240, i55) → 459_0_main_Load(EOS(STATIC_459), i240, i55)
R rules:
Combined rules. Obtained 6 conditional rules for P and 0 conditional rules for R.
P rules:
305_0_main_LE(EOS(STATIC_305), x0, x1, x0) → 466_0_main_LE(EOS(STATIC_466), x0, x1, x1) | &&(&&(>=(x1, x0), >(x1, 0)), >(x0, 0))
466_0_main_LE(EOS(STATIC_466), x0, 0, 0) → 305_0_main_LE(EOS(STATIC_305), x0, 0, x0)
466_0_main_LE(EOS(STATIC_466), x0, x1, x1) → 466_0_main_LE(EOS(STATIC_466), x0, +(x1, -1), +(x1, -1)) | >(x1, 0)
305_0_main_LE(EOS(STATIC_305), x0, x1, x0) → 469_0_main_LE(EOS(STATIC_469), x0, x1, x0) | &&(&&(>(x1, 0), <(x1, x0)), >(x0, 0))
469_0_main_LE(EOS(STATIC_469), 0, x1, 0) → 305_0_main_LE(EOS(STATIC_305), 0, x1, 0)
469_0_main_LE(EOS(STATIC_469), x0, x1, x0) → 469_0_main_LE(EOS(STATIC_469), +(x0, -1), x1, +(x0, -1)) | >(x0, 0)
R rules:
Filtered ground terms:
469_0_main_LE(x1, x2, x3, x4) → 469_0_main_LE(x2, x3, x4)
Cond_469_0_main_LE(x1, x2, x3, x4, x5) → Cond_469_0_main_LE(x1, x3, x4, x5)
305_0_main_LE(x1, x2, x3, x4) → 305_0_main_LE(x2, x3, x4)
Cond_305_0_main_LE1(x1, x2, x3, x4, x5) → Cond_305_0_main_LE1(x1, x3, x4, x5)
466_0_main_LE(x1, x2, x3, x4) → 466_0_main_LE(x2, x3, x4)
Cond_466_0_main_LE(x1, x2, x3, x4, x5) → Cond_466_0_main_LE(x1, x3, x4, x5)
Cond_305_0_main_LE(x1, x2, x3, x4, x5) → Cond_305_0_main_LE(x1, x3, x4, x5)
Filtered duplicate args:
305_0_main_LE(x1, x2, x3) → 305_0_main_LE(x2, x3)
Cond_305_0_main_LE(x1, x2, x3, x4) → Cond_305_0_main_LE(x1, x3, x4)
466_0_main_LE(x1, x2, x3) → 466_0_main_LE(x1, x3)
Cond_466_0_main_LE(x1, x2, x3, x4) → Cond_466_0_main_LE(x1, x2, x4)
Cond_305_0_main_LE1(x1, x2, x3, x4) → Cond_305_0_main_LE1(x1, x3, x4)
469_0_main_LE(x1, x2, x3) → 469_0_main_LE(x2, x3)
Cond_469_0_main_LE(x1, x2, x3, x4) → Cond_469_0_main_LE(x1, x3, x4)
Combined rules. Obtained 6 conditional rules for P and 0 conditional rules for R.
P rules:
305_0_main_LE(x1, x0) → 466_0_main_LE(x0, x1) | &&(&&(>=(x1, x0), >(x1, 0)), >(x0, 0))
466_0_main_LE(x0, 0) → 305_0_main_LE(0, x0)
466_0_main_LE(x0, x1) → 466_0_main_LE(x0, +(x1, -1)) | >(x1, 0)
305_0_main_LE(x1, x0) → 469_0_main_LE(x1, x0) | &&(&&(>(x1, 0), <(x1, x0)), >(x0, 0))
469_0_main_LE(x1, 0) → 305_0_main_LE(x1, 0)
469_0_main_LE(x1, x0) → 469_0_main_LE(x1, +(x0, -1)) | >(x0, 0)
R rules:
Performed bisimulation on rules. Used the following equivalence classes: {[466_0_main_LE_2, 469_0_main_LE_2]=466_0_main_LE_2, [Cond_466_0_main_LE_3, Cond_469_0_main_LE_3]=Cond_466_0_main_LE_3}
Finished conversion. Obtained 8 rules for P and 0 rules for R. System has predefined symbols.
P rules:
305_0_MAIN_LE(x1, x0) → COND_305_0_MAIN_LE(&&(&&(>=(x1, x0), >(x1, 0)), >(x0, 0)), x1, x0)
COND_305_0_MAIN_LE(TRUE, x1, x0) → 466_0_MAIN_LE(x0, x1)
466_0_MAIN_LE(x0, 0) → 305_0_MAIN_LE(0, x0)
466_0_MAIN_LE(x0, x1) → COND_466_0_MAIN_LE(>(x1, 0), x0, x1)
COND_466_0_MAIN_LE(TRUE, x0, x1) → 466_0_MAIN_LE(x0, +(x1, -1))
305_0_MAIN_LE(x1, x0) → COND_305_0_MAIN_LE1(&&(&&(>(x1, 0), <(x1, x0)), >(x0, 0)), x1, x0)
COND_305_0_MAIN_LE1(TRUE, x1, x0) → 466_0_MAIN_LE(x1, x0)
466_0_MAIN_LE(x1, 0) → 305_0_MAIN_LE(x1, 0)
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if (x1[0] >= x0[0] && x1[0] > 0 && x0[0] > 0 ∧x1[0] →* x1[1]∧x0[0] →* x0[1])
(1) -> (2), if (x0[1] →* x0[2]∧x1[1] →* 0)
(1) -> (3), if (x0[1] →* x0[3]∧x1[1] →* x1[3])
(1) -> (7), if (x0[1] →* x1[7]∧x1[1] →* 0)
(2) -> (0), if (0 →* x1[0]∧x0[2] →* x0[0])
(2) -> (5), if (0 →* x1[5]∧x0[2] →* x0[5])
(3) -> (4), if (x1[3] > 0 ∧x0[3] →* x0[4]∧x1[3] →* x1[4])
(4) -> (2), if (x0[4] →* x0[2]∧x1[4] + -1 →* 0)
(4) -> (3), if (x0[4] →* x0[3]∧x1[4] + -1 →* x1[3])
(4) -> (7), if (x0[4] →* x1[7]∧x1[4] + -1 →* 0)
(5) -> (6), if (x1[5] > 0 && x1[5] < x0[5] && x0[5] > 0 ∧x1[5] →* x1[6]∧x0[5] →* x0[6])
(6) -> (2), if (x1[6] →* x0[2]∧x0[6] →* 0)
(6) -> (3), if (x1[6] →* x0[3]∧x0[6] →* x1[3])
(6) -> (7), if (x1[6] →* x1[7]∧x0[6] →* 0)
(7) -> (0), if (x1[7] →* x1[0]∧0 →* x0[0])
(7) -> (5), if (x1[7] →* x1[5]∧0 →* x0[5])
(1) (&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0))=TRUE∧x1[0]=x1[1]∧x0[0]=x0[1] ⇒ 305_0_MAIN_LE(x1[0], x0[0])≥NonInfC∧305_0_MAIN_LE(x1[0], x0[0])≥COND_305_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])∧(UIncreasing(COND_305_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])), ≥))
(2) (>(x0[0], 0)=TRUE∧>=(x1[0], x0[0])=TRUE∧>(x1[0], 0)=TRUE ⇒ 305_0_MAIN_LE(x1[0], x0[0])≥NonInfC∧305_0_MAIN_LE(x1[0], x0[0])≥COND_305_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])∧(UIncreasing(COND_305_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])), ≥))
(3) (x0[0] + [-1] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_305_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)bni_25 + (-1)Bound*bni_25] + [bni_25]x0[0] + [bni_25]x1[0] ≥ 0∧[-1 + (-1)bso_26] + x1[0] ≥ 0)
(4) (x0[0] + [-1] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_305_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)bni_25 + (-1)Bound*bni_25] + [bni_25]x0[0] + [bni_25]x1[0] ≥ 0∧[-1 + (-1)bso_26] + x1[0] ≥ 0)
(5) (x0[0] + [-1] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_305_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)bni_25 + (-1)Bound*bni_25] + [bni_25]x0[0] + [bni_25]x1[0] ≥ 0∧[-1 + (-1)bso_26] + x1[0] ≥ 0)
(6) (x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_305_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)Bound*bni_25] + [bni_25]x0[0] + [bni_25]x1[0] ≥ 0∧[-1 + (-1)bso_26] + x1[0] ≥ 0)
(7) (x0[0] ≥ 0∧x1[0] ≥ 0∧x0[0] + x1[0] ≥ 0 ⇒ (UIncreasing(COND_305_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)Bound*bni_25 + bni_25] + [(2)bni_25]x0[0] + [bni_25]x1[0] ≥ 0∧[(-1)bso_26] + x0[0] + x1[0] ≥ 0)
(8) (x0[1]=x0[2]∧x1[1]=0 ⇒ COND_305_0_MAIN_LE(TRUE, x1[1], x0[1])≥NonInfC∧COND_305_0_MAIN_LE(TRUE, x1[1], x0[1])≥466_0_MAIN_LE(x0[1], x1[1])∧(UIncreasing(466_0_MAIN_LE(x0[1], x1[1])), ≥))
(9) (COND_305_0_MAIN_LE(TRUE, 0, x0[1])≥NonInfC∧COND_305_0_MAIN_LE(TRUE, 0, x0[1])≥466_0_MAIN_LE(x0[1], 0)∧(UIncreasing(466_0_MAIN_LE(x0[1], x1[1])), ≥))
(10) ((UIncreasing(466_0_MAIN_LE(x0[1], x1[1])), ≥)∧[bni_27] = 0∧[(-1)bso_28] ≥ 0)
(11) ((UIncreasing(466_0_MAIN_LE(x0[1], x1[1])), ≥)∧[bni_27] = 0∧[(-1)bso_28] ≥ 0)
(12) ((UIncreasing(466_0_MAIN_LE(x0[1], x1[1])), ≥)∧[bni_27] = 0∧[(-1)bso_28] ≥ 0)
(13) ((UIncreasing(466_0_MAIN_LE(x0[1], x1[1])), ≥)∧[bni_27] = 0∧0 = 0∧[(-1)bso_28] ≥ 0)
(14) (x0[1]=x0[3]∧x1[1]=x1[3] ⇒ COND_305_0_MAIN_LE(TRUE, x1[1], x0[1])≥NonInfC∧COND_305_0_MAIN_LE(TRUE, x1[1], x0[1])≥466_0_MAIN_LE(x0[1], x1[1])∧(UIncreasing(466_0_MAIN_LE(x0[1], x1[1])), ≥))
(15) (COND_305_0_MAIN_LE(TRUE, x1[1], x0[1])≥NonInfC∧COND_305_0_MAIN_LE(TRUE, x1[1], x0[1])≥466_0_MAIN_LE(x0[1], x1[1])∧(UIncreasing(466_0_MAIN_LE(x0[1], x1[1])), ≥))
(16) ((UIncreasing(466_0_MAIN_LE(x0[1], x1[1])), ≥)∧[bni_27] = 0∧[(-1)bso_28] ≥ 0)
(17) ((UIncreasing(466_0_MAIN_LE(x0[1], x1[1])), ≥)∧[bni_27] = 0∧[(-1)bso_28] ≥ 0)
(18) ((UIncreasing(466_0_MAIN_LE(x0[1], x1[1])), ≥)∧[bni_27] = 0∧[(-1)bso_28] ≥ 0)
(19) ((UIncreasing(466_0_MAIN_LE(x0[1], x1[1])), ≥)∧[bni_27] = 0∧0 = 0∧0 = 0∧[(-1)bso_28] ≥ 0)
(20) (x0[1]=x1[7]∧x1[1]=0 ⇒ COND_305_0_MAIN_LE(TRUE, x1[1], x0[1])≥NonInfC∧COND_305_0_MAIN_LE(TRUE, x1[1], x0[1])≥466_0_MAIN_LE(x0[1], x1[1])∧(UIncreasing(466_0_MAIN_LE(x0[1], x1[1])), ≥))
(21) (COND_305_0_MAIN_LE(TRUE, 0, x0[1])≥NonInfC∧COND_305_0_MAIN_LE(TRUE, 0, x0[1])≥466_0_MAIN_LE(x0[1], 0)∧(UIncreasing(466_0_MAIN_LE(x0[1], x1[1])), ≥))
(22) ((UIncreasing(466_0_MAIN_LE(x0[1], x1[1])), ≥)∧[bni_27] = 0∧[(-1)bso_28] ≥ 0)
(23) ((UIncreasing(466_0_MAIN_LE(x0[1], x1[1])), ≥)∧[bni_27] = 0∧[(-1)bso_28] ≥ 0)
(24) ((UIncreasing(466_0_MAIN_LE(x0[1], x1[1])), ≥)∧[bni_27] = 0∧[(-1)bso_28] ≥ 0)
(25) ((UIncreasing(466_0_MAIN_LE(x0[1], x1[1])), ≥)∧[bni_27] = 0∧0 = 0∧[(-1)bso_28] ≥ 0)
(26) (0=x1[0]∧x0[2]=x0[0] ⇒ 466_0_MAIN_LE(x0[2], 0)≥NonInfC∧466_0_MAIN_LE(x0[2], 0)≥305_0_MAIN_LE(0, x0[2])∧(UIncreasing(305_0_MAIN_LE(0, x0[2])), ≥))
(27) (466_0_MAIN_LE(x0[2], 0)≥NonInfC∧466_0_MAIN_LE(x0[2], 0)≥305_0_MAIN_LE(0, x0[2])∧(UIncreasing(305_0_MAIN_LE(0, x0[2])), ≥))
(28) ((UIncreasing(305_0_MAIN_LE(0, x0[2])), ≥)∧[bni_29] = 0∧[(-1)bso_30] ≥ 0)
(29) ((UIncreasing(305_0_MAIN_LE(0, x0[2])), ≥)∧[bni_29] = 0∧[(-1)bso_30] ≥ 0)
(30) ((UIncreasing(305_0_MAIN_LE(0, x0[2])), ≥)∧[bni_29] = 0∧[(-1)bso_30] ≥ 0)
(31) ((UIncreasing(305_0_MAIN_LE(0, x0[2])), ≥)∧[bni_29] = 0∧0 = 0∧[(-1)bso_30] ≥ 0)
(32) (0=x1[5]∧x0[2]=x0[5] ⇒ 466_0_MAIN_LE(x0[2], 0)≥NonInfC∧466_0_MAIN_LE(x0[2], 0)≥305_0_MAIN_LE(0, x0[2])∧(UIncreasing(305_0_MAIN_LE(0, x0[2])), ≥))
(33) (466_0_MAIN_LE(x0[2], 0)≥NonInfC∧466_0_MAIN_LE(x0[2], 0)≥305_0_MAIN_LE(0, x0[2])∧(UIncreasing(305_0_MAIN_LE(0, x0[2])), ≥))
(34) ((UIncreasing(305_0_MAIN_LE(0, x0[2])), ≥)∧[bni_29] = 0∧[(-1)bso_30] ≥ 0)
(35) ((UIncreasing(305_0_MAIN_LE(0, x0[2])), ≥)∧[bni_29] = 0∧[(-1)bso_30] ≥ 0)
(36) ((UIncreasing(305_0_MAIN_LE(0, x0[2])), ≥)∧[bni_29] = 0∧[(-1)bso_30] ≥ 0)
(37) ((UIncreasing(305_0_MAIN_LE(0, x0[2])), ≥)∧[bni_29] = 0∧0 = 0∧[(-1)bso_30] ≥ 0)
(38) (>(x1[3], 0)=TRUE∧x0[3]=x0[4]∧x1[3]=x1[4] ⇒ 466_0_MAIN_LE(x0[3], x1[3])≥NonInfC∧466_0_MAIN_LE(x0[3], x1[3])≥COND_466_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])∧(UIncreasing(COND_466_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥))
(39) (>(x1[3], 0)=TRUE ⇒ 466_0_MAIN_LE(x0[3], x1[3])≥NonInfC∧466_0_MAIN_LE(x0[3], x1[3])≥COND_466_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])∧(UIncreasing(COND_466_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥))
(40) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_466_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥)∧[(-1)bni_31 + (-1)Bound*bni_31] + [bni_31]x0[3] ≥ 0∧[(-1)bso_32] ≥ 0)
(41) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_466_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥)∧[(-1)bni_31 + (-1)Bound*bni_31] + [bni_31]x0[3] ≥ 0∧[(-1)bso_32] ≥ 0)
(42) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_466_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥)∧[(-1)bni_31 + (-1)Bound*bni_31] + [bni_31]x0[3] ≥ 0∧[(-1)bso_32] ≥ 0)
(43) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_466_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥)∧[bni_31] = 0∧[(-1)bni_31 + (-1)Bound*bni_31] ≥ 0∧0 = 0∧[(-1)bso_32] ≥ 0)
(44) (x1[3] ≥ 0 ⇒ (UIncreasing(COND_466_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥)∧[bni_31] = 0∧[(-1)bni_31 + (-1)Bound*bni_31] ≥ 0∧0 = 0∧[(-1)bso_32] ≥ 0)
(45) (>(x1[3], 0)=TRUE∧x0[3]=x0[4]∧x1[3]=x1[4]∧x0[4]=x0[2]∧+(x1[4], -1)=0 ⇒ COND_466_0_MAIN_LE(TRUE, x0[4], x1[4])≥NonInfC∧COND_466_0_MAIN_LE(TRUE, x0[4], x1[4])≥466_0_MAIN_LE(x0[4], +(x1[4], -1))∧(UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥))
(46) (>(x1[3], 0)=TRUE∧+(x1[3], -1)=0 ⇒ COND_466_0_MAIN_LE(TRUE, x0[3], x1[3])≥NonInfC∧COND_466_0_MAIN_LE(TRUE, x0[3], x1[3])≥466_0_MAIN_LE(x0[3], +(x1[3], -1))∧(UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥))
(47) (x1[3] + [-1] ≥ 0∧x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [bni_33]x0[3] ≥ 0∧[(-1)bso_34] ≥ 0)
(48) (x1[3] + [-1] ≥ 0∧x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [bni_33]x0[3] ≥ 0∧[(-1)bso_34] ≥ 0)
(49) (x1[3] + [-1] ≥ 0∧x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [bni_33]x0[3] ≥ 0∧[(-1)bso_34] ≥ 0)
(50) (x1[3] + [-1] ≥ 0∧x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[bni_33] = 0∧[(-1)bni_33 + (-1)Bound*bni_33] ≥ 0∧0 = 0∧[(-1)bso_34] ≥ 0)
(51) (x1[3] ≥ 0∧x1[3] ≥ 0 ⇒ (UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[bni_33] = 0∧[(-1)bni_33 + (-1)Bound*bni_33] ≥ 0∧0 = 0∧[(-1)bso_34] ≥ 0)
(52) (>(x1[3], 0)=TRUE∧x0[3]=x0[4]∧x1[3]=x1[4]∧x0[4]=x0[3]1∧+(x1[4], -1)=x1[3]1 ⇒ COND_466_0_MAIN_LE(TRUE, x0[4], x1[4])≥NonInfC∧COND_466_0_MAIN_LE(TRUE, x0[4], x1[4])≥466_0_MAIN_LE(x0[4], +(x1[4], -1))∧(UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥))
(53) (>(x1[3], 0)=TRUE ⇒ COND_466_0_MAIN_LE(TRUE, x0[3], x1[3])≥NonInfC∧COND_466_0_MAIN_LE(TRUE, x0[3], x1[3])≥466_0_MAIN_LE(x0[3], +(x1[3], -1))∧(UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥))
(54) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [bni_33]x0[3] ≥ 0∧[(-1)bso_34] ≥ 0)
(55) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [bni_33]x0[3] ≥ 0∧[(-1)bso_34] ≥ 0)
(56) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [bni_33]x0[3] ≥ 0∧[(-1)bso_34] ≥ 0)
(57) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[bni_33] = 0∧[(-1)bni_33 + (-1)Bound*bni_33] ≥ 0∧0 = 0∧[(-1)bso_34] ≥ 0)
(58) (x1[3] ≥ 0 ⇒ (UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[bni_33] = 0∧[(-1)bni_33 + (-1)Bound*bni_33] ≥ 0∧0 = 0∧[(-1)bso_34] ≥ 0)
(59) (>(x1[3], 0)=TRUE∧x0[3]=x0[4]∧x1[3]=x1[4]∧x0[4]=x1[7]∧+(x1[4], -1)=0 ⇒ COND_466_0_MAIN_LE(TRUE, x0[4], x1[4])≥NonInfC∧COND_466_0_MAIN_LE(TRUE, x0[4], x1[4])≥466_0_MAIN_LE(x0[4], +(x1[4], -1))∧(UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥))
(60) (>(x1[3], 0)=TRUE∧+(x1[3], -1)=0 ⇒ COND_466_0_MAIN_LE(TRUE, x0[3], x1[3])≥NonInfC∧COND_466_0_MAIN_LE(TRUE, x0[3], x1[3])≥466_0_MAIN_LE(x0[3], +(x1[3], -1))∧(UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥))
(61) (x1[3] + [-1] ≥ 0∧x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [bni_33]x0[3] ≥ 0∧[(-1)bso_34] ≥ 0)
(62) (x1[3] + [-1] ≥ 0∧x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [bni_33]x0[3] ≥ 0∧[(-1)bso_34] ≥ 0)
(63) (x1[3] + [-1] ≥ 0∧x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_33 + (-1)Bound*bni_33] + [bni_33]x0[3] ≥ 0∧[(-1)bso_34] ≥ 0)
(64) (x1[3] + [-1] ≥ 0∧x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[bni_33] = 0∧[(-1)bni_33 + (-1)Bound*bni_33] ≥ 0∧0 = 0∧[(-1)bso_34] ≥ 0)
(65) (x1[3] ≥ 0∧x1[3] ≥ 0 ⇒ (UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[bni_33] = 0∧[(-1)bni_33 + (-1)Bound*bni_33] ≥ 0∧0 = 0∧[(-1)bso_34] ≥ 0)
(66) (&&(&&(>(x1[5], 0), <(x1[5], x0[5])), >(x0[5], 0))=TRUE∧x1[5]=x1[6]∧x0[5]=x0[6] ⇒ 305_0_MAIN_LE(x1[5], x0[5])≥NonInfC∧305_0_MAIN_LE(x1[5], x0[5])≥COND_305_0_MAIN_LE1(&&(&&(>(x1[5], 0), <(x1[5], x0[5])), >(x0[5], 0)), x1[5], x0[5])∧(UIncreasing(COND_305_0_MAIN_LE1(&&(&&(>(x1[5], 0), <(x1[5], x0[5])), >(x0[5], 0)), x1[5], x0[5])), ≥))
(67) (>(x0[5], 0)=TRUE∧>(x1[5], 0)=TRUE∧<(x1[5], x0[5])=TRUE ⇒ 305_0_MAIN_LE(x1[5], x0[5])≥NonInfC∧305_0_MAIN_LE(x1[5], x0[5])≥COND_305_0_MAIN_LE1(&&(&&(>(x1[5], 0), <(x1[5], x0[5])), >(x0[5], 0)), x1[5], x0[5])∧(UIncreasing(COND_305_0_MAIN_LE1(&&(&&(>(x1[5], 0), <(x1[5], x0[5])), >(x0[5], 0)), x1[5], x0[5])), ≥))
(68) (x0[5] + [-1] ≥ 0∧x1[5] + [-1] ≥ 0∧x0[5] + [-1] + [-1]x1[5] ≥ 0 ⇒ (UIncreasing(COND_305_0_MAIN_LE1(&&(&&(>(x1[5], 0), <(x1[5], x0[5])), >(x0[5], 0)), x1[5], x0[5])), ≥)∧[(-1)bni_35 + (-1)Bound*bni_35] + [bni_35]x0[5] + [bni_35]x1[5] ≥ 0∧[-1 + (-1)bso_36] + x0[5] ≥ 0)
(69) (x0[5] + [-1] ≥ 0∧x1[5] + [-1] ≥ 0∧x0[5] + [-1] + [-1]x1[5] ≥ 0 ⇒ (UIncreasing(COND_305_0_MAIN_LE1(&&(&&(>(x1[5], 0), <(x1[5], x0[5])), >(x0[5], 0)), x1[5], x0[5])), ≥)∧[(-1)bni_35 + (-1)Bound*bni_35] + [bni_35]x0[5] + [bni_35]x1[5] ≥ 0∧[-1 + (-1)bso_36] + x0[5] ≥ 0)
(70) (x0[5] + [-1] ≥ 0∧x1[5] + [-1] ≥ 0∧x0[5] + [-1] + [-1]x1[5] ≥ 0 ⇒ (UIncreasing(COND_305_0_MAIN_LE1(&&(&&(>(x1[5], 0), <(x1[5], x0[5])), >(x0[5], 0)), x1[5], x0[5])), ≥)∧[(-1)bni_35 + (-1)Bound*bni_35] + [bni_35]x0[5] + [bni_35]x1[5] ≥ 0∧[-1 + (-1)bso_36] + x0[5] ≥ 0)
(71) (x0[5] ≥ 0∧x1[5] + [-1] ≥ 0∧x0[5] + [-1]x1[5] ≥ 0 ⇒ (UIncreasing(COND_305_0_MAIN_LE1(&&(&&(>(x1[5], 0), <(x1[5], x0[5])), >(x0[5], 0)), x1[5], x0[5])), ≥)∧[(-1)Bound*bni_35] + [bni_35]x0[5] + [bni_35]x1[5] ≥ 0∧[(-1)bso_36] + x0[5] ≥ 0)
(72) (x1[5] + x0[5] ≥ 0∧x1[5] + [-1] ≥ 0∧x0[5] ≥ 0 ⇒ (UIncreasing(COND_305_0_MAIN_LE1(&&(&&(>(x1[5], 0), <(x1[5], x0[5])), >(x0[5], 0)), x1[5], x0[5])), ≥)∧[(-1)Bound*bni_35] + [(2)bni_35]x1[5] + [bni_35]x0[5] ≥ 0∧[(-1)bso_36] + x1[5] + x0[5] ≥ 0)
(73) ([1] + x1[5] + x0[5] ≥ 0∧x1[5] ≥ 0∧x0[5] ≥ 0 ⇒ (UIncreasing(COND_305_0_MAIN_LE1(&&(&&(>(x1[5], 0), <(x1[5], x0[5])), >(x0[5], 0)), x1[5], x0[5])), ≥)∧[(2)bni_35 + (-1)Bound*bni_35] + [(2)bni_35]x1[5] + [bni_35]x0[5] ≥ 0∧[1 + (-1)bso_36] + x1[5] + x0[5] ≥ 0)
(74) (x1[6]=x0[2]∧x0[6]=0 ⇒ COND_305_0_MAIN_LE1(TRUE, x1[6], x0[6])≥NonInfC∧COND_305_0_MAIN_LE1(TRUE, x1[6], x0[6])≥466_0_MAIN_LE(x1[6], x0[6])∧(UIncreasing(466_0_MAIN_LE(x1[6], x0[6])), ≥))
(75) (COND_305_0_MAIN_LE1(TRUE, x1[6], 0)≥NonInfC∧COND_305_0_MAIN_LE1(TRUE, x1[6], 0)≥466_0_MAIN_LE(x1[6], 0)∧(UIncreasing(466_0_MAIN_LE(x1[6], x0[6])), ≥))
(76) ((UIncreasing(466_0_MAIN_LE(x1[6], x0[6])), ≥)∧[bni_37] = 0∧[1 + (-1)bso_38] ≥ 0)
(77) ((UIncreasing(466_0_MAIN_LE(x1[6], x0[6])), ≥)∧[bni_37] = 0∧[1 + (-1)bso_38] ≥ 0)
(78) ((UIncreasing(466_0_MAIN_LE(x1[6], x0[6])), ≥)∧[bni_37] = 0∧[1 + (-1)bso_38] ≥ 0)
(79) ((UIncreasing(466_0_MAIN_LE(x1[6], x0[6])), ≥)∧[bni_37] = 0∧0 = 0∧[1 + (-1)bso_38] ≥ 0)
(80) (x1[6]=x0[3]∧x0[6]=x1[3] ⇒ COND_305_0_MAIN_LE1(TRUE, x1[6], x0[6])≥NonInfC∧COND_305_0_MAIN_LE1(TRUE, x1[6], x0[6])≥466_0_MAIN_LE(x1[6], x0[6])∧(UIncreasing(466_0_MAIN_LE(x1[6], x0[6])), ≥))
(81) (COND_305_0_MAIN_LE1(TRUE, x1[6], x0[6])≥NonInfC∧COND_305_0_MAIN_LE1(TRUE, x1[6], x0[6])≥466_0_MAIN_LE(x1[6], x0[6])∧(UIncreasing(466_0_MAIN_LE(x1[6], x0[6])), ≥))
(82) ((UIncreasing(466_0_MAIN_LE(x1[6], x0[6])), ≥)∧[bni_37] = 0∧[1 + (-1)bso_38] ≥ 0)
(83) ((UIncreasing(466_0_MAIN_LE(x1[6], x0[6])), ≥)∧[bni_37] = 0∧[1 + (-1)bso_38] ≥ 0)
(84) ((UIncreasing(466_0_MAIN_LE(x1[6], x0[6])), ≥)∧[bni_37] = 0∧[1 + (-1)bso_38] ≥ 0)
(85) ((UIncreasing(466_0_MAIN_LE(x1[6], x0[6])), ≥)∧[bni_37] = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_38] ≥ 0)
(86) (x1[6]=x1[7]∧x0[6]=0 ⇒ COND_305_0_MAIN_LE1(TRUE, x1[6], x0[6])≥NonInfC∧COND_305_0_MAIN_LE1(TRUE, x1[6], x0[6])≥466_0_MAIN_LE(x1[6], x0[6])∧(UIncreasing(466_0_MAIN_LE(x1[6], x0[6])), ≥))
(87) (COND_305_0_MAIN_LE1(TRUE, x1[6], 0)≥NonInfC∧COND_305_0_MAIN_LE1(TRUE, x1[6], 0)≥466_0_MAIN_LE(x1[6], 0)∧(UIncreasing(466_0_MAIN_LE(x1[6], x0[6])), ≥))
(88) ((UIncreasing(466_0_MAIN_LE(x1[6], x0[6])), ≥)∧[bni_37] = 0∧[1 + (-1)bso_38] ≥ 0)
(89) ((UIncreasing(466_0_MAIN_LE(x1[6], x0[6])), ≥)∧[bni_37] = 0∧[1 + (-1)bso_38] ≥ 0)
(90) ((UIncreasing(466_0_MAIN_LE(x1[6], x0[6])), ≥)∧[bni_37] = 0∧[1 + (-1)bso_38] ≥ 0)
(91) ((UIncreasing(466_0_MAIN_LE(x1[6], x0[6])), ≥)∧[bni_37] = 0∧0 = 0∧[1 + (-1)bso_38] ≥ 0)
(92) (x1[7]=x1[0]∧0=x0[0] ⇒ 466_0_MAIN_LE(x1[7], 0)≥NonInfC∧466_0_MAIN_LE(x1[7], 0)≥305_0_MAIN_LE(x1[7], 0)∧(UIncreasing(305_0_MAIN_LE(x1[7], 0)), ≥))
(93) (466_0_MAIN_LE(x1[7], 0)≥NonInfC∧466_0_MAIN_LE(x1[7], 0)≥305_0_MAIN_LE(x1[7], 0)∧(UIncreasing(305_0_MAIN_LE(x1[7], 0)), ≥))
(94) ((UIncreasing(305_0_MAIN_LE(x1[7], 0)), ≥)∧[bni_39] = 0∧[(-1)bso_40] ≥ 0)
(95) ((UIncreasing(305_0_MAIN_LE(x1[7], 0)), ≥)∧[bni_39] = 0∧[(-1)bso_40] ≥ 0)
(96) ((UIncreasing(305_0_MAIN_LE(x1[7], 0)), ≥)∧[bni_39] = 0∧[(-1)bso_40] ≥ 0)
(97) ((UIncreasing(305_0_MAIN_LE(x1[7], 0)), ≥)∧[bni_39] = 0∧0 = 0∧[(-1)bso_40] ≥ 0)
(98) (x1[7]=x1[5]∧0=x0[5] ⇒ 466_0_MAIN_LE(x1[7], 0)≥NonInfC∧466_0_MAIN_LE(x1[7], 0)≥305_0_MAIN_LE(x1[7], 0)∧(UIncreasing(305_0_MAIN_LE(x1[7], 0)), ≥))
(99) (466_0_MAIN_LE(x1[7], 0)≥NonInfC∧466_0_MAIN_LE(x1[7], 0)≥305_0_MAIN_LE(x1[7], 0)∧(UIncreasing(305_0_MAIN_LE(x1[7], 0)), ≥))
(100) ((UIncreasing(305_0_MAIN_LE(x1[7], 0)), ≥)∧[bni_39] = 0∧[(-1)bso_40] ≥ 0)
(101) ((UIncreasing(305_0_MAIN_LE(x1[7], 0)), ≥)∧[bni_39] = 0∧[(-1)bso_40] ≥ 0)
(102) ((UIncreasing(305_0_MAIN_LE(x1[7], 0)), ≥)∧[bni_39] = 0∧[(-1)bso_40] ≥ 0)
(103) ((UIncreasing(305_0_MAIN_LE(x1[7], 0)), ≥)∧[bni_39] = 0∧0 = 0∧[(-1)bso_40] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(305_0_MAIN_LE(x1, x2)) = [-1] + x2 + x1
POL(COND_305_0_MAIN_LE(x1, x2, x3)) = [-1] + x3 + [-1]x1
POL(&&(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(466_0_MAIN_LE(x1, x2)) = [-1] + x1
POL(COND_466_0_MAIN_LE(x1, x2, x3)) = [-1] + x2
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(COND_305_0_MAIN_LE1(x1, x2, x3)) = x2
POL(<(x1, x2)) = [-1]
305_0_MAIN_LE(x1[5], x0[5]) → COND_305_0_MAIN_LE1(&&(&&(>(x1[5], 0), <(x1[5], x0[5])), >(x0[5], 0)), x1[5], x0[5])
COND_305_0_MAIN_LE1(TRUE, x1[6], x0[6]) → 466_0_MAIN_LE(x1[6], x0[6])
305_0_MAIN_LE(x1[0], x0[0]) → COND_305_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])
305_0_MAIN_LE(x1[5], x0[5]) → COND_305_0_MAIN_LE1(&&(&&(>(x1[5], 0), <(x1[5], x0[5])), >(x0[5], 0)), x1[5], x0[5])
305_0_MAIN_LE(x1[0], x0[0]) → COND_305_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])
COND_305_0_MAIN_LE(TRUE, x1[1], x0[1]) → 466_0_MAIN_LE(x0[1], x1[1])
466_0_MAIN_LE(x0[2], 0) → 305_0_MAIN_LE(0, x0[2])
466_0_MAIN_LE(x0[3], x1[3]) → COND_466_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])
COND_466_0_MAIN_LE(TRUE, x0[4], x1[4]) → 466_0_MAIN_LE(x0[4], +(x1[4], -1))
466_0_MAIN_LE(x1[7], 0) → 305_0_MAIN_LE(x1[7], 0)
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(2) -> (0), if (0 →* x1[0]∧x0[2] →* x0[0])
(7) -> (0), if (x1[7] →* x1[0]∧0 →* x0[0])
(0) -> (1), if (x1[0] >= x0[0] && x1[0] > 0 && x0[0] > 0 ∧x1[0] →* x1[1]∧x0[0] →* x0[1])
(1) -> (2), if (x0[1] →* x0[2]∧x1[1] →* 0)
(4) -> (2), if (x0[4] →* x0[2]∧x1[4] + -1 →* 0)
(1) -> (3), if (x0[1] →* x0[3]∧x1[1] →* x1[3])
(4) -> (3), if (x0[4] →* x0[3]∧x1[4] + -1 →* x1[3])
(3) -> (4), if (x1[3] > 0 ∧x0[3] →* x0[4]∧x1[3] →* x1[4])
(1) -> (7), if (x0[1] →* x1[7]∧x1[1] →* 0)
(4) -> (7), if (x0[4] →* x1[7]∧x1[4] + -1 →* 0)
(1) (&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0))=TRUE∧x1[0]=x1[1]∧x0[0]=x0[1] ⇒ 305_0_MAIN_LE(x1[0], x0[0])≥NonInfC∧305_0_MAIN_LE(x1[0], x0[0])≥COND_305_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])∧(UIncreasing(COND_305_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])), ≥))
(2) (>(x0[0], 0)=TRUE∧>=(x1[0], x0[0])=TRUE∧>(x1[0], 0)=TRUE ⇒ 305_0_MAIN_LE(x1[0], x0[0])≥NonInfC∧305_0_MAIN_LE(x1[0], x0[0])≥COND_305_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])∧(UIncreasing(COND_305_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])), ≥))
(3) (x0[0] + [-1] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_305_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[0] + [bni_20]x1[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(4) (x0[0] + [-1] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_305_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[0] + [bni_20]x1[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(5) (x0[0] + [-1] ≥ 0∧x1[0] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_305_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[0] + [bni_20]x1[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(6) (x0[0] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_305_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)Bound*bni_20] + [bni_20]x0[0] + [bni_20]x1[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(7) (x0[0] ≥ 0∧x1[0] ≥ 0∧x0[0] + x1[0] ≥ 0 ⇒ (UIncreasing(COND_305_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])), ≥)∧[(-1)Bound*bni_20 + bni_20] + [(2)bni_20]x0[0] + [bni_20]x1[0] ≥ 0∧[(-1)bso_21] ≥ 0)
(8) (x0[1]=x0[2]∧x1[1]=0 ⇒ COND_305_0_MAIN_LE(TRUE, x1[1], x0[1])≥NonInfC∧COND_305_0_MAIN_LE(TRUE, x1[1], x0[1])≥466_0_MAIN_LE(x0[1], x1[1])∧(UIncreasing(466_0_MAIN_LE(x0[1], x1[1])), ≥))
(9) (COND_305_0_MAIN_LE(TRUE, 0, x0[1])≥NonInfC∧COND_305_0_MAIN_LE(TRUE, 0, x0[1])≥466_0_MAIN_LE(x0[1], 0)∧(UIncreasing(466_0_MAIN_LE(x0[1], x1[1])), ≥))
(10) ((UIncreasing(466_0_MAIN_LE(x0[1], x1[1])), ≥)∧[bni_22] = 0∧[(-1)bso_23] ≥ 0)
(11) ((UIncreasing(466_0_MAIN_LE(x0[1], x1[1])), ≥)∧[bni_22] = 0∧[(-1)bso_23] ≥ 0)
(12) ((UIncreasing(466_0_MAIN_LE(x0[1], x1[1])), ≥)∧[bni_22] = 0∧[(-1)bso_23] ≥ 0)
(13) ((UIncreasing(466_0_MAIN_LE(x0[1], x1[1])), ≥)∧[bni_22] = 0∧0 = 0∧[(-1)bso_23] ≥ 0)
(14) (x0[1]=x0[3]∧x1[1]=x1[3] ⇒ COND_305_0_MAIN_LE(TRUE, x1[1], x0[1])≥NonInfC∧COND_305_0_MAIN_LE(TRUE, x1[1], x0[1])≥466_0_MAIN_LE(x0[1], x1[1])∧(UIncreasing(466_0_MAIN_LE(x0[1], x1[1])), ≥))
(15) (COND_305_0_MAIN_LE(TRUE, x1[1], x0[1])≥NonInfC∧COND_305_0_MAIN_LE(TRUE, x1[1], x0[1])≥466_0_MAIN_LE(x0[1], x1[1])∧(UIncreasing(466_0_MAIN_LE(x0[1], x1[1])), ≥))
(16) ((UIncreasing(466_0_MAIN_LE(x0[1], x1[1])), ≥)∧[bni_22] = 0∧[(-1)bso_23] ≥ 0)
(17) ((UIncreasing(466_0_MAIN_LE(x0[1], x1[1])), ≥)∧[bni_22] = 0∧[(-1)bso_23] ≥ 0)
(18) ((UIncreasing(466_0_MAIN_LE(x0[1], x1[1])), ≥)∧[bni_22] = 0∧[(-1)bso_23] ≥ 0)
(19) ((UIncreasing(466_0_MAIN_LE(x0[1], x1[1])), ≥)∧[bni_22] = 0∧0 = 0∧0 = 0∧[(-1)bso_23] ≥ 0)
(20) (x0[1]=x1[7]∧x1[1]=0 ⇒ COND_305_0_MAIN_LE(TRUE, x1[1], x0[1])≥NonInfC∧COND_305_0_MAIN_LE(TRUE, x1[1], x0[1])≥466_0_MAIN_LE(x0[1], x1[1])∧(UIncreasing(466_0_MAIN_LE(x0[1], x1[1])), ≥))
(21) (COND_305_0_MAIN_LE(TRUE, 0, x0[1])≥NonInfC∧COND_305_0_MAIN_LE(TRUE, 0, x0[1])≥466_0_MAIN_LE(x0[1], 0)∧(UIncreasing(466_0_MAIN_LE(x0[1], x1[1])), ≥))
(22) ((UIncreasing(466_0_MAIN_LE(x0[1], x1[1])), ≥)∧[bni_22] = 0∧[(-1)bso_23] ≥ 0)
(23) ((UIncreasing(466_0_MAIN_LE(x0[1], x1[1])), ≥)∧[bni_22] = 0∧[(-1)bso_23] ≥ 0)
(24) ((UIncreasing(466_0_MAIN_LE(x0[1], x1[1])), ≥)∧[bni_22] = 0∧[(-1)bso_23] ≥ 0)
(25) ((UIncreasing(466_0_MAIN_LE(x0[1], x1[1])), ≥)∧[bni_22] = 0∧0 = 0∧[(-1)bso_23] ≥ 0)
(26) (0=x1[0]∧x0[2]=x0[0] ⇒ 466_0_MAIN_LE(x0[2], 0)≥NonInfC∧466_0_MAIN_LE(x0[2], 0)≥305_0_MAIN_LE(0, x0[2])∧(UIncreasing(305_0_MAIN_LE(0, x0[2])), ≥))
(27) (466_0_MAIN_LE(x0[2], 0)≥NonInfC∧466_0_MAIN_LE(x0[2], 0)≥305_0_MAIN_LE(0, x0[2])∧(UIncreasing(305_0_MAIN_LE(0, x0[2])), ≥))
(28) ((UIncreasing(305_0_MAIN_LE(0, x0[2])), ≥)∧[bni_24] = 0∧[(-1)bso_25] ≥ 0)
(29) ((UIncreasing(305_0_MAIN_LE(0, x0[2])), ≥)∧[bni_24] = 0∧[(-1)bso_25] ≥ 0)
(30) ((UIncreasing(305_0_MAIN_LE(0, x0[2])), ≥)∧[bni_24] = 0∧[(-1)bso_25] ≥ 0)
(31) ((UIncreasing(305_0_MAIN_LE(0, x0[2])), ≥)∧[bni_24] = 0∧0 = 0∧[(-1)bso_25] ≥ 0)
(32) (>(x1[3], 0)=TRUE∧x0[3]=x0[4]∧x1[3]=x1[4] ⇒ 466_0_MAIN_LE(x0[3], x1[3])≥NonInfC∧466_0_MAIN_LE(x0[3], x1[3])≥COND_466_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])∧(UIncreasing(COND_466_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥))
(33) (>(x1[3], 0)=TRUE ⇒ 466_0_MAIN_LE(x0[3], x1[3])≥NonInfC∧466_0_MAIN_LE(x0[3], x1[3])≥COND_466_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])∧(UIncreasing(COND_466_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥))
(34) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_466_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [bni_26]x1[3] + [bni_26]x0[3] ≥ 0∧[(-1)bso_27] ≥ 0)
(35) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_466_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [bni_26]x1[3] + [bni_26]x0[3] ≥ 0∧[(-1)bso_27] ≥ 0)
(36) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_466_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥)∧[(-1)bni_26 + (-1)Bound*bni_26] + [bni_26]x1[3] + [bni_26]x0[3] ≥ 0∧[(-1)bso_27] ≥ 0)
(37) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_466_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥)∧[bni_26] = 0∧[(-1)bni_26 + (-1)Bound*bni_26] + [bni_26]x1[3] ≥ 0∧0 = 0∧[(-1)bso_27] ≥ 0)
(38) (x1[3] ≥ 0 ⇒ (UIncreasing(COND_466_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥)∧[bni_26] = 0∧[(-1)Bound*bni_26] + [bni_26]x1[3] ≥ 0∧0 = 0∧[(-1)bso_27] ≥ 0)
(39) (>(x1[3], 0)=TRUE∧x0[3]=x0[4]∧x1[3]=x1[4]∧x0[4]=x0[2]∧+(x1[4], -1)=0 ⇒ COND_466_0_MAIN_LE(TRUE, x0[4], x1[4])≥NonInfC∧COND_466_0_MAIN_LE(TRUE, x0[4], x1[4])≥466_0_MAIN_LE(x0[4], +(x1[4], -1))∧(UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥))
(40) (>(x1[3], 0)=TRUE∧+(x1[3], -1)=0 ⇒ COND_466_0_MAIN_LE(TRUE, x0[3], x1[3])≥NonInfC∧COND_466_0_MAIN_LE(TRUE, x0[3], x1[3])≥466_0_MAIN_LE(x0[3], +(x1[3], -1))∧(UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥))
(41) (x1[3] + [-1] ≥ 0∧x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [bni_28]x1[3] + [bni_28]x0[3] ≥ 0∧[1 + (-1)bso_29] ≥ 0)
(42) (x1[3] + [-1] ≥ 0∧x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [bni_28]x1[3] + [bni_28]x0[3] ≥ 0∧[1 + (-1)bso_29] ≥ 0)
(43) (x1[3] + [-1] ≥ 0∧x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [bni_28]x1[3] + [bni_28]x0[3] ≥ 0∧[1 + (-1)bso_29] ≥ 0)
(44) (x1[3] + [-1] ≥ 0∧x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[bni_28] = 0∧[(-1)bni_28 + (-1)Bound*bni_28] + [bni_28]x1[3] ≥ 0∧0 = 0∧[1 + (-1)bso_29] ≥ 0)
(45) (x1[3] ≥ 0∧x1[3] ≥ 0 ⇒ (UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[bni_28] = 0∧[(-1)Bound*bni_28] + [bni_28]x1[3] ≥ 0∧0 = 0∧[1 + (-1)bso_29] ≥ 0)
(46) (>(x1[3], 0)=TRUE∧x0[3]=x0[4]∧x1[3]=x1[4]∧x0[4]=x0[3]1∧+(x1[4], -1)=x1[3]1 ⇒ COND_466_0_MAIN_LE(TRUE, x0[4], x1[4])≥NonInfC∧COND_466_0_MAIN_LE(TRUE, x0[4], x1[4])≥466_0_MAIN_LE(x0[4], +(x1[4], -1))∧(UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥))
(47) (>(x1[3], 0)=TRUE ⇒ COND_466_0_MAIN_LE(TRUE, x0[3], x1[3])≥NonInfC∧COND_466_0_MAIN_LE(TRUE, x0[3], x1[3])≥466_0_MAIN_LE(x0[3], +(x1[3], -1))∧(UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥))
(48) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [bni_28]x1[3] + [bni_28]x0[3] ≥ 0∧[1 + (-1)bso_29] ≥ 0)
(49) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [bni_28]x1[3] + [bni_28]x0[3] ≥ 0∧[1 + (-1)bso_29] ≥ 0)
(50) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [bni_28]x1[3] + [bni_28]x0[3] ≥ 0∧[1 + (-1)bso_29] ≥ 0)
(51) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[bni_28] = 0∧[(-1)bni_28 + (-1)Bound*bni_28] + [bni_28]x1[3] ≥ 0∧0 = 0∧[1 + (-1)bso_29] ≥ 0)
(52) (x1[3] ≥ 0 ⇒ (UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[bni_28] = 0∧[(-1)Bound*bni_28] + [bni_28]x1[3] ≥ 0∧0 = 0∧[1 + (-1)bso_29] ≥ 0)
(53) (>(x1[3], 0)=TRUE∧x0[3]=x0[4]∧x1[3]=x1[4]∧x0[4]=x1[7]∧+(x1[4], -1)=0 ⇒ COND_466_0_MAIN_LE(TRUE, x0[4], x1[4])≥NonInfC∧COND_466_0_MAIN_LE(TRUE, x0[4], x1[4])≥466_0_MAIN_LE(x0[4], +(x1[4], -1))∧(UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥))
(54) (>(x1[3], 0)=TRUE∧+(x1[3], -1)=0 ⇒ COND_466_0_MAIN_LE(TRUE, x0[3], x1[3])≥NonInfC∧COND_466_0_MAIN_LE(TRUE, x0[3], x1[3])≥466_0_MAIN_LE(x0[3], +(x1[3], -1))∧(UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥))
(55) (x1[3] + [-1] ≥ 0∧x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [bni_28]x1[3] + [bni_28]x0[3] ≥ 0∧[1 + (-1)bso_29] ≥ 0)
(56) (x1[3] + [-1] ≥ 0∧x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [bni_28]x1[3] + [bni_28]x0[3] ≥ 0∧[1 + (-1)bso_29] ≥ 0)
(57) (x1[3] + [-1] ≥ 0∧x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_28 + (-1)Bound*bni_28] + [bni_28]x1[3] + [bni_28]x0[3] ≥ 0∧[1 + (-1)bso_29] ≥ 0)
(58) (x1[3] + [-1] ≥ 0∧x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[bni_28] = 0∧[(-1)bni_28 + (-1)Bound*bni_28] + [bni_28]x1[3] ≥ 0∧0 = 0∧[1 + (-1)bso_29] ≥ 0)
(59) (x1[3] ≥ 0∧x1[3] ≥ 0 ⇒ (UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[bni_28] = 0∧[(-1)Bound*bni_28] + [bni_28]x1[3] ≥ 0∧0 = 0∧[1 + (-1)bso_29] ≥ 0)
(60) (x1[7]=x1[0]∧0=x0[0] ⇒ 466_0_MAIN_LE(x1[7], 0)≥NonInfC∧466_0_MAIN_LE(x1[7], 0)≥305_0_MAIN_LE(x1[7], 0)∧(UIncreasing(305_0_MAIN_LE(x1[7], 0)), ≥))
(61) (466_0_MAIN_LE(x1[7], 0)≥NonInfC∧466_0_MAIN_LE(x1[7], 0)≥305_0_MAIN_LE(x1[7], 0)∧(UIncreasing(305_0_MAIN_LE(x1[7], 0)), ≥))
(62) ((UIncreasing(305_0_MAIN_LE(x1[7], 0)), ≥)∧[bni_30] = 0∧[(-1)bso_31] ≥ 0)
(63) ((UIncreasing(305_0_MAIN_LE(x1[7], 0)), ≥)∧[bni_30] = 0∧[(-1)bso_31] ≥ 0)
(64) ((UIncreasing(305_0_MAIN_LE(x1[7], 0)), ≥)∧[bni_30] = 0∧[(-1)bso_31] ≥ 0)
(65) ((UIncreasing(305_0_MAIN_LE(x1[7], 0)), ≥)∧[bni_30] = 0∧0 = 0∧[(-1)bso_31] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(305_0_MAIN_LE(x1, x2)) = [-1] + x2 + x1
POL(COND_305_0_MAIN_LE(x1, x2, x3)) = [-1] + x3 + x2
POL(&&(x1, x2)) = 0
POL(>=(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(466_0_MAIN_LE(x1, x2)) = [-1] + x2 + x1
POL(COND_466_0_MAIN_LE(x1, x2, x3)) = [-1] + x3 + x2
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
COND_466_0_MAIN_LE(TRUE, x0[4], x1[4]) → 466_0_MAIN_LE(x0[4], +(x1[4], -1))
305_0_MAIN_LE(x1[0], x0[0]) → COND_305_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])
305_0_MAIN_LE(x1[0], x0[0]) → COND_305_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])
COND_305_0_MAIN_LE(TRUE, x1[1], x0[1]) → 466_0_MAIN_LE(x0[1], x1[1])
466_0_MAIN_LE(x0[2], 0) → 305_0_MAIN_LE(0, x0[2])
466_0_MAIN_LE(x0[3], x1[3]) → COND_466_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])
466_0_MAIN_LE(x1[7], 0) → 305_0_MAIN_LE(x1[7], 0)
&&(TRUE, TRUE)1 → TRUE1
&&(TRUE, FALSE)1 ↔ FALSE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(FALSE, FALSE)1 → FALSE1
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(2) -> (0), if (0 →* x1[0]∧x0[2] →* x0[0])
(7) -> (0), if (x1[7] →* x1[0]∧0 →* x0[0])
(0) -> (1), if (x1[0] >= x0[0] && x1[0] > 0 && x0[0] > 0 ∧x1[0] →* x1[1]∧x0[0] →* x0[1])
(1) -> (2), if (x0[1] →* x0[2]∧x1[1] →* 0)
(1) -> (3), if (x0[1] →* x0[3]∧x1[1] →* x1[3])
(1) -> (7), if (x0[1] →* x1[7]∧x1[1] →* 0)
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(2) -> (0), if (0 →* x1[0]∧x0[2] →* x0[0])
(7) -> (0), if (x1[7] →* x1[0]∧0 →* x0[0])
(0) -> (1), if (x1[0] >= x0[0] && x1[0] > 0 && x0[0] > 0 ∧x1[0] →* x1[1]∧x0[0] →* x0[1])
(1) -> (2), if (x0[1] →* x0[2]∧x1[1] →* 0)
(1) -> (7), if (x0[1] →* x1[7]∧x1[1] →* 0)
(1) (x0[1]=x1[7]∧x1[1]=0∧x1[7]=x1[0]∧0=x0[0] ⇒ 466_0_MAIN_LE(x1[7], 0)≥NonInfC∧466_0_MAIN_LE(x1[7], 0)≥305_0_MAIN_LE(x1[7], 0)∧(UIncreasing(305_0_MAIN_LE(x1[7], 0)), ≥))
(2) (466_0_MAIN_LE(x0[1], 0)≥NonInfC∧466_0_MAIN_LE(x0[1], 0)≥305_0_MAIN_LE(x0[1], 0)∧(UIncreasing(305_0_MAIN_LE(x1[7], 0)), ≥))
(3) ((UIncreasing(305_0_MAIN_LE(x1[7], 0)), ≥)∧[bni_16] = 0∧[2 + (-1)bso_17] ≥ 0)
(4) ((UIncreasing(305_0_MAIN_LE(x1[7], 0)), ≥)∧[bni_16] = 0∧[2 + (-1)bso_17] ≥ 0)
(5) ((UIncreasing(305_0_MAIN_LE(x1[7], 0)), ≥)∧[bni_16] = 0∧[2 + (-1)bso_17] ≥ 0)
(6) ((UIncreasing(305_0_MAIN_LE(x1[7], 0)), ≥)∧[bni_16] = 0∧0 = 0∧[2 + (-1)bso_17] ≥ 0)
(7) (x0[1]=x0[2]∧x1[1]=0∧0=x1[0]∧x0[2]=x0[0] ⇒ 466_0_MAIN_LE(x0[2], 0)≥NonInfC∧466_0_MAIN_LE(x0[2], 0)≥305_0_MAIN_LE(0, x0[2])∧(UIncreasing(305_0_MAIN_LE(0, x0[2])), ≥))
(8) (466_0_MAIN_LE(x0[1], 0)≥NonInfC∧466_0_MAIN_LE(x0[1], 0)≥305_0_MAIN_LE(0, x0[1])∧(UIncreasing(305_0_MAIN_LE(0, x0[2])), ≥))
(9) ((UIncreasing(305_0_MAIN_LE(0, x0[2])), ≥)∧[bni_18] = 0∧[2 + (-1)bso_19] ≥ 0)
(10) ((UIncreasing(305_0_MAIN_LE(0, x0[2])), ≥)∧[bni_18] = 0∧[2 + (-1)bso_19] ≥ 0)
(11) ((UIncreasing(305_0_MAIN_LE(0, x0[2])), ≥)∧[bni_18] = 0∧[2 + (-1)bso_19] ≥ 0)
(12) ((UIncreasing(305_0_MAIN_LE(0, x0[2])), ≥)∧[bni_18] = 0∧0 = 0∧[2 + (-1)bso_19] ≥ 0)
(13) (&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0))=TRUE∧x1[0]=x1[1]∧x0[0]=x0[1]∧x0[1]=x0[2]∧x1[1]=0 ⇒ COND_305_0_MAIN_LE(TRUE, x1[1], x0[1])≥NonInfC∧COND_305_0_MAIN_LE(TRUE, x1[1], x0[1])≥466_0_MAIN_LE(x0[1], x1[1])∧(UIncreasing(466_0_MAIN_LE(x0[1], x1[1])), ≥))
(14) (&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0))=TRUE∧x1[0]=x1[1]∧x0[0]=x0[1]∧x0[1]=x1[7]∧x1[1]=0 ⇒ COND_305_0_MAIN_LE(TRUE, x1[1], x0[1])≥NonInfC∧COND_305_0_MAIN_LE(TRUE, x1[1], x0[1])≥466_0_MAIN_LE(x0[1], x1[1])∧(UIncreasing(466_0_MAIN_LE(x0[1], x1[1])), ≥))
(15) (0=x1[0]∧x0[2]=x0[0]∧&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0))=TRUE∧x1[0]=x1[1]∧x0[0]=x0[1] ⇒ 305_0_MAIN_LE(x1[0], x0[0])≥NonInfC∧305_0_MAIN_LE(x1[0], x0[0])≥COND_305_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])∧(UIncreasing(COND_305_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])), ≥))
(16) (x1[7]=x1[0]∧0=x0[0]∧&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0))=TRUE∧x1[0]=x1[1]∧x0[0]=x0[1] ⇒ 305_0_MAIN_LE(x1[0], x0[0])≥NonInfC∧305_0_MAIN_LE(x1[0], x0[0])≥COND_305_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])∧(UIncreasing(COND_305_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])), ≥))
POL(TRUE) = 0
POL(FALSE) = 0
POL(466_0_MAIN_LE(x1, x2)) = [1] + [-1]x2 + [2]x1
POL(0) = 0
POL(305_0_MAIN_LE(x1, x2)) = [-1] + [2]x2 + [2]x1
POL(COND_305_0_MAIN_LE(x1, x2, x3)) = [-1] + [-1]x3 + [-1]x2 + [-1]x1
POL(&&(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
466_0_MAIN_LE(x1[7], 0) → 305_0_MAIN_LE(x1[7], 0)
466_0_MAIN_LE(x0[2], 0) → 305_0_MAIN_LE(0, x0[2])
COND_305_0_MAIN_LE(TRUE, x1[1], x0[1]) → 466_0_MAIN_LE(x0[1], x1[1])
305_0_MAIN_LE(x1[0], x0[0]) → COND_305_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])
COND_305_0_MAIN_LE(TRUE, x1[1], x0[1]) → 466_0_MAIN_LE(x0[1], x1[1])
305_0_MAIN_LE(x1[0], x0[0]) → COND_305_0_MAIN_LE(&&(&&(>=(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), x1[0], x0[0])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(1) -> (2), if (x0[1] →* x0[2]∧x1[1] →* 0)
(4) -> (2), if (x0[4] →* x0[2]∧x1[4] + -1 →* 0)
(1) -> (3), if (x0[1] →* x0[3]∧x1[1] →* x1[3])
(4) -> (3), if (x0[4] →* x0[3]∧x1[4] + -1 →* x1[3])
(3) -> (4), if (x1[3] > 0 ∧x0[3] →* x0[4]∧x1[3] →* x1[4])
(1) -> (7), if (x0[1] →* x1[7]∧x1[1] →* 0)
(4) -> (7), if (x0[4] →* x1[7]∧x1[4] + -1 →* 0)
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(4) -> (3), if (x0[4] →* x0[3]∧x1[4] + -1 →* x1[3])
(3) -> (4), if (x1[3] > 0 ∧x0[3] →* x0[4]∧x1[3] →* x1[4])
(1) (>(x1[3], 0)=TRUE∧x0[3]=x0[4]∧x1[3]=x1[4]∧x0[4]=x0[3]1∧+(x1[4], -1)=x1[3]1 ⇒ COND_466_0_MAIN_LE(TRUE, x0[4], x1[4])≥NonInfC∧COND_466_0_MAIN_LE(TRUE, x0[4], x1[4])≥466_0_MAIN_LE(x0[4], +(x1[4], -1))∧(UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥))
(2) (>(x1[3], 0)=TRUE ⇒ COND_466_0_MAIN_LE(TRUE, x0[3], x1[3])≥NonInfC∧COND_466_0_MAIN_LE(TRUE, x0[3], x1[3])≥466_0_MAIN_LE(x0[3], +(x1[3], -1))∧(UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥))
(3) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x1[3] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(4) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x1[3] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(5) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x1[3] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(6) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧0 = 0∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x1[3] ≥ 0∧0 = 0∧[1 + (-1)bso_12] ≥ 0)
(7) (x1[3] ≥ 0 ⇒ (UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧0 = 0∧[(-1)Bound*bni_11] + [bni_11]x1[3] ≥ 0∧0 = 0∧[1 + (-1)bso_12] ≥ 0)
(8) (>(x1[3], 0)=TRUE∧x0[3]=x0[4]∧x1[3]=x1[4] ⇒ 466_0_MAIN_LE(x0[3], x1[3])≥NonInfC∧466_0_MAIN_LE(x0[3], x1[3])≥COND_466_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])∧(UIncreasing(COND_466_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥))
(9) (>(x1[3], 0)=TRUE ⇒ 466_0_MAIN_LE(x0[3], x1[3])≥NonInfC∧466_0_MAIN_LE(x0[3], x1[3])≥COND_466_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])∧(UIncreasing(COND_466_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥))
(10) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_466_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x1[3] ≥ 0∧[(-1)bso_14] ≥ 0)
(11) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_466_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x1[3] ≥ 0∧[(-1)bso_14] ≥ 0)
(12) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_466_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x1[3] ≥ 0∧[(-1)bso_14] ≥ 0)
(13) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_466_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥)∧0 = 0∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x1[3] ≥ 0∧0 = 0∧[(-1)bso_14] ≥ 0)
(14) (x1[3] ≥ 0 ⇒ (UIncreasing(COND_466_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥)∧0 = 0∧[(-1)Bound*bni_13] + [bni_13]x1[3] ≥ 0∧0 = 0∧[(-1)bso_14] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_466_0_MAIN_LE(x1, x2, x3)) = [-1] + x3
POL(466_0_MAIN_LE(x1, x2)) = [-1] + x2
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
COND_466_0_MAIN_LE(TRUE, x0[4], x1[4]) → 466_0_MAIN_LE(x0[4], +(x1[4], -1))
COND_466_0_MAIN_LE(TRUE, x0[4], x1[4]) → 466_0_MAIN_LE(x0[4], +(x1[4], -1))
466_0_MAIN_LE(x0[3], x1[3]) → COND_466_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])
466_0_MAIN_LE(x0[3], x1[3]) → COND_466_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(1) -> (2), if (x0[1] →* x0[2]∧x1[1] →* 0)
(4) -> (2), if (x0[4] →* x0[2]∧x1[4] + -1 →* 0)
(6) -> (2), if (x1[6] →* x0[2]∧x0[6] →* 0)
(1) -> (3), if (x0[1] →* x0[3]∧x1[1] →* x1[3])
(4) -> (3), if (x0[4] →* x0[3]∧x1[4] + -1 →* x1[3])
(6) -> (3), if (x1[6] →* x0[3]∧x0[6] →* x1[3])
(3) -> (4), if (x1[3] > 0 ∧x0[3] →* x0[4]∧x1[3] →* x1[4])
(1) -> (7), if (x0[1] →* x1[7]∧x1[1] →* 0)
(4) -> (7), if (x0[4] →* x1[7]∧x1[4] + -1 →* 0)
(6) -> (7), if (x1[6] →* x1[7]∧x0[6] →* 0)
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(4) -> (3), if (x0[4] →* x0[3]∧x1[4] + -1 →* x1[3])
(3) -> (4), if (x1[3] > 0 ∧x0[3] →* x0[4]∧x1[3] →* x1[4])
(1) (>(x1[3], 0)=TRUE∧x0[3]=x0[4]∧x1[3]=x1[4]∧x0[4]=x0[3]1∧+(x1[4], -1)=x1[3]1 ⇒ COND_466_0_MAIN_LE(TRUE, x0[4], x1[4])≥NonInfC∧COND_466_0_MAIN_LE(TRUE, x0[4], x1[4])≥466_0_MAIN_LE(x0[4], +(x1[4], -1))∧(UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥))
(2) (>(x1[3], 0)=TRUE ⇒ COND_466_0_MAIN_LE(TRUE, x0[3], x1[3])≥NonInfC∧COND_466_0_MAIN_LE(TRUE, x0[3], x1[3])≥466_0_MAIN_LE(x0[3], +(x1[3], -1))∧(UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥))
(3) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x1[3] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(4) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x1[3] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(5) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x1[3] ≥ 0∧[1 + (-1)bso_12] ≥ 0)
(6) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧0 = 0∧[(-1)bni_11 + (-1)Bound*bni_11] + [bni_11]x1[3] ≥ 0∧0 = 0∧[1 + (-1)bso_12] ≥ 0)
(7) (x1[3] ≥ 0 ⇒ (UIncreasing(466_0_MAIN_LE(x0[4], +(x1[4], -1))), ≥)∧0 = 0∧[(-1)Bound*bni_11] + [bni_11]x1[3] ≥ 0∧0 = 0∧[1 + (-1)bso_12] ≥ 0)
(8) (>(x1[3], 0)=TRUE∧x0[3]=x0[4]∧x1[3]=x1[4] ⇒ 466_0_MAIN_LE(x0[3], x1[3])≥NonInfC∧466_0_MAIN_LE(x0[3], x1[3])≥COND_466_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])∧(UIncreasing(COND_466_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥))
(9) (>(x1[3], 0)=TRUE ⇒ 466_0_MAIN_LE(x0[3], x1[3])≥NonInfC∧466_0_MAIN_LE(x0[3], x1[3])≥COND_466_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])∧(UIncreasing(COND_466_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥))
(10) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_466_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x1[3] ≥ 0∧[(-1)bso_14] ≥ 0)
(11) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_466_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x1[3] ≥ 0∧[(-1)bso_14] ≥ 0)
(12) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_466_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥)∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x1[3] ≥ 0∧[(-1)bso_14] ≥ 0)
(13) (x1[3] + [-1] ≥ 0 ⇒ (UIncreasing(COND_466_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥)∧0 = 0∧[(-1)bni_13 + (-1)Bound*bni_13] + [bni_13]x1[3] ≥ 0∧0 = 0∧[(-1)bso_14] ≥ 0)
(14) (x1[3] ≥ 0 ⇒ (UIncreasing(COND_466_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])), ≥)∧0 = 0∧[(-1)Bound*bni_13] + [bni_13]x1[3] ≥ 0∧0 = 0∧[(-1)bso_14] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_466_0_MAIN_LE(x1, x2, x3)) = [-1] + x3
POL(466_0_MAIN_LE(x1, x2)) = [-1] + x2
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
COND_466_0_MAIN_LE(TRUE, x0[4], x1[4]) → 466_0_MAIN_LE(x0[4], +(x1[4], -1))
COND_466_0_MAIN_LE(TRUE, x0[4], x1[4]) → 466_0_MAIN_LE(x0[4], +(x1[4], -1))
466_0_MAIN_LE(x0[3], x1[3]) → COND_466_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])
466_0_MAIN_LE(x0[3], x1[3]) → COND_466_0_MAIN_LE(>(x1[3], 0), x0[3], x1[3])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer