0 JBC
↳1 JBCToGraph (⇒, 350 ms)
↳2 JBCTerminationGraph
↳3 TerminationGraphToSCCProof (⇒, 0 ms)
↳4 JBCTerminationSCC
↳5 SCCToIDPv1Proof (⇒, 80 ms)
↳6 IDP
↳7 IDPNonInfProof (⇒, 160 ms)
↳8 AND
↳9 IDP
↳10 IDependencyGraphProof (⇔, 0 ms)
↳11 TRUE
↳12 IDP
↳13 IDependencyGraphProof (⇔, 0 ms)
↳14 IDP
↳15 IDPNonInfProof (⇒, 0 ms)
↳16 IDP
↳17 IDependencyGraphProof (⇔, 0 ms)
↳18 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaB16 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
while (x > 0) {
while (y > 0) {
y--;
}
x--;
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 14 rules for P and 0 rules for R.
P rules:
296_0_main_LE(EOS(STATIC_296), i53, i47, i53) → 303_0_main_LE(EOS(STATIC_303), i53, i47, i53)
303_0_main_LE(EOS(STATIC_303), i53, i47, i53) → 315_0_main_Load(EOS(STATIC_315), i53, i47) | >(i53, 0)
315_0_main_Load(EOS(STATIC_315), i53, i47) → 326_0_main_LE(EOS(STATIC_326), i53, i47, i47)
326_0_main_LE(EOS(STATIC_326), i53, matching1, matching2) → 331_0_main_LE(EOS(STATIC_331), i53, 0, 0) | &&(=(matching1, 0), =(matching2, 0))
326_0_main_LE(EOS(STATIC_326), i53, i57, i57) → 332_0_main_LE(EOS(STATIC_332), i53, i57, i57)
331_0_main_LE(EOS(STATIC_331), i53, matching1, matching2) → 341_0_main_Inc(EOS(STATIC_341), i53, 0) | &&(&&(<=(0, 0), =(matching1, 0)), =(matching2, 0))
341_0_main_Inc(EOS(STATIC_341), i53, matching1) → 352_0_main_JMP(EOS(STATIC_352), +(i53, -1), 0) | &&(>(i53, 0), =(matching1, 0))
352_0_main_JMP(EOS(STATIC_352), i61, matching1) → 382_0_main_Load(EOS(STATIC_382), i61, 0) | =(matching1, 0)
382_0_main_Load(EOS(STATIC_382), i61, matching1) → 293_0_main_Load(EOS(STATIC_293), i61, 0) | =(matching1, 0)
293_0_main_Load(EOS(STATIC_293), i18, i47) → 296_0_main_LE(EOS(STATIC_296), i18, i47, i18)
332_0_main_LE(EOS(STATIC_332), i53, i57, i57) → 343_0_main_Inc(EOS(STATIC_343), i53, i57) | >(i57, 0)
343_0_main_Inc(EOS(STATIC_343), i53, i57) → 354_0_main_JMP(EOS(STATIC_354), i53, +(i57, -1)) | >(i57, 0)
354_0_main_JMP(EOS(STATIC_354), i53, i62) → 387_0_main_Load(EOS(STATIC_387), i53, i62)
387_0_main_Load(EOS(STATIC_387), i53, i62) → 315_0_main_Load(EOS(STATIC_315), i53, i62)
R rules:
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
326_0_main_LE(EOS(STATIC_326), x0, 0, 0) → 326_0_main_LE(EOS(STATIC_326), +(x0, -1), 0, 0) | >(x0, 1)
326_0_main_LE(EOS(STATIC_326), x0, x1, x1) → 326_0_main_LE(EOS(STATIC_326), x0, +(x1, -1), +(x1, -1)) | >(x1, 0)
R rules:
Filtered ground terms:
326_0_main_LE(x1, x2, x3, x4) → 326_0_main_LE(x2, x3, x4)
EOS(x1) → EOS
Cond_326_0_main_LE1(x1, x2, x3, x4, x5) → Cond_326_0_main_LE1(x1, x3, x4, x5)
Cond_326_0_main_LE(x1, x2, x3, x4, x5) → Cond_326_0_main_LE(x1, x3)
Filtered duplicate args:
326_0_main_LE(x1, x2, x3) → 326_0_main_LE(x1, x3)
Cond_326_0_main_LE1(x1, x2, x3, x4) → Cond_326_0_main_LE1(x1, x2, x4)
Combined rules. Obtained 2 conditional rules for P and 0 conditional rules for R.
P rules:
326_0_main_LE(x0, 0) → 326_0_main_LE(+(x0, -1), 0) | >(x0, 1)
326_0_main_LE(x0, x1) → 326_0_main_LE(x0, +(x1, -1)) | >(x1, 0)
R rules:
Finished conversion. Obtained 4 rules for P and 0 rules for R. System has predefined symbols.
P rules:
326_0_MAIN_LE(x0, 0) → COND_326_0_MAIN_LE(>(x0, 1), x0, 0)
COND_326_0_MAIN_LE(TRUE, x0, 0) → 326_0_MAIN_LE(+(x0, -1), 0)
326_0_MAIN_LE(x0, x1) → COND_326_0_MAIN_LE1(>(x1, 0), x0, x1)
COND_326_0_MAIN_LE1(TRUE, x0, x1) → 326_0_MAIN_LE(x0, +(x1, -1))
R rules:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(0) -> (1), if (x0[0] > 1 ∧x0[0] →* x0[1])
(1) -> (0), if x0[1] + -1 →* x0[0]
(1) -> (2), if (x0[1] + -1 →* x0[2]∧0 →* x1[2])
(2) -> (3), if (x1[2] > 0 ∧x0[2] →* x0[3]∧x1[2] →* x1[3])
(3) -> (0), if (x0[3] →* x0[0]∧x1[3] + -1 →* 0)
(3) -> (2), if (x0[3] →* x0[2]∧x1[3] + -1 →* x1[2])
(1) (>(x0[0], 1)=TRUE∧x0[0]=x0[1] ⇒ 326_0_MAIN_LE(x0[0], 0)≥NonInfC∧326_0_MAIN_LE(x0[0], 0)≥COND_326_0_MAIN_LE(>(x0[0], 1), x0[0], 0)∧(UIncreasing(COND_326_0_MAIN_LE(>(x0[0], 1), x0[0], 0)), ≥))
(2) (>(x0[0], 1)=TRUE ⇒ 326_0_MAIN_LE(x0[0], 0)≥NonInfC∧326_0_MAIN_LE(x0[0], 0)≥COND_326_0_MAIN_LE(>(x0[0], 1), x0[0], 0)∧(UIncreasing(COND_326_0_MAIN_LE(>(x0[0], 1), x0[0], 0)), ≥))
(3) (x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_326_0_MAIN_LE(>(x0[0], 1), x0[0], 0)), ≥)∧[bni_10 + (-1)Bound*bni_10] + [bni_10]x0[0] ≥ 0∧[(-1)bso_11] ≥ 0)
(4) (x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_326_0_MAIN_LE(>(x0[0], 1), x0[0], 0)), ≥)∧[bni_10 + (-1)Bound*bni_10] + [bni_10]x0[0] ≥ 0∧[(-1)bso_11] ≥ 0)
(5) (x0[0] + [-2] ≥ 0 ⇒ (UIncreasing(COND_326_0_MAIN_LE(>(x0[0], 1), x0[0], 0)), ≥)∧[bni_10 + (-1)Bound*bni_10] + [bni_10]x0[0] ≥ 0∧[(-1)bso_11] ≥ 0)
(6) (x0[0] ≥ 0 ⇒ (UIncreasing(COND_326_0_MAIN_LE(>(x0[0], 1), x0[0], 0)), ≥)∧[(3)bni_10 + (-1)Bound*bni_10] + [bni_10]x0[0] ≥ 0∧[(-1)bso_11] ≥ 0)
(7) (COND_326_0_MAIN_LE(TRUE, x0[1], 0)≥NonInfC∧COND_326_0_MAIN_LE(TRUE, x0[1], 0)≥326_0_MAIN_LE(+(x0[1], -1), 0)∧(UIncreasing(326_0_MAIN_LE(+(x0[1], -1), 0)), ≥))
(8) ((UIncreasing(326_0_MAIN_LE(+(x0[1], -1), 0)), ≥)∧[bni_12] = 0∧[1 + (-1)bso_13] ≥ 0)
(9) ((UIncreasing(326_0_MAIN_LE(+(x0[1], -1), 0)), ≥)∧[bni_12] = 0∧[1 + (-1)bso_13] ≥ 0)
(10) ((UIncreasing(326_0_MAIN_LE(+(x0[1], -1), 0)), ≥)∧[bni_12] = 0∧[1 + (-1)bso_13] ≥ 0)
(11) ((UIncreasing(326_0_MAIN_LE(+(x0[1], -1), 0)), ≥)∧[bni_12] = 0∧0 = 0∧[1 + (-1)bso_13] ≥ 0)
(12) (>(x1[2], 0)=TRUE∧x0[2]=x0[3]∧x1[2]=x1[3] ⇒ 326_0_MAIN_LE(x0[2], x1[2])≥NonInfC∧326_0_MAIN_LE(x0[2], x1[2])≥COND_326_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])∧(UIncreasing(COND_326_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])), ≥))
(13) (>(x1[2], 0)=TRUE ⇒ 326_0_MAIN_LE(x0[2], x1[2])≥NonInfC∧326_0_MAIN_LE(x0[2], x1[2])≥COND_326_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])∧(UIncreasing(COND_326_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])), ≥))
(14) (x1[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_326_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])), ≥)∧[bni_14 + (-1)Bound*bni_14] + [bni_14]x1[2] + [bni_14]x0[2] ≥ 0∧[(-1)bso_15] ≥ 0)
(15) (x1[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_326_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])), ≥)∧[bni_14 + (-1)Bound*bni_14] + [bni_14]x1[2] + [bni_14]x0[2] ≥ 0∧[(-1)bso_15] ≥ 0)
(16) (x1[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_326_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])), ≥)∧[bni_14 + (-1)Bound*bni_14] + [bni_14]x1[2] + [bni_14]x0[2] ≥ 0∧[(-1)bso_15] ≥ 0)
(17) (x1[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_326_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])), ≥)∧[bni_14] = 0∧[bni_14 + (-1)Bound*bni_14] + [bni_14]x1[2] ≥ 0∧0 = 0∧[(-1)bso_15] ≥ 0)
(18) (x1[2] ≥ 0 ⇒ (UIncreasing(COND_326_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])), ≥)∧[bni_14] = 0∧[(2)bni_14 + (-1)Bound*bni_14] + [bni_14]x1[2] ≥ 0∧0 = 0∧[(-1)bso_15] ≥ 0)
(19) (COND_326_0_MAIN_LE1(TRUE, x0[3], x1[3])≥NonInfC∧COND_326_0_MAIN_LE1(TRUE, x0[3], x1[3])≥326_0_MAIN_LE(x0[3], +(x1[3], -1))∧(UIncreasing(326_0_MAIN_LE(x0[3], +(x1[3], -1))), ≥))
(20) ((UIncreasing(326_0_MAIN_LE(x0[3], +(x1[3], -1))), ≥)∧[bni_16] = 0∧[1 + (-1)bso_17] ≥ 0)
(21) ((UIncreasing(326_0_MAIN_LE(x0[3], +(x1[3], -1))), ≥)∧[bni_16] = 0∧[1 + (-1)bso_17] ≥ 0)
(22) ((UIncreasing(326_0_MAIN_LE(x0[3], +(x1[3], -1))), ≥)∧[bni_16] = 0∧[1 + (-1)bso_17] ≥ 0)
(23) ((UIncreasing(326_0_MAIN_LE(x0[3], +(x1[3], -1))), ≥)∧[bni_16] = 0∧0 = 0∧0 = 0∧[1 + (-1)bso_17] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(326_0_MAIN_LE(x1, x2)) = [1] + x2 + x1
POL(0) = 0
POL(COND_326_0_MAIN_LE(x1, x2, x3)) = [1] + x2
POL(>(x1, x2)) = [-1]
POL(1) = [1]
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(COND_326_0_MAIN_LE1(x1, x2, x3)) = [1] + x3 + x2
COND_326_0_MAIN_LE(TRUE, x0[1], 0) → 326_0_MAIN_LE(+(x0[1], -1), 0)
COND_326_0_MAIN_LE1(TRUE, x0[3], x1[3]) → 326_0_MAIN_LE(x0[3], +(x1[3], -1))
326_0_MAIN_LE(x0[0], 0) → COND_326_0_MAIN_LE(>(x0[0], 1), x0[0], 0)
326_0_MAIN_LE(x0[0], 0) → COND_326_0_MAIN_LE(>(x0[0], 1), x0[0], 0)
326_0_MAIN_LE(x0[2], x1[2]) → COND_326_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(1) -> (2), if (x0[1] + -1 →* x0[2]∧0 →* x1[2])
(3) -> (2), if (x0[3] →* x0[2]∧x1[3] + -1 →* x1[2])
(2) -> (3), if (x1[2] > 0 ∧x0[2] →* x0[3]∧x1[2] →* x1[3])
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer
(3) -> (2), if (x0[3] →* x0[2]∧x1[3] + -1 →* x1[2])
(2) -> (3), if (x1[2] > 0 ∧x0[2] →* x0[3]∧x1[2] →* x1[3])
(1) (COND_326_0_MAIN_LE1(TRUE, x0[3], x1[3])≥NonInfC∧COND_326_0_MAIN_LE1(TRUE, x0[3], x1[3])≥326_0_MAIN_LE(x0[3], +(x1[3], -1))∧(UIncreasing(326_0_MAIN_LE(x0[3], +(x1[3], -1))), ≥))
(2) ((UIncreasing(326_0_MAIN_LE(x0[3], +(x1[3], -1))), ≥)∧[bni_7] = 0∧[(-1)bso_8] ≥ 0)
(3) ((UIncreasing(326_0_MAIN_LE(x0[3], +(x1[3], -1))), ≥)∧[bni_7] = 0∧[(-1)bso_8] ≥ 0)
(4) ((UIncreasing(326_0_MAIN_LE(x0[3], +(x1[3], -1))), ≥)∧[bni_7] = 0∧[(-1)bso_8] ≥ 0)
(5) ((UIncreasing(326_0_MAIN_LE(x0[3], +(x1[3], -1))), ≥)∧[bni_7] = 0∧0 = 0∧[(-1)bso_8] ≥ 0)
(6) (>(x1[2], 0)=TRUE∧x0[2]=x0[3]∧x1[2]=x1[3] ⇒ 326_0_MAIN_LE(x0[2], x1[2])≥NonInfC∧326_0_MAIN_LE(x0[2], x1[2])≥COND_326_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])∧(UIncreasing(COND_326_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])), ≥))
(7) (>(x1[2], 0)=TRUE ⇒ 326_0_MAIN_LE(x0[2], x1[2])≥NonInfC∧326_0_MAIN_LE(x0[2], x1[2])≥COND_326_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])∧(UIncreasing(COND_326_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])), ≥))
(8) (x1[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_326_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])), ≥)∧[bni_9 + (-1)Bound*bni_9] + [(2)bni_9]x1[2] ≥ 0∧[2 + (-1)bso_10] ≥ 0)
(9) (x1[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_326_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])), ≥)∧[bni_9 + (-1)Bound*bni_9] + [(2)bni_9]x1[2] ≥ 0∧[2 + (-1)bso_10] ≥ 0)
(10) (x1[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_326_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])), ≥)∧[bni_9 + (-1)Bound*bni_9] + [(2)bni_9]x1[2] ≥ 0∧[2 + (-1)bso_10] ≥ 0)
(11) (x1[2] ≥ 0 ⇒ (UIncreasing(COND_326_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])), ≥)∧[(3)bni_9 + (-1)Bound*bni_9] + [(2)bni_9]x1[2] ≥ 0∧[2 + (-1)bso_10] ≥ 0)
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_326_0_MAIN_LE1(x1, x2, x3)) = [-1] + [2]x3
POL(326_0_MAIN_LE(x1, x2)) = [1] + [2]x2
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
326_0_MAIN_LE(x0[2], x1[2]) → COND_326_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])
326_0_MAIN_LE(x0[2], x1[2]) → COND_326_0_MAIN_LE1(>(x1[2], 0), x0[2], x1[2])
COND_326_0_MAIN_LE1(TRUE, x0[3], x1[3]) → 326_0_MAIN_LE(x0[3], +(x1[3], -1))
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Integer